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Abstract January data, then scale up to a year, with a corresponding, instanta-

Chaining functions for longer workloads is a key use case for FaaS
platforms in data applications. However, modern data pipelines
differ significantly from typical serverless use cases (e.g., webhooks
and microservices); this makes it difficult to retrofit existing pipeline
frameworks due to structural constraints. In this paper, we describe
these limitations in detail and introduce bauplan, a novel FaaS
programming model and serverless runtime designed for data prac-
titioners. bauplan enables users to declaratively define functional
Directed Acyclic Graphs (DAGs) along with their runtime environ-
ments, which are then efficiently executed on cloud-based workers.
We show that bauplan achieves both better performance and a
superior developer experience for data workloads by making the
trade-off of reducing generality in favor of data-awareness.
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« Computer systems organization — Distributed architec-
tures; « Information systems — Extraction, transformation and
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1 Introduction

The growth of Artificial Intelligence and Analytics applications
has created a large, fast-growing market for data pipeline tools
(USD 10BN/ year, with 22% CAGR [20]). Data pipelines are typically
represented as Directed Acyclic Graphs (DAGs), where the nodes
are functions that transform, aggregate, or clean the "raw" data for
downstream use (Fig. 1). These functions typically map one or more
input dataframes to one or more output dataframes [18].

This approach allows practitioners to break down complex busi-
ness logic into modular, reusable components. Data pipeline work-
loads can be highly variable, even for a single user working on a
single DAG: it is common to start with a preliminary run on, say,
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neous change of dataframe size. In this light, data workloads seem to
be a natural fit for Function-as-a-Service (FaaS) platforms designed
to efficiently handle bursty, functional, and event-driven tasks. Un-
fortunately, existing FaaS runtimes fall short in practice as they
were primarily designed to support the execution of many simple,
independent functions that produce small outputs. Although popu-
lar Faa$ platforms (e.g., AWS Lambda [5], Azure Functions [17], and
OpenWhisk [4]) have added support for function chaining, their
capabilities fall short for data pipelines. It is therefore not surprising
that widely used data engineering frameworks (e.g., Airflow [1],
Prefect [19], and Luigi [23]) lack native integration with serverless
runtimes.

We group our contributions in two main categories. First, based
on industry experience, relevant literature, and system traces, we de-
tail the specific demands data pipelines place on FaaS platforms and
how current implementations fall short (§2). We identify three key
areas for improvement: scaling to handle large workloads, efficiently
passing intermediate dataframes between functions, and rapidly
adapting to developer changes. Second, we introduce bauplan, a spe-
cialized Faa$ service built for executing data pipelines. bauplan fills
the gap between traditional FaaS platforms and pipeline abstrac-
tions, offering a truly serverless experience designed with the needs
of data workloads in mind. It features a novel programming model
with simple annotations for standard Python or SQL functions, and
a runtime enabling platform-level optimizations similar to a data-
base query planner. For example, unlike Lambda’s Docker-based
execution for custom dependencies, bauplan provides a declarative
API for managing Python packages at the function level, leaving
caching and optimization to the platform. In common data science
scenarios (Table 2), bauplan’s build process is 15x faster than AWS
Lambda and 7x faster than Snowpark.

Unlike general-purpose FaaS platforms that allow any kind of
input and output (provided that users manually take care of serial-
ization and triggering), bauplan stores all intermediate data as (or
automatically converted to) Arrow tables. Arrow is an open-source
in-memory tabular format with a rich ecosystem that enables zero-
copy data sharing between nodes on the same host and avoids
serialization costs when data is sent across the wire (§4.3). Finally,
bauplan planning and scheduling is managed by the provider, but
invocations occur on the customer’s virtual machines; a single invo-
cation can use nearly all a machine’s resources, so bauplan provides
maximal scale up.

2 Do we need a new FaaS? An industry
perspective

The life cycle of data projects is only superficially comparable to

traditional software development [22], with its own pitfalls and

failure modes [8, 24]. In contrast to traditional serverless use cases

(e.g., endpoints for web applications [21]), pipelines need support
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Figure 1: A DAG of dataframes produced by transformations:
the source dataframe transactions is first filtered for Euro-
pean countries (generating euro_selection, then the aggrega-
tion of revenues by country is computed as usd_by_country.

in scaling up, handling intermediate artifacts, and boosting interac-
tivity:

(1) scaling up: horizontal scaling through replicas is not as im-
portant as the ability to re-run the same function while (mas-
sively) scaling up hardware requirements between execu-
tions: recent industry traces place the p99.9 memory foot-
print of a function between 50 and 200 GB for most real-
world use cases [28];

(2) large intermediate I/O: functions often deal with large (10
GBs) dataframes as their inputs and outputs, so the cost of
serializing and moving the payload may be significant;

(3) fast feedback loop: unlike most software development projects,
data science projects are open-ended and exploratory in na-
ture; if no strategy is known from the start, the key to success
is rapidly iterating over a set of hypotheses [29].

Below, we provide preliminary benchmarks on the cost of con-
tainerization (§4.2) and data movement (§4.3) in traditional plat-
forms vs. bauplan. Here, we offer a brief comparison of commercial
and open source FaaS limitations vis-d-vis the peculiarities of data
pipelines. On the commercial side, we picked the two largest by
market share, AWS Lambda and Azure Functions [17]; on the open
source side, we picked the mature OpenWhisk, due to its commu-
nity support, constant evolution [3], and backing of another popular
commercial platform, IBM Cloud Functions, with similar limits [12].
Not only are the numbers in Table 1 far from the requirements
above, the platforms’ chaining best practices (OpenWhisk action
sequences, AWS Step Functions, and Azure Durable Functions) are
even more limiting, as intermediate dataframes can only be moved
through object storage. Instead of the dataframe itself, functions
return a placeholder, resulting in incorrect DAG semantics and
sub-optimal performance (§4.3).

Given the limitations of existing Faa$ platforms, are DAG tools
coupled with traditional compute better equipped to satisfy these
requirements? If we take the most popular framework, Airflow, as
an example, linking the programming model to any kind of compute
is a non-trivial operation for practitioners. Even when tasks can be
successfully coupled to a runtime (Kubernetes pods or an EC2 fleet),
the framework does not provide dynamic scale-up, nor fine-grained,
containerized management of Python dependencies. Importantly,
tasks are generic operators, not data-aware functions, leaving users
to either implement their own data passing or rely on built-in,
object storage backed primitives (“XComs”). §3.3 below provides
a vivid example of the shortcomings of this programming model
when compared to bauplan: unsurprisingly, the end result for the
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Table 1: Max. Faa$ availability for I/O, memory, timeout

Platform Memory | I/O payload | Timeout
Lambda 10GB 6 MB 900s
Functions 14GB 100 MB unlimited
OpenWhisk 2GB 1 MB 300s

average data practitioner is that the learning curve is notoriously
steep, and the developer experience sub-optimal [30].

3 Platform Design

We now introduce bauplan, a new Faa$ service specialized for
running data pipelines. bauplan is designed to scale up individual
function invocations, efficiently pass large intermediate data, and
allow users to interactively modify and run DAGs. The rest of this
sections is organized as follows: we enumerate the design princi-
ples behind bauplan (§3.1), describe an architecture that prioritizes
privacy of user data and deployment flexibility (§3.2), and introduce
a new programming model for developing data pipelines (§3.3).

3.1 Design principles

The goal of our Faa$S system is to natively satisfy the three desider-
ata in §2: it is therefore convenient to state design principles which
will allow us to operationalize those requirements. The biggest
difference between bauplan and existing tools is the conviction
that achieving developer interactivity at the scale of modern data
pipelines (i.e., hundreds of millions of rows moving across con-
tainers) is only possible if DAG abstractions and the runtime are
co-designed: i.e., if serverless runtimes (e.g., AWS Lambda) have
no data awareness, and pipeline frameworks (Airflow) have no
runtime awareness, bauplan provides both. Our user experience
principles are therefore a combination of architectural insights and
data abstractions:

e it runs in the cloud, but feels local: as DAGs require moving
GBs of data, only cloud bandwidth can guarantee a fast
feedback loop. However, remote runtimes often come at the
expense of developer convenience, with slow build times
and no interactive logging (§4.2).

o data awareness: users should write code at the logical level
of data dependencies, not at the physical level of data repre-
sentation. In other words, user functions should specify as
inputs only tables, projections, and filters — not files or end-
points. By restricting function signatures to (semantically
specified) dataframes, we open the door for platform-level
optimizations, such as aggressive caching, zero-copy data
sharing, and versioning (§4.2).

Our system design principles are focused on infrastructure and
deployment:

o ephemeral functions: execution is truly stateless, as func-
tion instances live only for the duration of an invocation. In
contrast, standard Faa$ platforms typically reuse function in-
stances across multiple invocations, making it harder for the
average developer to reason about the program life cycle [14].
Starting fresh each time simplifies reasoning about invoca-
tions, and it also allows instantly re-executing functions with
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Figure 2: End-to-end architecture: 1) A user requests to run
a DAG; 2) the APIs parse the request and send an execution
plan to a worker; 3) an existing (bin-packing) or on-demand
worker runs the required operations over customer data in-
side the customer cloud; 4) print statements and data pre-
views are streamed back to the user.

different memory limits, which is a common requirement in
data science (e.g., running a pipeline first on January data,
then on the full year);

o off-the-shelf infrastructure: cloud VMs provide the greatest
level of customization and hardware diversity, which are
both important levers when dealing with heterogeneous
packages and large artifacts. VMs are also more portable
than any serverless offering, appealing to enterprises who are
sensitive to data security, and enabling bauplan to support
multiple deployment models in every major cloud, from a
managed service (with or without a private link), to a full
Bring-Your-Own-Cloud.

Taken together, our design principles are a considerable depar-
ture from FaaS$ standards: ephemeral existence, VM portability, and
data awareness are necessary to satisfy data pipeline requirements,
but these properties are less useful (and perhaps counterproductive)
for traditional use cases involving relatively independent functions.

3.2 Architecture

The basic modules involved in an bauplan run are depicted in Fig. 2.
The system is built with a separation between the Control Plane
(CP) and the Data Plane (DP):

o the CP exposes multi-tenant APIs and only ever deals with
metadata: the CP is in bauplan’s cloud account;

o for each customer we then have a single-tenant DP, a fleet
of one or more off-the-shelf VMs which can be deployed (as
in the picture) directly in a customer account. Workers are
the only part of the system that interact with customer data;
workers can be deployed in any cloud with ease as a Golang
binary.

Crucially, the user and the workers are connected through bi-
directional gRPC, so that every print statement in user code and
system logs are visible in real-time in the user terminal / IDE. This
is in stark contrast with platforms such as AWS Lambda, which
provide only asynchronous observability through Cloudwatch at
additional cost. Debugging a run in bauplan is a self-contained,
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real-time, and free operation; the execution feels as if it were local
to the user.

3.3 Programming model

bauplan provides a CLI tool and Python SDK installable with pip
(ie, pip install x):the CLI allows users to initiate pipeline
runs and navigate their data assets. The SDK provides decorators for
user code and a client to interact with the platform from any Python
process. The best way to understand the developer experience is to
see how the DAG in Fig.1 is expressed in bauplan:

Listing 1: A sample DAG in bauplan

@bauplan.model ()
@bauplan.python("3.11", pip={"pandas": "2.0"})
# the table name is the name of the function producing it
def euro_selection(
# its parent node is referenced as the input
data=bauplan.Model (
"transactions",
# columns and filters are expressed for
# pushdown to object storage
columns=["id", "usd", "country"],
filter="eventTime BETWEEN 2023-01-01 AND 2023-02-01"
)

# do pre-processing here and return the
# cleaned dataframe directly
return _df

# specify that the output needs to be written back to S3
@bauplan.model (materialize=True)
@bauplan.python("3.10", pip={"pandas": "1.5.3"})
def usd_by_country (
data=bauplan.Model ("euro_selection")
) :
# aggregation code here - return as usual a dataframe
return _df

Users express transformations as Python functions with the
signature f(dataframe(s)) — dataframe. The code is straightfor-
ward, but it is worth noting a few details:

o the DAG topology is implicitly expressed through function
inputs;

e infrastructure is declarative: users specify the desired Python
version and packages for each function, and the platform is in
charge of deploying the corresponding stack - two functions
may use different interpreters and versions of pandas within
the same DAG;

e data management is declarative: users specify the desired
input dataframe(s) for their code, and the platform is in
charge of making it available inside the function by fetching
it from object storage or from a parent. The optional hints on
columns and filters enable optimizations such as predicate
push-downs and columnar caching. Outputs follow the same
principle: users return dataframes, and the platform is in
charge of persisting them when required.

It is crucial to note that bauplan’s declarative nature creates a
principled division of labor between the system (infrastructure and
data management) and the data scientist (business logic and choice
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of libraries). Furthermore, this decoupling is necessary to run the
same pipeline over different versions of the same table (e.g., running
today’s code on last Friday’s table [25]), or over different physi-
cal realizations of the same asset (e.g., Parquet files in S3, Arrow
streams over the wire, or locally cached data). In this regard, it is
worth noting how bauplan enables a true FaaS programming expe-
rience, in contrast to frameworks that instead couple the physical
representation of a DAG with code. For example, consider this AWS
Airflow reference implementation for a Python DAG [27]:

Listing 2: A pre-processing function in Airflow.

def preprocess (
s3_in_url, s3_out_bucket, s3_out_prefix
)
# Do pre-processing here and save the result in
# "s3_out_bucket / s3_out_prefix"
return "SUCCESS"

# the function gets registered in the overall DAG
preprocess_task = PythonOperator (
task_id="preprocessing",
dag=dag,
python_callable=preprocess.preprocess

Not only does the pre-processing function operate at the physical
level of the raw data path instead of at a logical DAG level, but it
saves its output as a side effect, instead of returning the cleaned
dataframe to the caller. Hiding data artifacts from the scheduler
prevents any further optimization, such as caching or compression.

4 Implementation: the anatomy of a DAG run

To understand how all of the pieces fit together, we will decompose
a run and dive deeper in some of the system optimizations. To get a
first-person perspective on the developer experience (real time log
streams, function building, data passing, etc.), the reader is invited
to pause here and watch a recorded run before continuing!.

A successful DAG run involves three main operations, which we
will describe in more detail. First, translate user code to a physical
plan. User code is declarative, so the platform must fill the gap
between logical requests (e.g., “I want transactions with columns
ID, USD, COUNTRY”) and system operations (e.g., “read files XYZ
from S3”) (§4.1). Second, optimize environment construction so that
the code can run in quickly provisioned ephemeral functions (§4.2).
Third, optimize I/O and data movement (§4.3). In each step, bau-
plan leverages data awareness and runtime awareness to perform
optimizations not found in other comparable systems.

4.1 Logical and physical plan

Unlike other Faa$ platforms, which execute user code “as is”, bau-
plan acts more like a database, where user code needs “translation”
before being executed. When a run is requested from the CLI / SDK,
the user code is uploaded to the control plane (CP) for processing
and scheduling (Fig. 2). The CP parses the code and reconstructs
the DAG topology from the inputs / outputs of the functions: using

'Public video is available here:
99ac0d5b5{944fc9aeef132bfaea0881

https://www.loom.com/share/
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Figure 3: From logical plan to execution, with three levels of
representation for every run: (top to bottom) 1) logical plan,
obtained by parsing user code, 2) physical plan, obtained by
adding system functions, 3) the actual worker-level execu-
tion, transparently managing data and package caches to
further speed up execution.

database jargon, the result is the “logical plan”, a structured rep-
resentation of user code, expressing dependencies between steps
with dataframe semantics (Fig. 3, top). This representation is too
abstract to be sent to workers, so the CP will also produce a “physi-
cal plan” (Fig. 3, middle), which contains explicit instructions for
the containerized runtime of the transformation functions f and
g (e.g., euro_selection and usd_by_country), and maps dataframe
semantics to S3-backed tables. The CP accomplishes this by lever-
aging Iceberg as its table format (providing schema evolution and
per-table snapshots) and Nessie [10] as a data catalog (providing
cross-table transactions and data lake branching). Transparent to
the user, the runtime has support for optimized procedures to read
the transactions dataframe from S3 and write back usd_by_country
as the final dataset. Throughout this procedure, no customer data
is ever visible to the CP.

The physical plan is now specific enough to be sent to a worker
(Fig. 3, bottom), which is in charge of executing it while taking
into account local optimizations and constraints.?. In particular,
the worker can access the files in the customer S3 bucket, as well
as cleverly leverage space, time, and team locality: similar users
with similar DAGs would access similar packages and S3 objects,
opening up the possibility of performing significant optimizations
in package (§4.2) and data re-use (§4.3). Notably, all these optimiza-
tions require no code changes nor additional cognitive effort on
the user side, and they would not be possible without bauplan’s
declarative programming model.

2For simplicity of this exposition, we won’t discuss the priority-based scheduler, which
we plan to describe to the community in future work, and just assume the worker
has full capacity to run the DAG at this point. Note that the programming model in
Section 3.3 allows the same DAG to run on one or across multiple workers without
code changes.
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4.2 Towards a fully interactive FaaS

Data practitioners frequently add or remove data science packages
or update the versions of those packages. Like many other FaaS
platforms, bauplan guarantees code portability (“infrastructure-is-
code”) and selective maintenance: a new function can benefit from
pandas==2.0 without forcing breaking changes in old functions
with 1.5.3. However, due to its focus on interactivity and dynamic
scaling, bauplan significantly departs from existing FaaS along two
dimensions: ephemeral function building and data caching.

As mentioned earlier (§3.1), functions only exist for the duration
of a single invocation: two subsequent runs will build two contain-
ers for the same euro_selection function (possibly with different
hardware resources), which would result in unacceptable latency
if re-building functions were a slow operation. To give a sense of
the usual re-containerization flow for data science packages in pop-
ular platforms, Table 2 reports the latencies we recorded® when
re-running a DAG on a given target stack after adding a new Python
package (the prophet prediction library). bauplan is 7x faster than
Snowpark — a data-aware, serverless experience built within a cloud
warehouse — and 15x faster than AWS Lambda at closing the devel-
oper loop, yet requires no additional tools, nor special knowledge.
This improvement comes from two major insights. First, the worker
leverages a local container factory to avoid re-installing common
packages across runs, thus removing the dependency from network
calls to PyPI. Second, our narrower use case compared to general
platforms allows us to avoid relying on image layers (as for example
AWS Lambda does), with their associated building and network
costs. In particular, our atomic building blocks for environments
are the Python packages themselves. To the best of our knowledge,
we implemented OpenLambda-style package initialization [11] in a
Docker-compatible runtime as a novel experiment before any other
research team. As a result, bauplan containers are assembled in
100s of milliseconds by mounting relevant modules from the local
file system.

Given all workers are single-tenant (Section 3.2), host disk and
memory can be more easily shared between subsequent executions:
instead of exposing APIs for manual management of temporary
storage (like Lambda), the bauplan data cache works without user
intervention, exploiting its signature with no side-effects. Once
again, bauplan data awareness makes database-like optimizations
(not available in other platforms) possible:

e intermediate dataframes are produced by DAGs functions,
and bauplan tracks both code and data changes, so it is pos-
sible to cache and re-use intermediate steps to avoid unnec-
essary re-computations when iterating;

o the semantics of reading Iceberg tables follows relational
algebra, so the cache can be columnar and differential: for
example, after reading from transactions once, a subsequent
request for ID, USD, COUNTRY, CLIENT_ID re-uses ID, USD,
COUNTRY from the cache and only downloads CLIENT ID
from object storage;

e inputs over object storage map to immutable files (through
the Iceberg manifest), so dataframe changes are identified
with data commits such that the cache knows with certainty
when a table is stale.

3Code snippets are available at https://github.com/BauplanLabs/vldb-demo-2024.
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Table 2: Time to add Prophet to a serverless DAG

Task Seconds
AWS Lambda*

Update ECR container and function 130 (80 + 50)
Snowpark

Update Snowpark container 35
bauplan

Update runtime 5/ 0 (cache)

4.3 Intermediate dataframes

As data workloads involve reading, writing, and moving around
large dataframes, a cloud-only design is a necessity, with cloud
virtual machines (e.g., EC2 instances) offering network bandwidth
up to 50 Gbps. However, running cloud functions with manual
data management is still sub-optimal, as data scientists are likely to
end up with slow implementations, low throughput, and complex
logic to maintain. bauplan constrains user inputs / outputs to be
dataframes: raw dataframes in object storage are stored in Parquet
files as Iceberg tables, following lakehouse standards [26, 31] and
maximizing interoperability. On the other hand, bauplan represents
intermediate dataframes as Arrow tables. Arrow is a popular open-
source columnar format for in-memory and over-the-wire tabular
data [2]. Arrow is built for modern CPUs and vectorized execution
and has a fast-growing ecosystem built around it [9, 13]. The Arrow
format carefully avoids the use of pointers to memory addresses,
preferring instead offset buffers to represent location and bitmaps
to represent null values. Avoiding pointers allows the same Arrow
data to be mapped to different locations in different address spaces
with minimal modification; as a result, Arrow avoids serialization
and deserialization overheads and supports zero-copy transfers.
This results in significant performance gains relative to traditional
columnar formats like Parquet or row-based wire protocols like
JDBC. In the context of a DAG (such as the one in the demonstration
above), Arrow is a crucial component for a fast feedback loop.

As a pipeline is executed, the platform transparently picks a
sharing mechanism: shared memory or local disk (for co-located
functions) or Arrow Flight (across workers). To give a sense of
the performance gains, Table 3 shows how long it takes to read
an intermediate dataframe into a user function, depending on se-
rialization and storage type®; since existing platforms can only
support S3-backed data passing (§2), moving dataframes in bauplan
can be hundreds of time faster than alternatives: perhaps counter-
intuitively, cross-machine communication through Arrow Flight
is nearly as fast as local Parquet reading. Moreover, Arrow is very
flexible: functions can transparently read tables from shared mem-
ory, memory-map them from disk (with standard OS primitives),
or stream them from gRPC (with Flight) depending on resource
availability.

Importantly, tables can often be shared with no movement at
all: when children functions can be scheduled in the same worker,
bauplan performs a zero-copy sharing of the parent output. The

SCode snippets are available at: https:/gist.github.com/jacopotagliabue/
57bb14c675a5375338d4a57a88cea32a.
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Table 3: Reading a dataframe from a parent (c5.9xlarge), avg.
(SD) over 5 trials

‘ 10M rows (6 GB) ‘ 50M rows (30 GB)

Parquet file in S3 1.26 (0.14) 6.14 (0.98)
Parquet file on SSD 0.92 (0.09) 4.37 (0.15)
Arrow Flight 0.96 (0.01) 4.69 (0.01)
Arrow IPC 0.01 (0.00) 0.03 (0.01)

Arrow IPC module allows children to transparently reference the
underlying memory buffer, thus avoiding unnecessary copies: a 10
GBs table with three children only requires 10 (not 30) GBs, saving
considerable time and resources.

5 Related Work

Aside from platforms already discussed (§2), there is academic in-
terest in serverless systems that address some of the challenges
we have encountered. For example, Mahgoub et al. [16] investigate
different data passing mechanisms, but test only small inputs with
no data-awareness; as Table 3 shows, tackling both storage and for-
mats is critical; Carreira et al. [6] provide orchestration for Machine
Learning, using AWS Lambda and Redis, but focus only on training
jobs; Jia et al. [15] also use shared memory to allow inter-function
communication, but their stated goal is “interactive microservices”,
resulting in a low-latency, low-complexity system, with no affor-
dances for data practitioners and no principled way to deal with
storage and serialization trade-offs. Importantly, none of these sys-
tems is known to be used in production, making it hard to assess
how the design choices actually fit real-world scenarios, especially
given the known unreliability of analytics benchmarks [28].

In general, data practitioners will be more familiar with DAG
frameworks [1, 19, 23]; dbt [7] pioneered the dataframe-based sig-
nature in the SQL community. While the DAG abstractions of these
frameworks resemble bauplan, they all leave data-awareness to the
user: the result is often a tight coupling between business logic
and physical data representation (§3.3), resulting in sub-optimal
performance and a developer experience far from the FaaS ideal.

6 Conclusion

While chaining is supported by major FaaS platforms, we have
argued that their generality prevents them from fully supporting
modern data pipelines. We outlined bauplan, a new, purpose-built
FaaS programming model and runtime, which effectively trades
off control to achieve large gains in performance and developer
experience. Notwithstanding its novelty, bauplan is already used in
production by large enterprises: as the platform further matures
and more usage data are collected, we look forward to sharing with
the community the next steps of our journey.
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