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ABSTRACT

Serverless computing has seen rapid adoption due to its high scala-

bility and flexible, pay-as-you-go billing model. In serverless, de-

velopers structure their services as a collection of functions, spo-

radically invoked by various events like clicks. High inter-arrival

time variability of function invocations motivates the providers

to start new function instances upon each invocation, leading to

significant cold-start delays that degrade user experience. To reduce

cold-start latency, the industry has turned to snapshotting, whereby

an image of a fully-booted function is stored on disk, enabling a

faster invocation compared to booting a function from scratch.

This work introduces vHive, an open-source framework for

serverless experimentation with the goal of enabling researchers

to study and innovate across the entire serverless stack. Using

vHive, we characterize a state-of-the-art snapshot-based serverless

infrastructure, based on industry-leading Containerd orchestra-

tion framework and Firecracker hypervisor technologies. We find

that the execution time of a function started from a snapshot is

95% higher, on average, than when the same function is memory-

resident. We show that the high latency is attributable to frequent

page faults as the function’s state is brought from disk into guest

memory one page at a time. Our analysis further reveals that func-

tions access the same stable working set of pages across different

invocations of the same function. By leveraging this insight, we

build REAP, a light-weight software mechanism for serverless hosts

that records functions’ stable working set of guest memory pages

and proactively prefetches it from disk into memory. Compared to

baseline snapshotting, REAP slashes the cold-start delays by 3.7×,

on average.
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1 INTRODUCTION

Serverless computing has emerged as the fastest growing cloud

service and deployment model of the past few years, increasing

its Compound Annual Growth Rate (CAGR) from 12% in 2017 to

21% in 2018 [18, 44]. In serverless, services are decomposed into

collections of independent stateless functions that are invoked by

events specified by the developer. The number of active functions at

any given time is determined by the load on that specific function,

and could range from zero to thousands of concurrently running

instances. This scaling happens automatically, on-demand, and is

handled by the cloud provider. Thus, the serverless model combines

extreme elasticity with pay-as-you-go billing where customers are

charged only for the time spent executing their requests ś a marked

departure from conventional virtual machines (VMs) hosted in the

cloud, which are billed for their up-time regardless of usage.

To make the serverless model profitable, cloud vendors colocate

thousands of independent function instances on a single physical

server, thus achieving high server utilization. A high degree of

colocation is possible because most functions are invoked relatively

infrequently and execute for a very short amount of time. Indeed, a

study at Microsoft Azure showed that 90% of functions are triggered

less than once per minute and 90% of the functions execute for less

than 10 seconds [53].

Because of their short execution time, booting a function (i.e.,

cold start) has overwhelmingly expensive latency, and can eas-

ily dominate the total execution time. Moreover, customers are

not billed for the time a function boots, which de-incentivizes the

cloud vendor from booting each function from scratch on-demand.

559

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3445814.3446714
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3445814.3446714&domain=pdf&date_stamp=2021-04-17


ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot

Customers also have an incentive to avoid cold starts because of

their high impact on latency [48]. As a result, both cloud vendors

and their customers prefer to keep function instances memory-

resident (i.e., warm) [29, 45, 48]. However, keeping idle function

instances alive wastefully occupies precious main memory, which

accounts for 40% of a modern server’s typical capital cost [5]. With

serverless providers instantiating thousands of function on a single

server [5, 7], the memory footprint of keeping all instances warm

can reach into hundreds of GBs.

To avoid keeping thousands of functions warm while also elid-

ing the high latency of cold-booting a function, the industry has

embraced snapshotting as a promising solution. With this approach,

once a function instance is fully booted, its complete state is cap-

tured and stored on disk. When a new invocation for that function

arrives, the orchestrator can rapidly load a new function instance

from the corresponding snapshot. Once loaded, the instance can

immediately start processing the incoming invocation, thus elimi-

nating the high latency of a cold boot.

To facilitate deeper understanding and experimentation with

serverless computing, this work introduces vHive, an open-source

framework for serverless experimentation, which enables systems

researchers to innovate across the entire serverless stack.1 Existing

open-source systems and frameworks are ill-suited for researchers,

being either incomplete, focusing only on one of the components,

such as a hypervisor [28], or rely on insufficiently secure container

isolation [8ś10, 30, 36]. vHive integrates open-source production-

grade components from the leading serverless providers, namely

Amazon Firecracker [5], Containerd [21], Kubernetes [37], and

Knative [12], that offer the latest virtualization, snapshotting, and

cluster orchestration technologies along with a toolchain for func-

tions deployment and benchmarking.

Using vHive, we study the cold-start latency of functions from

the FunctionBench suite [32, 33], their memory footprint, and their

spatio-temporal locality characteristics when the functions run

inside Firecracker MicroVMs [5] as part of the industry-standard

Containerd infrastructure [21, 60]. We focus on a state-of-the-art

baseline where the function is restored from a snapshot on a local

SSD, thus achieving the lowest possible cold-start latency with

existing snapshotting technology [26, 58].

Based on our analysis, we make three key observations. First,

restoring from a snapshot yields a much smaller memory footprint

(8-99MB) for a given function than cold-booting the function from

scratch (148-256 MB) ś a reduction of 61-96%. The reason for the

greatly reduced footprint is that only the pages that are actually

used by the function are loaded into memory. In contrast, when a

function boots from scratch, both the guest OS and the function’s

user code engage functionality that is never used during serving a

function invocation (e.g., function initialization).

Our second observation is that the execution time of a function

restored from a snapshot is dominated by serving page faults in the

host OS as pages are lazily mapped into the guest memory. The host

OS serves these page faults one by one, bringing the pages from

the backing file on disk. We find that these file accesses impose a

particularly high overhead because the guest accesses lack spatial

locality, rendering host OS’ disk read-ahead prefetching ineffective.

1The code is available at https://github.com/ease-lab/vhive.

Altogether, we find that servicing page faults on the critical path of

function execution accounts for 95% of actual function processing

time, on average ś a significant slowdown, compared to executing

a function from memory (i.e., łwarmž).

Our last observation is that a given function accesses largely the

same set of guest-physical memory pages across multiple invoca-

tions of the function. For the studied functions, 97%, on average of

the memory pages are the same across invocations.

Leveraging the observations above, we introduce Record-and-

Prefetch (REAP) ś a light-weight software mechanism for serverless

hosts that exploits recurrence in the memory working set of func-

tions to reduce cold-start latency. Upon the first invocation of a

function, REAP records a trace of guest-physical pages and stores

the copies of these pages in a small working set file. On each sub-

sequent invocation, REAP uses the recorded trace to proactively

prefetch the entire function working set with a single disk read and

eagerly installs it into the guest’s memory space. REAP is imple-

mented entirely in userspace, using the existing Linux user-level

page fault handling mechanism [39]. Our evaluation shows that

REAP eliminates 97% of the pages faults, on average, and reduces

the cold-start latency of serverless functions by an average of 3.7×.

We summarize our contributions as following:

• We release vHive, an open-source framework for serverless ex-

perimentation, combining production-grade components from

the leading serverless providers to enable innovation in serverless

systems across their deep and distributed software stack.

• Using vHive, we demonstrate that the state-of-the-art approach

of starting a function from a snapshot results in low memory

utilization but high start-up latency due to lazy page faults and

poor locality in SSD accesses. We further observe that the set of

pages accessed by a function across invocations recurs.

• We present REAP, a record-and-prefetch mechanism that eagerly

installs the set of pages used by a function from a pre-recorded

trace. REAP speeds up function cold start time by 3.7×, on aver-

age, without introducing memory overheads or memory sharing

across function instances.

• We implement REAP entirely in userspace with minimal changes

to the Firecracker hypervisor and no modifications to the kernel.

REAP is independent of the underlying serverless infrastructure

and can be trivially integrated with other serverless frameworks

and hypervisors, e.g., Kata Containers [3] and gVisor [28].

2 SERVERLESS BACKGROUND

2.1 Workload Characteristics and Challenges

Serverless computing or Function as a Service (FaaS) is an increas-

ingly popular paradigm for developing and deploying online ser-

vices. In the serverless model, the application functionality is sliced

into one or more stateless event-driven jobs (i.e., functions), ex-

ecuted by the FaaS provider. Functions are launched on-demand

based on the specified event triggers, such as HTTP requests. All

major cloud providers support serverless deployments; examples

include Amazon Lambda [13] and Azure Functions [45].

A recent study of Azure Functions in production shows that

serverless functions are short-running, invoked infrequently, and

function invocations are difficult to predict [53]. Specifically, the

Azure study shows that half of the functions complete within 1
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second while >90% of functions have runtime below 10 seconds.

Another finding is that functions tend to have small memory foot-

prints: >90% of functions allocate less than 300MB of virtual mem-

ory. Lastly, 90% of functions are invoked less frequently than once

per minute, albeit >96% functions are invoked at least once per

week.

Given these characteristics of functions, the providers seek to

aggressively co-locate thousands of function instances that share

physical hosts to increase utilization of the provider’s server fleet [5].

For example, a stated goal for AWS Lambda is deploying 4-8 thou-

sand instances on a single host [5, 7].

This high degree of colocation brings several challenges. First,

serverless functions run untrusted code provided by untrusted

cloud service developers that introduces a challenge for security.

Second, serverless platforms aim to be general-purpose, support-

ing functions written in different programming languages for a

standard Linux environment. As a result, most serverless providers

use virtualization sandboxes that either run a full-blown guest

OS [1, 3, 5, 14, 50] or emulate a Linux environment by intercept-

ing and handling a sandboxed application’s system calls in the

hypervisor [28].

Another challenge for serverless deployments is that idle func-

tion instances occupy server memory. To avoid wasting memory

capacity, most serverless providers tend to limit the lifetime of func-

tion instances to 8-20 minutes after the last invocation due to the

sporadic nature of invocations, deallocating instances after a period

of inactivity and starting new instances on demand. Hence, the first

invocation after a period of inactivity results in a start-up latency

that is commonly referred to as the serverless function cold-start

delay. In the last few years, high cold-start latencies have become

one of the central problems in serverless computing and one of the

key metrics for evaluating serverless providers [54, 56].

2.2 Hypervisor Specialization for Cold Starts

As noted in the previous section, leading serverless vendors, includ-

ing Amazon Lambda, Azure Functions, Google Cloud Functions,

and Alibaba Cloud, choose virtual machines (VMs) as their sandbox

technology in order to deliver security and isolation in a multi-

tenant environment. Although historically virtualization is known

to come with significant overheads [51], recent works in hypervisor

specialization, including Firecracker [5] and Cloud Hypervisor [1],

show that virtual machines can offer competitive performance as

compared to native execution (e.g., Docker containers), even for

the cold-start delays.

Firecracker is a recently introduced hypervisor with a minimal

emulation layer, supporting just a single virtio network device

type and a single block device type, and relying on the host OS

for scheduling and resource management [5]. This light-weight

design allows Firecracker to slash VM boot time to 125ms and

reduces the hypervisor memory footprint to 3MB [5, 7]. However,

we measure that booting a Firecracker VMwithin production-grade

frameworks, such as Containerd [21] or OpenNebula [50], takes

700-1300ms since their booting process is more complex, e.g., it

includes mounting an additional virtual block device that contains

a containerized function image [52, 60]. Finally, the process inside

the VM, which receives the function invocation in the form of

an RPC, takes up to several seconds to bootstrap before it is able

to invoke the user-provided function, which may have its own

initialization phase [26]. Together these delays ś which arise on

the critical path of function invocation ś significantly degrade the

end-to-end execution time of a function.

2.3 VM Snapshots for Function Cold Starts

To reduce cold-start delays, researchers have proposed a number of

VM snapshotting techniques [26, 28, 58]. Snapshotting captures the

current state of a VM, including the state of the virtual machine

monitor (VMM) and the guest-physical memory contents, and store

it as files on disk. Using snapshots, the host orchestrator (e.g., Con-

tainerd [21]) can capture the state of a function instance that has

been fully booted and is ready to receive and execute a function

invocation. When a request for a function without a running in-

stance but with an existing snapshot arrives, the orchestrator can

quickly create a new function instance from the corresponding

snapshot. Once loading finishes, this instance is ready to process

the incoming request, thus eliminating the high cold-boot latency.

Snapshots are attractive because they require no main memory

during the periods of a function’s inactivity and reduce cold-start

delays. The snapshots of function instances can be stored in local

storage (e.g., SSD) or in a remote storage (e.g., disaggregated storage

service).

The state-of-the-art academic work on function snapshotting,

Catalyzer [26], showed that snapshot-based restoration in the con-

text of gVisor [28] virtualization technology can be performed in

10s-100s of milliseconds.2 To achieve such a short start-up time,

Catalyzer minimizes the amount of processing on the critical path

of loading a VM from a snapshot. First, Catalyzer stores the min-

imum amount of snapshot state that is necessary to resume VM

execution de-serialized to facilitate VM loading. After that, Cat-

alyzer maps the plain guest-physical memory file as a file-backed

virtual memory region and resumes VM execution. Crucially, the

guest-physical memory of the VM is not populated with memory

contents, which reside on disk, when the user code of the function

starts running. As a result, each access to a yet-untouched page

raises a page fault. These page faults occur on the critical path of

function execution and, as we show in ğ4, significantly increase the

runtime cost of a function loaded from a snapshot.

Recently, Firecracker introduced their own open-source snap-

shotting mechanism that follows the same design principles as

Catalyzer, which is proprietary. Similarly to Catalyzer, loading a

Firecracker VM from a snapshot is done in two phases. First, the

hypervisor process loads the state of the VMM and the emulated

devices (that we further refer to as loading VMM for brevity) and

then maps a plain guest-physical memory for lazy paging [58].

3 VHIVE: AN OPEN-SOURCE FRAMEWORK
FOR SERVERLESS EXPERIMENTATION

To enable a deeper understanding of serverless computing plat-

forms, this paper introduces vHive, an open-source framework for

experimentation with serverless computing. As depicted in Fig. 1,

2Here we only consider Catalyzer’s "cold-boot" design that does not share memory
across instances. We discuss Catalyzer’s warm-boot designs in ğ8.

561



ASPLOS ’21, April 19–23, 2021, Virtual, USA Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris Grot

Front-endFront-end /
load balancer(Istio)

Knative Autoscaler

In
vo

ca
tio

n
(H

TT
P/

gR
PC

)

Kubernetes
cluster schedulerLoad &

latency
clients

Firecracker-
Containerd

ContainerdvH
ive

-C
RI Function in

Firecracker uVM

Knative
Queue Proxy

PodWorker

Figure 1: vHive architecture overview. Solid and dashed ar-

rows show the data plane and the control plane, respectively.

vHive integrates production-grade components from the leading

serverless providers, such as Amazon and Google.

3.1 Deploying and Programming with
Functions in vHive

vHive adopts Knative [12], a serverless framework that runs on

top of Kubernetes [37] and offers a programming and deployment

model that is similar to AWS Lambda [13] and Azure functions [45].

To deploy an application in vHive, one can deploy application

functions by supplying Knative with each function’s Open Con-

tainer Initiative (OCI) [61] image, e.g., a Docker image, along with

a configuration file. This OCI image contains the function’s handle

code, which is executed by an HTTP or gRPC server upon an invo-

cation. The configuration file contains the relevant environment

variables and other parameters for function composition and func-

tion instances scaling. Using the configuration files, the application

developers can compose their functions with any conventional

"serverful" services with Kubernetes providing their URLs to the

relevant functions. For example, functions that use large inputs or

produce large outputs, like photos or videos, often have to save

them in an object store or a database.

Upon a function’s deployment, Knative provides a URL for trig-

gering this function. Using these URLs, application developers can

compose their functions, e.g., by specifying the URL of a callee

function in the configuration file of the caller function. For each

function, Knative configures the load-balancer service, sets up the

network routes and dynamically scales the number of instances of

the function in the system, according to changes in the function’s

invocation traffic.

3.2 vHive Infrastructure Components

Serverless infrastructure comprises of the front-end fleet of servers

that expose the HTTP endpoints for function invocations, the

worker fleet that executes the function code, and the cluster man-

ager that is responsible for managing and scaling function instances

across the workers [5, 23, 53]. These components are connected by

an HTTP-level fabric, e.g., gRPC [2], that that enables management

and resources monitoring [5].

A function invocation, in the form of an HTTP request or an

RPC, first arrives at one of the front-end servers for request au-

thentication and mapping to the corresponding function. In vHive,

the Istio service [11] plays the roles of an HTTP endpoint and a

load balancer for the deployed functions. If the function that re-

ceived an invocation has at least one active instance, the front-end

server simply routes the invocation request to an active instance

for processing.

If there are no active function instances, the load balancer con-

tacts the cluster manager to start a new instance of the function

before the load balancer routes this invocation to a worker. vHive

relies on Kubernetes cluster orchestrator to automate services de-

ployment andmanagement. Knative seamlessly extends Kubernetes,

which was originally designed for conventional łserverfulž services,

to enable autoscaling of functions. For each function, Knative de-

ploys an autoscaler service that monitors the invocation traffic

to each function and makes decisions on scaling the number of

functions instances in the cluster based on observed load.

At the autoscaler’s decision, a chosen worker’s control plane

starts a new function instance as a pod, the scaling granule in Ku-

bernetes, that contains a Knative Queue-Proxy (QP) and a MicroVM

that runs the function code. The QP implements a software queue

and a health monitor for the function instance, reporting the queue

depth to the function’s autoscaler, which is the basis for the scaling

decisions. The function runs in a MicroVM to isolate the worker

host from the untrusted developer-provided code. vHive follows

the model of AWS Lambda, which deploys a single function inside

a MicroVM that processes a single invocation at a time [5].

To implement the control plane, vHive introduces a vHive-CRI or-

chestrator service that integrates the two forks of Containerd ś the

stock version [21] and the Firecracker-specific version developed

for MicroVMs [60] ś for managing the lifecycle of containerized

services (e.g., the QP) and MicroVMs. The vHive-CRI orchestrator

receives Container-Runtime Interface (CRI) [20] requests from the

Kubernetes control plane and processes them, making the appro-

priate calls to the corresponding Containerd services. Once the

load balancer, which received the function invocation, the QP, and

the function instance inside a MicroVM establish the appropriate

HTTP-level connections, the data plane of the function is ready to

process function invocations. When the function instance finishes

processing the invocation, it responds to the load balancer, which

forwards the response back to the invoking client.

vHive enables systems researchers to experiment with serverless

deployments that are representative of production serverless clouds.

vHive allows easy analyzing of the performance of an arbitrary

serverless setting by offering access to Containerd and Kubernetes

logs with high-precision timestamps or by collecting custom met-

rics. vHive also includes the client software to evaluate the response

time of the deployed serverless functions in different scenarios,

varying the mix of functions and the load. Finally, vHive lets the

users experiment with several modes for cold function invocations,

including loading from a snapshot or booting a new VM from a

root filesystem.

4 SERVERLESS LATENCY AND MEMORY
FOOTPRINT CHARACTERIZATION

In this section, we use vHive to analyze latency characteristics

and memory access patterns of serverless functions, deployed in

Firecracker MicroVM instances with snapshot support [58].
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4.1 Evaluation Methodology

Similarly to prior work [26], we focus on the evaluation of a single

worker server. The existing distributed serverless stack contributes

little, e.g., less than 30ms as shown by AWS [5], to the overall end-

to-end latency, as compared to many hundreds of milliseconds of

the worker-related latency that we demonstrate below. Prior work

measured the cold-start delay as the time between starting to load

a VM from a snapshot to the time the instance executes the first

instruction of the user-provided code of the function [26]. As the

metric for our cold-start delay measurements, we choose the la-

tency that includes not only the critical path of the VM restoration

but the entire cold function invocation latency on a single worker.

The measurements capture the latency from the moment a worker

receives a function invocation request to the moment when the

worker is ready to send the function’s response back to the load

balancer. This latency includes both the control-plane delays (in-

cluding interactions with Containerd and Firecracker hypervisor)

and data-plane time that is gRPC request processing and actual

function execution.

Our experiments aim to closely model the workloads as in a

modern serverless environment. First, we adopt a number of func-

tions, listed in Table 1, from a representative serverless benchmark

suite called FunctionBench [32, 33]. Second, to simulate the low

invocation frequency of serverless functions in production [53],

the host OS’ page cache is flushed before each invocation of a cold

function.

To evaluate the cold-start start delay in a serverless platform

similar to AWS Lambda, we augment the vHive-CRI orchestrator

to act as a MicroManager in AWS [5]. In this implementation, the

vHive-CRI orchestrator not only implements the control plane but

also acts as a data plane software router that forwards incoming

function invocations to the appropriate function instance and waits

for its response over a persistent gRPC connection. Note that in

this setting, the worker infrastructure does not include the Queue-

Proxy containers so that the data plane resembles per-function

gRPC connections. Without a loss of generality, this work assumes

the fastest possible storage for the snapshots that is a local SSD,

which yields the lowest possible cold-start latency compared to a

local HDD or disaggregated storage. ğ6.1 provides further details

of the platform as well as the host and the guest setup.

To study the memory access patterns of serverless functions,

we trace the guest memory addresses that a function instance ac-

cesses between the point when the vHive-CRI orchestrator starts to

load a VM from a snapshot and the moment when the orchestrator

receives a response from the function. As Firecracker lazily pop-

ulates the guest memory, first memory access to each page from

the hypervisor or the guest raises a page fault in the host that can

be traced. We use Linux userfaultfd feature [39] that allows a

userspace process to inspect the addresses and serve the page faults

on behalf of the host OS.

4.2 Quantifying Cold-Start Delays

We start by evaluating the cold-start latency of each function under

study and compare it to the invocation latency of the warm function

instance. Recall that a warm instance is memory-resident and does

not experience any cold-start delay when invoked. To obtain a

detailed cold-start latency breakdown, we instrument the vHive-

CRI orchestrator and invoke each function 10 times. To model

a cold invocation, we flush the host OS page caches after each

measurement.

Figure 2 shows the latency for the cold and warm invocations

for each function. As expected, when a function instance remains

warm (i.e., stays in memory), the instance delivers a very low in-

vocation latency. By contrast, we find that a cold invocation from

a snapshot takes one to two orders of magnitude longer than a

warm invocation, which indicates that even with state-of-the-art

snapshotting, cold-start delays are a major pain point for functions.

To investigate the performance difference, we examine the end-

to-end cold invocation latency breakdown. First, the vHive-CRI

orchestrator spawns a new Firecracker process and restores the

virtual machine monitor (VMM) state as well as the state of the

emulated network and block devices ś the Load VMM latency com-

ponent. After that, the orchestrator resumes the loaded function

instance’s virtual CPUs and restores the persistent gRPC connection

to the gRPC server inside the VM. We name this latency compo-

nent as Connection restoration. These two latency components are

universal across all functions as they are part of the serverless in-

frastructure. Finally, we measure the actual function invocation

processing time, referred to as Function processing.

The per-function latency breakdown is also plotted in Figure 2.

We observe that the first two universal components, namely Load

VMM and Connection restoration, take 156-317 ms. Meanwhile, the

actual function processing takes much longer (95% longer on aver-

age) for cold invocations as compared to warm invocations of the

same functions, reaching into 100s of milliseconds even for func-

tions like helloworld and pyaes that take only a few milliseconds

to execute when warm.

The state-of-the-art snapshotting techniques rely on lazy paging

to eliminate the population of guest memory from the critical path

of VM restoration (ğ2.2). A consequence of this design is that each

page touched by a function must be faulted in at the first access,

resulting in thousands of page faults during a single invocation of

a function. Page faults are processed serially because the faulting

thread is halted until the OS brings the memory page from disk and

installs it into the virtual address space by setting up the memory

mappings in the process page table. In this case, the performance of

the guest significantly depends on the disk latency as the OS needs

to bring the missing pages from the guest memory file.

We also study the contiguity of the faulted pages, with the results

depicted in Fig. 3. We find that function instances tend to access

pages that are located in non-adjacent locations inside the guest

memory. This lack of spatial locality significantly increases disk

access time, and thus page fault delays, because sparse accesses

to disk cannot benefit from the host OS’s run-ahead prefetching.

Fig. 3 shows that the average length of the contiguous regions of

the guest-physical memory is around 2-3 pages for all functions

except lr_training that shows contiguity of up to 5 pages.

4.3 Function Memory Footprint & Working Set

The above analysis demonstrates the benefits of keeping functions

warm, because cold function invocations significantly increase the

end-to-end function invocation latency. In this subsection, we show
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Figure 2: Cold-start latency breakdown for Firecracker’s snapshot load mechanism, compared to the warm latency.

Figure 3: Guest memory pages contiguity.

Figure 4: Memory footprint of function instances after one

invocation.

that despite the advantages of warm functions, keeping many func-

tions warm is wasteful in terms of memory capacity.

We first investigate the fraction of a function instance’s memory

footprint that is related to the actual function invocation. First, we

measure the total footprint of a booted VM after the first func-

tion invocation is complete using the Linux ps command, since

a VM appears as a regular process in the host OS. This footprint

includes the hypervisor and the emulated layer overhead (around

3MB [5]), the memory pages that are accessed during the VM’s

boot process, function initialization, and the actual invocation pro-

cessing. Second, for a VM that is loaded from a snapshot, we trace

the pages, using Linux userfaultfd [39], that are accessed only

during the invocation processing, i.e., from the moment the VM is

loaded to the moment when the vHive-CRI orchestrator receives

the response from the function. Unlike the first measurement, this

footprint relates only to the invocation processing.

Figure 4 (the blue bars) shows the memory footprint of a single

freshly-booted function instance. We observe that, for all functions,

their memory footprint reaches 100-200MB. Thus, assuming that

a serverless provider co-locates thousands of different functions

instances on the same host and disallows memory sharing for secu-

rity reasons (as is the case in practice [5]), the aggregate footprint

of function instances will reach into hundreds of gigabytes.

Figure 4 also plots the footprint of the function instances loaded

from a snapshot after the first invocation (red bars). We observe

that, in this case, the functions’ working sets span 8-99MB (24MB

on average), which is 3-39%, and 9% on average of their memory

footprint after booting. The reason why the memory footprint of a

function booted from scratch is much higher than the one loaded

from a snapshot is that starting an instance by booting requires

many steps: booting a VM, starting up the Containerd’s agents [52]

as well as user-defined function initialization. This complex boot

procedure engages much more logic (e.g., guest OS and userspace

code) than just processing the actual function invocation, which

naturally affects the former’s memory footprint.

Despite the fact that, when loaded from a snapshot, the memory

footprint of a function instance is relatively compact, the total mem-

ory footprint for thousands of such functions would still comprise

tens of GBs. While potentially affordable memory-wise, we note

that keeping this much state in memory is wasteful given the low

invocation frequency of many functions (ğ2.1). Moreover, such a

high memory commitment would preclude colocating memory-

intensive workloads on nodes running serverless jobs, thus limiting

a cloud operator’s ability to take advantage of idle resources. We

thus conclude that while functions loaded from a snapshot present

an opportunity in terms of their small memory footprint, by itself,

they are not a solution to the memory problem.

4.4 Guest Memory Pages Reuse

After establishing that the working sets of serverless functions

booted from a snapshot are compact, we study how the working

set of a given function changes across invocations. Our hypothesis

is that the stateless nature of serverless functions results in a stable

working set across invocations.

User and guest kernel code pages account for a large fraction

of functions’ footprint. This code belongs either to the underlying

infrastructure or the actual function implementation. Providers
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Figure 5: Number of pages that are unique or same across

invocations with different inputs. The numbers above the

bars correspond to uniquely accessed pages.

deploy additional control-plane services inside a function’s sand-

box and use general-purpose communication fabric (e.g., gRPC) to

connect functions to the vHive-CRI orchestrator [5, 52]. The gRPC

framework uses the standard TCP network protocol, similarly to

AWS Lambda [5], that adds the guest OS’s network stack to the in-

stance footprint. Using the helloworld function, we estimate that

this infrastructure overhead accounts for up to 8MB of a function’s

guest-memory footprint and is stable across function invocations.

We observe that functions naturally use the same set of mem-

ory pages while processing different inputs. For example, when

rotating different images or evaluating different customer reviews,

functions use the same calls to the same libraries and rely on the

same functionality inside the guest kernel, e.g., the networking

stack. Moreover, the functions engage the same functionality that is

a part of the provider’s infrastructure, e.g., the Containerd’s agents

inside a VM [52]. Finally, we observe that even when a function’s

code performs a dynamic allocation, the guest OS buddy allocator

is likely to make the same or similar allocation decisions. These

decisions are based on the state of its internal structures (i.e., lists of

free memory regions), which is the same across invocations being

loaded from the same VM snapshot. Hence, the lack of concurrency

and non-determinism inside the user code of the functions that we

study results in a similar guest physical memory layout.

We validate our hypothesis about the working sets by study-

ing the guest memory pages that are accessed when a function is

invoked with different inputs. Fig. 5 demonstrates that the ma-

jority of pages accessed by all studied functions are the same

across invocations with different inputs. For 7 out of 10 func-

tions, more than 97% of the memory pages are identical across

invocations. For image_rotate, json_serdes, lr_training, and

video_processing, reuse is lower because these functions have

large inputs (photos, JSON files, training datasets, and videos, re-

spectively) that are 1-10MB in size. Nonetheless, even for these

three functions, over 76% of memory pages are the same across

invocations.

4.5 Summary

We have shown that invocation latencies of cold functions may

exceed those of warm functions by one to two orders of magnitude,

even when using state-of-the-art VM snapshots for rapid restora-

tion of cold functions. We found that the primary reason for these

Disk

Loading from Firecracker snapshot

Disk

Guest Memory Working Set File

REAP Record

① Load pages upon 

page faults

② Store accessed 

pages in a 

compact file
PF #2

PF #3

PF #N

PF #1

Snapshot file

(a) REAP record phase.

(b) REAP prefetch phase.

Figure 6: REAP’s two-phase operation.

elevated latencies is that the existing snapshotting mechanisms

populate the guest memory on-demand, thus incurring thousands

of page faults during function invocation. These page faults are

served one-by-one by reading non-contiguous pages from a snap-

shot file on disk. The resulting disk accesses have little contiguity

and induce significant delays in processing of these page faults,

thus slowing down VM restoration from a snapshot.

We have further shown that function instances restored from

a snapshot have compact working sets of guest memory pages,

spanning just 24MB, on average. Moreover, these working sets are

stable across different invocations of the same function; indeed, the

function instances access predominantly the same memory pages

even when invoked with different inputs.

5 REAP: RECORD-AND-PREFETCH

The compact and stable working set of a function’s guest memory

pages, which instances of the given function access across invoca-

tions of the function, provides an excellent opportunity to slash

cold-start delays by prefetching.

Based on this insight, we introduce Record-and-Prefetch (REAP),

a light-weight software mechanism inside the vHive-CRI orches-

trator to accelerate function invocation times in serverless infras-

tructures. REAP records a function’s working set upon the first

invocation of a function from a snapshot and replays the record to

accelerate load times of subsequent cold invocations of the function

by eliminating the majority of guest memory page faults. The rest

of the section details the design of REAP.

5.1 REAP Design Overview

Given an existing function snapshot, REAP operates in two phases.

During the record phase, REAP traces and inspects the page faults
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that a function instance triggers when accessing pages in the guest

memory, identifying the positions of these pages in the backing

guest memory file (Fig. 6a). After a function invocation is com-

plete, REAP creates two files, namely the working set (WS) file) that

contains a copy of all accessed guest memory pages in a contigu-

ous compact chunk and the trace file that contains the offsets of

the original pages inside the guest memory file. The contiguous

compact WS file can be rapidly brought into physical memory in a

single read operation, which greatly reduces disk and system-level

overheads in the snapshot baseline that requires many disparate

accesses to pages scattered across the guest memory file on disk.

After the completion of the record phase, all future invocations

of the function enjoy accelerated load times as REAP’s prefetch

phase eagerly populates the guest memory from the WS file before

launching the function instance (Fig. 6b). Upon an arrival of a

new invocation, REAP fetches the entire WS file from disk into a

temporary buffer in the orchestrator’s memory and eagerly installs

the pages into the function instance’s guest memory region. REAP

also populates the page table of the instance in the host OS. As a

result, when the instance is loaded, the function executes without

triggering page faults to the stable memory working set. Page faults

to uniquely-accessed pages in a given invocation are handled by

REAP on demand.

5.2 Implementation

REAP adheres to the following design principles, which facilitate

adoption and deployment in a cloud setting: i) REAP is agnostic to

user codebase; ii) REAP is independent of the underlying serverless

infrastructure; iii) REAP is implemented entirely in userspace with-

out kernel modifications; iv) REAP works efficiently in a highly

multi-tenant serverless environment.

We implement REAP as a part of the vHive-CRI orchestrator that

controls the lifecycle of all function instances. For each function,

the vHive-CRI orchestrator tracks active function instances and

performs the necessary bookkeeping, including maintaining the

snapshot files and working set records. To accommodate the highly-

concurrent serverless environment with many function instances

executing simultaneously, it is a fully parallel implementation with

a dedicatedmonitor thread for each function instance. Each monitor

thread records or prefetches the working set pages and also serves

page faults that are raised by the corresponding instance. In our

prototype, the monitor threads are implemented as lightweight

goroutines, which are scheduled by the Go runtime.

To implement the monitor, we use the Linux userfaultfd fea-

ture that allows a userspace program to handle page faults on behalf

of the OS. In Linux, a target process can register a virtual memory

region in anonymous memory and request a user-fault file descrip-

tor, which can be passed to a monitor running as a separate thread

or process. The monitor polls for page fault events that the OS

forwards to the user-fault file descriptor. Upon a page fault, the

monitor installs the contents of the page that triggered the page

fault. The monitor is free to retrieve page contents from any ap-

propriate source, such as a file located on a local disk or from the

network. Furthermore, the monitor can install any number of pages

before waking up the target process. Thanks to these features, the

monitor can support both local and remote snapshot storage, and

can eagerly install the content of the entire WS file at once.

Upon each function invocation for which there is no warm in-

stance available, the vHive-CRI orchestrator launches the monitor

thread in one of two modes: record, if no WS file is available for

this instance, or prefetch, if a corresponding WS file exists.

5.2.1 Record Phase. The goal of the monitor during the record

phase is to capture the memory working set for functions instanti-

ated from snapshots. Before loading the VMM state from a snapshot,

the hypervisor maps the guest memory file as an anonymous virtual

memory region and requests a user-fault file descriptor from the

host OS, passing this descriptor over a socket to the monitor thread

of the vHive-CRI orchestrator. Then, the hypervisor restores the

VMM and emulated devices’ state and resume the virtual CPUs of

the newly loaded function instance that can start processing the

function invocation.

Every first access to a guest memory page raises a page fault that

needs to be handled and recorded by the monitor. Themonitor maps

the guest memory file as a regular virtual memory region in the

monitor’s virtual address space and polls (using the epoll system

call) for the host kernel to forward the page fault events, triggered

by the instance. Upon receiving a page fault event, themonitor reads

a control message from the user-fault file descriptor that contains

the description of the page fault, including the address in the virtual

address space of the target function instance. Themonitor translates

this virtual address into an offset that corresponds to the page

location in the guest memory file. While serving the page faults,

the monitor records the offsets of the working set pages in the trace

file.

We augment the Firecracker hypervisor to inject the first page

fault of each instance to the first byte of the instance’s guest memory.

Doing so allows file offsets for all of the following page faults to

be derived by subtracting the virtual address of the first page fault.

Using the file offset of the missing page, the monitor locates the

page in the guest memory file and installs the page into the guest

memory region of the instance by issuing an ioctl system call to

the host kernel, which also updates the extended page tables of the

target function instance. After the vHive-CRI orchestrator receives a

response from the function, indicating that the function invocation

processing has completed, the monitor copies the recorded working

set pages, using the offsets recorded in the trace file, into a separate

WS file (ğ4.3).

Note that the record phase increases the function invocation

time as compared to the baseline snapshots due to userspace page

fault handling. As such, REAP penalizes the first function invoca-

tion to benefit subsequent invocations. We quantify the recording

overheads in ğ6.4.

5.2.2 Prefetch Phase. For every subsequent function invocation,

the vHive-CRI orchestrator spawns a dedicated monitor thread that

uses theWS file to prefetch theworking set memory pages from disk

into a buffer in the monitor’s memory with a single read system

call. Then, the monitor eagerly and proactively installs the pages

into the guest memory through a sequence of ioctl calls, following

which it wakes up the target function instance with another ioctl

call.
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As in the record phase, the monitor maps the guest memory file

during every subsequent cold function invocation. After installing

all the working set pages from theWS file, themonitor keeps polling

for page faults to pages that are missing from the stable working set

and installs them on demand, as in the record phase. Since the WS

file captures the majority of pages that a function instance accesses

during an invocation, only a small number of page faults needs to

be served by the monitor on demand.

5.2.3 Disk Bandwidth Considerations. REAP’s efficiency depends

entirely on the performance of the prefetch phase and, specifically,

how fast the vHive-CRI orchestrator can retrieve the working set

pages from disk. Although a single commodity SSD can deliver up

to 1-3 GB/s of read bandwidth, SSD throughput varies considerably

depending on disk access patterns. An SSD can deliver high band-

width with one large multi-megabyte read request, or with >10 4KB

requests issued concurrently. For example, on our platform (ğ6.1),

with a standard Linux fio IO benchmark [42] that issues a single

4KB read request, the SSD can deliver only 32MB/s, whereas issuing

16 4KB requests can increase the SSD throughput to 360MB/s.While

concurrent reads deliver much higher bandwidth than a single 4KB

read, the achieved bandwidth is still considerably below the peak

of 850MB/s of our Intel SATA3 SSD.

We find that REAP achieves close to the peak SSD read through-

put (533-850MB/s) by fetching the WS file in a single >8MB read

operation that bypasses the host OS’ page cache (i.e., the WS file

needs to be opened with the O_DIRECT flag).

5.3 Discussion

REAP adheres to the design principles set out in ğ5.2. We implement

REAP entirely in userspace as a part of the vHive-CRI orchestrator.

It is written in 4.5K Golang LoC, including tests and benchmarks,

and is loosely integrated with the industry-standard Containerd

framework [21, 52, 60] via gRPC. The implementation does not

require any changes to host or guest OS kernel. We add less than

200 LoC to Firecracker’s Rust codebase, not including two pub-

licly available Rust crates that we used, to register a Firecracker

VM’s guest memory with userfaultfd and to delegate page faults

handling to the vHive-CRI orchestrator. Finally, the orchestrator

follows a purely parallel implementation by spanning a lightweight

monitor thread (goroutine) per function instance.

6 EVALUATION

In this section, we describe the platform setup, including the host

and the guest setups, and present REAP evaluation results. In our

experiments, we follow the methodology that is described in ğ4.1,

unless specified otherwise.

6.1 Evaluation Platform

We conduct our experiments on a 2×24-core Intel Xeon E5-2680 v3,

256GB RAM, Intel 200GB SATA3 SSD, running Ubuntu 18.04 Linux

with kernel 4.15. We fix the CPU frequency at 2.5GHz to enable

predictable and reproducible latency measurements. We disallow

memory sharing among all function instances and disable swapping

to disk, as suggested by AWS Lambda production guidelines [5, 59].

Table 1: Serverless functions adopted from FunctionBench.

Name Description

helloworld Minimal function

chameleon HTML table rendering

pyaes Text encryption with an AES block-cipher

image_rotate JPEG image rotation

json_serdes JSON serialization and de-serialization

lr_serving Review analysis, serving (logistic regr., Scikit)

cnn_serving Image classification (CNN, TensorFlow)

rnn_serving Names sequence generation (RNN, PyTorch)

lr_training Review analysis, training (logistic regr., Scikit)

video_processing Applies gray-scale effect (OpenCV)

We use a collection of nine Python-based functions (Table 1)

from the representative FunctionBench [32, 33] suite.3 We also

evaluate a simple helloworld function. The root filesystems for all

functions are generated automatically by Containerd, using Linux

device mapper functionality as used by Docker [25], from Linux

Alpine OCI (Docker) images.4 Functions with large inputs (namely

image_rotate, json_serdes, lr_training, video_processing)

retrieve their inputs from an S3 server [46] deployed on the same

host.

We optimize virtual machines for minimum cold-start delays,

similar to a production serverless setup, as in [5, 31]. The VMs run

a guest OS kernel 4.14 without modules. Each VM instance has a

single vCPU. We boot VM instances with 256MB guest memory,

which is the minimum amount to boot all the functions in our study.

6.2 Understanding REAP Optimizations

We start by evaluating the cold-start latency of the helloworld

function, whose short user-level execution time is useful for under-

standing serverless framework overheads. In addition to evaluating

the baseline Firecracker snapshots and REAP as presented in ğ5,

we also study two additional design points that help justify REAP’s

design decisions. Specifically, we consider the following configura-

tions.

Vanilla snapshots: This is the baseline configuration, which re-

stores the VMM and the emulation layer in 50ms, then spends

182ms processing the function invocation (Fig. 7) that takes just

1ms for for a warm instance (Fig. 2). The large processing delay

is directly attributed to the handling of page faults in the critical

path of function execution. As helloworld’s working set is around

8MB, one can infer that vanilla snapshotting is only able to utilize

43MB/s of SSD bandwidth, i.e., <5% of the peak bandwidth on our

platform.

Parallel Page Fault handling: This design (labeled łParallel PFsž

in Fig. 7) parallelizes page fault processing. It does so by using the

trace file specifying the offsets of the pages comprising the stable

working set, and deploys goroutines to bring in the associated

pages, in parallel, from the guest memory file. For this and all the

following configurations, we make 16 hardware threads available

3We omitted the microbenchmarks, MapReduce and Feature Generation because they
require a distributed coordinator, and Video Face Detection that is not open source.
4The only exception is video_processing that uses a Debian image due to a problem
with OpenCV installation on Alpine Linux.
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Figure 7: REAP optimization steps.

to vHive-CRI goroutines, managed by the Go runtime. Note that

this configuration does not use the WS file.

We observe that parallelizing page faults reduces function invo-

cation time by 1.9× (to 118ms) by overlapping I/O processing and

exploiting SSD’s internal parallelism. Repeating the same calcula-

tion as for the baseline, we identify that the orchestrator uses only

130MB/s of SSD bandwidth, which is 15% of the maximum. This

design point underlines that achieving high read bandwidth from

the SSD is key to efficient page fault processing, and that lowering

software overheads by itself is insufficient.

WS file: This design leverages theWS file (Sec 5.1), which enables

fetching the entire stable memory working set of a function with a

single IO read operation. The difference between this design point

and REAP is that the former reads into the OS page cache (which

is the default behavior in Linux), whereas REAP bypasses the page

cache (ğ5.2.3). From the figure, one can see that fetching the pages

from theWS file can be performed in 29ms, 3.1× faster than through

parallel page-sized reads (łParallel PFsž bar in Fig 7). This design

point utilizes 275MB/s of SSD bandwidth.

REAP: The last bar shows the performance of the actual REAP

design, as described in Sec 5.2.3, that fetches the working set pages

from the WS file and bypasses the OS page cache. As the figure

shows, retrieving the working set pages is accelerated by 2× (to

15ms) over the łWS Filež design point that does not bypass the page

cache. This highlights that while it’s essential to optimize for disk

bandwidth, software overheads also cannot be ignored. In this final

configuration, REAP achieves 533MB/s of SSD bandwidth, which is

within 37% of the 850MB/s peak of our SSD.

6.3 REAP on FunctionBench

Fig. 8 compares the cold-start delays of all the functions that we

study with the baseline Firecracker snapshots and REAP prefetch-

ing. With REAP, all functions’ invocations become 1.04-9.7× faster

(3.7× on average). The fraction of time for restoring the connection

from the orchestrator to the function’s gRPC server shrinks by 45×,

on average to a mere 4-7ms thanks to the stable working set for

this core functionality that is prefetched by REAP.

Although we find that REAP efficiently accelerates the actual

function processing, functions with a large number of pages missing

from the recorded working set benefit less from REAP. The function

processing latency is reduced by 4.6×, on average, for all functions

except video_processing. During the REAP record phase, the

video_processing function takes a video fragment of a different

aspect ratio than in the prefetch phase that, as we suspect, changes

the way OpenCV performs dynamic memory allocation (e.g., uses

buffers of different sizes), resulting in a different guest physical

memory layout and, hence, different working sets. The orchestrator

has to serve the missing pages one-by-one as page faults arise.

However, the end-to-end cold-start delay for video_processing is

nonetheless reduced as the longer function processing time is offset

by faster re-connection to the function. We highlight, however, that

functions with large inputs or control-flow that differs substantially

across invocations may benefit less from REAP.

We repeat the same experiment in the presence of the invocation

traffic to 20 warm, i.e., memory resident, functions and observe that

the obtained data is within 5% of Fig. 8 results. Also, we measure

the efficacy of REAP on the same server but store the snapshots

on a 2TB Western Digital WD2000F9YZ SATA3 7200 RPM HDD,

instead of the SSD, and observed a 5.4× speed-up (not shown in the

figure), on average, with REAP over baseline snapshotting.

6.4 REAP Record Phase

REAP incurs a one-time overhead for recording the trace and the

WS files. Upon the first invocation of a function, this one-time

overhead increases the end-to-end function invocation time by 15-

87% (28% on average). Since most functions that we study have

small dynamic inputs, they exhibit relatively small overheads of

12-34%, with image_rotate being an outlier with a performance

degradation of 87%.

Because of the high speedups provided by REAP on all subse-

quent invocations of a function, and because the vast majority of

functions execute multiple times [53], we conclude that REAP’s

one-time record overhead is easily amortized.

6.5 REAP Scalability

We demonstrate that REAP orchestrator retains its efficiency in the

face of higher load. Specifically, we measure the average time that

an instance takes to load from a snapshot and serve one function

invocation when multiple independent functions arrive concur-

rently. We use the the helloworld function and consider up to 64

concurrent independent function arrivals. Fig. 9 shows the result

of the study, comparing REAP to the baseline snapshots.

Concurrently loading function instances should be able to take

advantage of the multi-core CPU and abundant SSD bandwidth

(48 logical cores and 850MB/s peak measured SSD bandwidth in

our platform). Thus, we expect that as the degree of concurrency

increases, the average per-instance latency will not significantly

increase thanks to the available parallelism. Indeed, REAP’s cold

invocation latency stays relatively low, increasing from 70ms to

185ms when the number of concurrent function arrivals goes from 1

to 8. By contrast, the baseline’s per-instance invocation time shows

a near-linear growth with the number of concurrently-arriving

functions. We measure that the SSD throughput that the baseline

instances are able to collectively extract is limited to mere 32MB/s

for a single instance and 81MB/s for 64 concurrent instances.5

Compared to the baseline, REAP is able to achieve 118-493MB/s,

which explains its lower latency and better scalability. Starting

5We compute the SSD throughput per instance as the working set size divided by the
average loading time.
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Figure 8: Cold-start delay with baseline snapshots (left bars) and REAP (right bars).

Figure 9: Average instance cold-start delay while sweeping

the number of the concurrently loading instances.

from the concurrency degree of 16, REAP becomes disk-bandwidth

bound and its scalability is diminished.

7 DISCUSSION

7.1 REAP’s Efficiency and Mispredictions

REAP’s efficiency depends on how quickly the orchestrator can

retrieve the guest memory pages from the snapshot storage and the

percentage of the retrieved but unused pages. If the snapshots are

located in a remote storage service (e.g., S3 or EBS), the retrieval

speed depends on the amount of data to be moved and the latency

and bandwidth of the network between the host and the service as

well as the latency and bandwidth of the service’s internal disks.

REAP reduces both the network and the disk bottlenecks by

proactively moving a minimal amount of state. However, REAP

may fetch a modest number of pages that are not accessed dur-

ing processing of some invocations. Our analysis shows that the

fraction of mispredicted pages during a cold invocation is close to

the łUniquež pages metric, shown in Fig. 5, which is 3-39%. These

mispredictions have no impact on system correctness. The cost of

these mispredictions is a modest increase in SSD bandwidth usage,

proportionate to the fraction of the mispredicted pages.

7.2 Applicability to Real-World Functions

Although REAP is applicable to the vast majority of functions, some

functions may not benefit from REAP. For these functions, the ad-

ditional working set and trace files may not be justified. Prior work

shows that 90% of Azure functions are invoked less than once per

minute, making these functions the primary target for REAP [53].

Functions that are invoked very rarely (e.g., 3.5% of functions are

invoked less frequently than once per week) or more frequently

than once per minute (and thus remaining warm) are unlikely to

benefit from snapshot-based solutions. Also, REAP is ill-suited for

the functions where the first invocation is not representative of

future invocations although we do not observe such behavior in

our studies. In this pathological case, the orchestrator can easily

detect low working set pages usage and either repeat REAP’s record

phase or fall back to vanilla Firecracker snapshots for future invo-

cations. For detection, the orchestrator could monitor the number

of page faults that occur after the working set pages are installed,

comparing this number to the number of pages in the working set.

7.3 Security Concerns

Similar to other snapshot techniques, spawning virtual machine

clones from the same VM snapshot with REAP has implications for

overall platform’s security. In a naive snapshotting implementation,

these VM clones may have an identical state for random number

generators (i.e., poor entropy) and the same guest physical mem-

ory layout. The former problem may be addressed at the system

level with hardware support for random number generation albeit

the user-level random number generation libraries may remain

vulnerable [27, 57]. The latter problem may lead to compromised

ASLR, allowing the attacker to obtain the information about the

guest memory layout. One mitigation strategy could be periodic

re-generation of a snapshot (as well as the working set file and

the trace file, for REAP). Alternatively, similarly to prior work on

after-fork memory layout randomization [40], the orchestrator can

dynamically re-randomize the guest memory placement while load-

ing the VM’s working set from the snapshot in the record phase of

REAP. This would require modifying the guest page tables, with

the hypervisor support, according to the new guest memory layout.

8 RELATED WORK

8.1 Open-Source Serverless Platforms

Researchers release a number of benchmarks for serverless plat-

forms. vHive adopts dockerized benchmarks from FunctionBench
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that provides a diverse set of Python benchmarks [32, 33]. Server-

lessBench contains a number of multi-function benchmarks, fo-

cusing on function composition patterns [65]. Researchers and

practitioners release a range of systems that combine the FaaS

programming model and autoscaling [8ś10, 30, 36]. Most of these

platforms, however, rely on Docker or language sandboxes for iso-

lating the untrusted user-provided function code that is often con-

sidered insufficiently secure in public cloud deployments [16, 53].

Kata Containers [3] and gVisor [28] provide virtualized runtimes

that are CRI-compliant but do not provide a toolchain for func-

tions deployment and end-to-end evaluation and do not support

snapshotting. Compared to these systems, vHive is a open-source

serverless experimentation platform ś representative of the pro-

duction serverless platforms, like AWS Lambda [13] ś that uses

latest virtualization, snapshotting, and cluster orchestration tech-

nologies combined with a framework for functions deployment and

benchmarking.

8.2 Virtual Machine Snapshots

Originally, VM snapshots have been introduced for live migra-

tion before serverless computing emerged [19, 47]. The Potemkin

project propose flash VM cloning to accelerate VM instantiation

with copy-on-write memory sharing [63]. Snowflock extends the

idea of VM cloning to instantiating VMs across entire clusters, re-

lying on lazy guest memory loading to avoid large transfers of

guest memory contents across network [38]. To minimize the time

spent in serving the series of lazy page faults during guest memory

loading, the researchers explore a variety of working set prediction

and prefetching techniques [35, 66ś68]. These techniques rely on

profiling of the memory accesses after the moment a checkpoint

was taken and inspecting the locality characteristics of the guest

OS’ virtual address space. Compared to these techniques, our work

shows that serverless functions do not require complex working set

estimation algorithms: it is sufficient to capture the pages that are

accessed from the moment the vHive-CRI orchestrator forwards the

invocation request to the function until the orchestrators receives

the response from that function. Moreover, we find that extensive

profiling may significantly bloat the captured working set, hence

slowing down loading of future function instances, due to the guest

OS activity that is not related to function processing.

8.3 Serverless Cold-Start Optimizations

Researchers have identified the problem of slow VM boot times,

proposing solutions across the software stack to address it. Fire-

cracker [5] and Cloud Hypervisor [1] use a specialized VMM that in-

cludes only the necessary functionality to run serverless workloads,

while still running functions inside a full-blown, albeit minimal,

Linux guest OS. Dune [15] implements process-level virtualiza-

tion. Unikernels [17, 34, 41, 43] leverage programming language

techniques to aggressively perform deadcode elimination and cre-

ate function-specific VM images, but sacrifice generality. Finally,

language sandboxes, e.g. Cloudflare Workers [22] and Faasm [55],

avoid the hardware virtualization costs and offer language level iso-

lation through techniques such as V8 isolates [62] and WebAssem-

bly [4]. Such approaches reduce the start-up costs, but limit the

function implementation language choices while providing weaker

isolation guarantees than VMs. REAP targets serverless workloads

but remains agnostic to the hypervisor and the software that runs

inside the VM.

Caching is another approach to reduce start-up latency. Sev-

eral proposals investigate the idea of keeping pre-warmed, pre-

initialized execution environments in memory and ready to process

requests. Zygote [24] was introduced to accelerate the instantiation

of Java applications by forking pre-initialized processes. The zygote

idea has been used for serverless platforms in SOCK [49], while

SAND [6] allows the reuse of pre-initialized sandboxes across func-

tion invocations. These proposals, though, trade-off low memory

utilization for better function invocation latencies. REAP is able to

deliver low invocation latencies without occupying extra memory

resources when function instances are idle.

Prior work uses VM snapshots for cold-start latency reduction,

although snapshots have been initially introduced for live migration

and VM cloning before serverless computing emerged [19, 38, 47].

Both Firecracker [5, 58] and gVisor with its checkpoint-restore

functionality [28] support snapshoting. The state-of-the-art snap-

shotting solution, called Catalyzer, improves on gVisor’s VM offer-

ing three design options for fast VM restoration [26]. Besides the

"cold-boot" optimization discussed in ğ2.3, Catalyzer also proposes

"warm-boot" and "sfork" optimizations that provide further perfor-

mance improvements but require memory sharing across different

VMs. In a production serverless deployment, memory sharing is

considered insecure and is generally disallowed [5, 59].

Replayable execution aims to minimize the memory footprint

and skip the lengthy code generation of the language-based sand-

boxes by taking a snapshot after thousands of function invocations,

exploiting a similar observation as this work ś that functions use a

small number of memory pages when processing a function invoca-

tion [64]. However, when loading a new instance, their design relies

on lazy paging similar to other snapshotting techniques [26, 58]. In

contrast, our work shows that the working set of the guest memory

pages of virtualization-based sandboxes can be captured during

the very first invocation, and that all future invocations can be

accelerated by prefetching the stable memory working set into the

guest memory.

9 CONCLUSION

Optimizing cold-start delays is key to improving serverless clients

experience while maintaining serverless computing affordable. Our

analysis identifies that the root cause for high cold-start delays is

that the state-of-the-art solutions populate the guest memory on

demand when restoring a function instance from a snapshot. This

results in thousands of page faults, which must be served serially

and significantly slow down a function invocation. We further find

that functions exhibit a small working set of the guest memory

pages that remains stable across different function invocations.

Based on these insights, we present the REAP orchestrator that

records a function’s working set of pages, upon the first invocation

of the function, and speeds up all further invocations of the same

function by eagerly prefetching the working set of the function

into the guest memory of a newly loaded function instance.
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