
Baking Disaster-Proof Kubernetes Applications with Efficient
Recipes

Runyu Jin
runyu.jin@ibm.com

IBM Almaden Research Center
Almaden, California, USA

Paul Muench
pmuench@us.ibm.com

IBM Almaden Research Center
Almaden, California, USA

Travis Janssen
travis.janssen@ibm.com

IBM Almaden Research Center
Almaden, California, USA

Brian Hatfield
bhatfiel@us.ibm.com

IBM Almaden Research Center
Almaden, California, USA

Veera Deenadhayalan
veerad@us.ibm.com

IBM Almaden Research Center
Almaden, California, USA

ABSTRACT
Multicluster disaster recovery on cloud-native platforms such as
Kubernetes usually replicates application data and Kubernetes re-
sources to a safe recovery cluster. In the event of a disaster, Kuber-
netes resources are restored to the recovery cluster to recover the
affected applications. We tested 10 popular Kubernetes applications
using this naive approach, and 60% failed. Problems include data
being restored in the wrong order, cluster-specific data being re-
stored instead of generated by the cluster, etc. All these problems
lead to our recipe design that enables disaster recovery of all Ku-
bernetes applications. In this paper, we analyze the problems we
encountered during the disaster recovery of Kubernetes applica-
tions and categorize applications based on their disaster recovery
behaviors. We present a recipe that groups, orders, and filters Ku-
bernetes resources to enable disaster recovery. Finally, we evaluate
the reliability and efficiency of the recipe. Our evaluation shows
that recipe achieves a 100% success rate of disaster recovery while
adding mere seconds of overhead to the recovery time.

CCS CONCEPTS
• Computer systems organization → Reliability; Cloud com-
puting; Availability.

KEYWORDS
Disaster Recovery, Cloud Computing, Kubernetes, Reliability, Con-
tainerized, Multi-cluster

ACM Reference Format:
Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, and Veera Deenad-
hayalan. 2024. Baking Disaster-Proof Kubernetes Applications with Efficient
Recipes. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3629527.3651417

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651417

1 INTRODUCTION
Kubernetes has become the container orchestration platform of
choice across the IT industry [26]. Kubernetes is no longer focused
only on stateless applications and as a result the users of Kubernetes
are concerned with data resiliency [25]. This paper focuses on
disaster recovery (DR). A naive approach to protecting stateful
applications against disasters is to replicate all application persistent
storage and all Kubernetes resources to a safe recovery cluster. This
naive approach failed for 60% of 10 stateful applications evaluated.
This paper proposes disaster recovery recipes, which is a method
of implementing disaster recovery for Kubernetes applications for
which the naive approach fails.

Recipes in our disaster recovery solution have 4 goals: (1) provide
a disaster recovery solution to currently deployed applications (2)
enable Site Reliability Engineers or developers to create disaster
recovery recipes for applications (3) enable application developers
to create disaster recovery hooks when other recovery techniques
are not sufficient (4) make application disaster recovery reliable
and efficient. Achieving all of these goals requires a user to deploy a
disaster recovery framework along with Kubernetes as Kubernetes
is not inherently disaster resistant. The disaster recovery framework
discussed in this paper is Ramen [20], which is an IBM open-source
project that provides a naive DR solution to Kubernetes applications.
We implemented recipes in Ramen and evaluated the recipe design
using Ramen. The resulting implementation is now available on
the Ramen GitHub.

Ten Kubernetes data management system applications were stud-
ied. Four of the data management systems were able to recover
from 100% of simulated disasters without a recipe. Two of the data
management systems required recipes without hooks to achieve
any successful recovery from a disaster. The remaining four appli-
cations require both recipes and hooks and that recovery technique
is not the focus of this paper. With 1 to 3 days effort each of the
2 applications that needed recipes without hooks recovered from
100% of simulated disasters. On average the Kubernetes resource
restore time for applications is 28% of the application’s recovery
time. Our DR solution has a small and fixed recovery time for any
size of raw data. Thus our approach is both highly effective and
highly efficient.

Our disaster recovery solution with recipes is the only known
solution that can combine filtering, ordering, and hooks for Ku-
bernetes resource protection and recovery. These protection and

174

https://doi.org/10.1145/3629527.3651417
https://doi.org/10.1145/3629527.3651417
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651417
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629527.3651417&domain=pdf&date_stamp=2024-05-07

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, & Veera Deenadhayalan

recoverymechanisms enable two essential values. First, our solution
can be applied to running applications. Second, our solution can be
leveraged by users without changing application code which can
make a solution rapidly available. Other solutions exist to protect
Kubernetes applications from disasters. There are backup/restore
solutions that require time to restore data before an application
is restarted [21], which makes total recovery time longer. There
are solutions based on cross data center Kubernetes clusters [19],
but those solutions rely on synchronous replication. Synchronous
replication is not suitable to address region wide disasters as the
communication latency for maintaining cluster membership across
regions is too high. There are other solutions like ours that can
protect applications across regions with data in place recovery [30].
However, these other solutions do not provide the flexible Kuber-
netes resource protection and recovery mechanisms that are needed
by data management systems.

2 BACKGROUND
Business continuity is the ability of a business to meet the demands
of its clients by recovering from diverse types of problems as quickly
as possible at a reasonable cost. The types of problems that affect
business continuity can be broadly classified as follows: (1) failure
of subsystems (such as, nodes, network, etc.) within a data center or
availability zone (AZ), (2) unrecoverable corruption of data (either
accidentally or maliciously), and (3) failure of the entire data center
or multiple data centers in a region. These problems are solved
respectively using: (a) high availability (HA) solutions, such as
redundancy within the data center to avoid single points of failure,
(b) backup and restore (B/R) of data using an external secondary
store, and (c) disaster recovery (DR) solutions that replicate the
application state to another data center that is in a different AZ or
region [24]. In our paper, we focus on DR but some of the problems
we outline in Section 3 also apply to B/R.

The goal of B/R and DR solutions is to recover critical application
state after a disaster event. Bare-metal servers, virtual machines,
and containers typically store their bootstrap configuration data in
locally attached persistent volumes (e.g., in the /etc directory of
the root file system) and may store their application volume data
either in locally attached persistent volumes or in remote network
attached persistent volumes. Whereas, in Kubernetes, application
state is a combination of (a) Kubernetes API resources stored in an
etcd backing store [17] and (b) volume data stored in persistent
volumes. Examples of API resource types are deployments, pods,
PersistentVolumeClaims (PVCs), PersistentVolumes (PVs), services,
secrets, and ConfigMaps.

There aremanyDR solutions for Kubernetes. Kubernetes stretched
cluster is a solution that takes a single Kubernetes cluster and
stretches it by placing all the control plane components, including
etcd, across AZs within a region. This solution leverages the HA
features of Kubernetes to build a basic DR solution across multi-
ple AZs [18]. Given that this solution uses a single etcd cluster
across multiple AZs, it does not suffer from the multi-cluster DR
problems we motivate in Section 3. However, this solution suffers
from the effects of network latency across AZs. The longer the
distance between the AZs, the higher the latency is between them
and proportionally severe is the latency effect on etcd replication
I/O across AZs. High network latencies can cause etcd to miss

heartbeats, experience timeouts, result in leader elections that are
disruptive to the cluster, and can also lead to API slowness [35].
This makes it unsuitable to stretch the cluster across long distances.
Hence, this limitation of Kubernetes stretched cluster serves as a
motivation for Kubernetes multi-cluster DR, which is the focus
of this paper. Kubernetes multi-cluster DR [34] is a solution that
overcomes the limitations of Kubernetes stretched cluster by using
multiple independent Kubernetes clusters, each with its own etcd
backing store.

Figure 1: Kubernetes Multi-cluster DR

Kubernetes enables building DR features with its extensible de-
sign paradigm. While DR features are not part of core Kubernetes,
many vendors offer custom extensions to Kubernetes. Ramen [20] is
an example of an open-source DR solution. The Ramen DR solution
can handle applications deployed using GitOps [7] and other tradi-
tional deployment methods. It focuses on protection and recovery
of Kubernetes API resources only. To protect API resources, Ramen
captures selected API resources, asynchronously stores them in an
object store in the recovery DR cluster, and restores them to the
etcd of the recovery DR cluster after a disaster event.

3 NAIVE KUBERNETES DR
Our primary motivation is to disaster-proof stateful Kubernetes
applications (a) without modifying the applications themselves and
(b) irrespective of the application deployment methodology [2].

3.1 Limitations Of The Naive Approach
GitOps [7] uses CI/CD pipelines to automate deployment of appli-
cations using declarative object-configuration stored in Git reposi-
tories. A naive approach to recover such a GitOps deployed appli-
cation is to again use GitOps on the recovery cluster. However, this
approach may not work for all types of applications. Consider an
example of a GitOps deployed stateful application that has PVCs.
Kubernetes will dynamically provision PV resources to fulfill the
PVCs. These locally created PV resources in the home cluster do
not come from the declarative Git source. If one were to use GitOps
in the recovery cluster, Kubernetes will dynamically provision new
PV resources to fulfill the PVCs that do not contain PV contents at
the home cluster, resulting in data loss. We expect other application
specific examples where not all API resources come from a declara-
tive source, which makes GitOps-based DR fall short as a full DR
solution. This implies that we need to capture the API resources
stored in the home cluster and restore it to the recovery cluster.

A naive capture of the API resources on the home cluster period-
ically queries the API server and stores the results in the recovery
cluster. After a disaster event, a naive recovery of API resources

175

Baking Disaster-Proof Kubernetes Applications with Efficient Recipes ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

on the recovery cluster restores previously captured API resources
of the home cluster to the recovery cluster. This naive approach
does not consider parent and child resources, sequence resource
creation, nor exclude any resources.

We define a naive DR approach to use naive capture, naive re-
covery, or use naive GitOps for DR. While naive DR appears to be
simple and intuitive, our case-study shows examples where naive
DR falls short due to problems that come from (a) the application
(b) the third-party DR service that is in use, (c) Kubernetes itself.
Kubernetes aims to eliminate the need for orchestration of com-
plex applications with its design comprising a set of independent,
composable control processes that continuously drive the current
state towards the provided desired state, but these principles do not
apply to diverse applications that are out in the wild.

3.2 Case Study Using The Naive Approach
We selected 10 popular Kubernetes applications to study how the
naive approach works. Five are database management systems
ranked among DB-Engine’s seven most popular either directly
or as open-source relatives: Elasticsearch [8], EnterpriseDB [12],
MariaDB [14], MongoDB [27], and Redis [36, 39]. Two are popu-
lar open-source machine learning frameworks: PyTorch [31] and
TensorFlow [1, 40]. Jenkins [22] is one of the most popular con-
tinuous integration/continuous delivery (CI/CD) tools [6]. Apache
Kafka [13] is the most popular open-source event streaming plat-
form [23]. And Apache Spark [15] is an engine for large-scale data
processing used by 80% of Fortune 500 companies [15].

The naive approach failed to recover 60% of the applications from
simulated disaster. We categorize the reasons for failure into four
modes. Table 1 below lists the applications tested and for which
reasons they failed.

Naive Approach Failure Reason
Application Success Absence Order Stale Mode
Elasticsearch ✓ ✓
EnterpriseDB ✓
Jenkins ✓
Kafka ✓
MariaDB ✓
MongoDB ✓
PyTorch ✓
Redis ✓
Spark ✓
TensorFlow ✓

Table 1: Naive Approach DR Results

Following are examples of how applications failed to recover
from simulated disaster, including some analysis of why the failures
happened. Each example failure is classified according to the failure
reason in Table 1. An application that fails to recover due to absence
requires a Kubernetes API resource that is missing. For example,
Elasticsearch could not query ApmServer resources because its
custom resource definition (CRD) resource was not installed. The
CRD resource type is cluster-scoped and the naive approach restores
cluster-scoped resources by exception only. A CRD is only restored

if a resource of the type it defines exists in the application’s names-
pace [5].

The naive approach restores most resource types in alphabetical
order by type name [4], e.g., Deployments, Jobs, StatefulSets. It
recreates resources without delay between types, but some appli-
cations benefit from a different order or delay. The order column
identifies applications that failed to recover due to their Kuber-
netes API resources being restored in an incorrect order. For ex-
ample, Elasticsearch typically failed to reach healthy status when
an EnterpriseSearch resource was restored immediately after its
associated Elasticsearch one, but succeeded whenever they were
separated by a five-second delay [9]. We discovered this acciden-
tally by specifying an explicit restore order which introduced the
delay.

Some applications failed to recover when stale information spe-
cific to the home cluster persisted in their Kubernetes API resources.
For example, PyTorch, deployed by the OpenShift Data Science op-
erator, failed to recover because an endpoint, containing the home
cluster’s name, was unreachable. The application recovered after
replacing the home cluster’s namewith the recovery cluster’s. Some
applications require a specific mode to restart on another cluster.
Redis, for example, failed to restart with the naive approach, but suc-
ceeded when its RedisEnterpriseCluster resource was modified
setting its spec.clusterRecoverymode to true [37]. In summary,
the naive approach to DR worked for some applications, but not all.
The naive approach worked for applications that omitted cluster-
specific information, did not have restore order requirements, had
no dependencies, and generally tolerated being restored on another
cluster.

4 ROBUST KUBERNETES DR USING RECIPES
Theoretically, Kubernetes application resources can be backed up as
a single unordered group, then restored as a single unordered group,
and eventually regain a functional state, provided the application
data is available. Our case study indicates that this assumption does
not hold true for many applications. Further, the issues that prevent
backup or recovery in a single group may not be fixed without
modifying the underlying application. To address these issues, we
introduce the Recipe concept for robust disaster recovery.
4.1 Recipe
A recipe is a Kubernetes custom resource (CR) that defines the cap-
ture and recovery sequences of Kubernetes objects. Recipes enable
and automate DR for any application. The recipe design specifically
addresses the issues experienced with naive DR as discussed in
Section 3. A key abstraction in a recipe is a workflow, which defines
a sequence of actions to take during a capture or recovery sequence.
A workflow is a sequentially processed list of groups and hooks.
Groups define the resources to be included or excluded in a step of a
workflow, and Hooks define actions that should be run in between
groups. With these three abstractions, all issues encountered during
the case study can be addressed.

The absence issue encountered with ElasticSearch involved a
missing CRD (ApmServer resource) whose absence failed the recov-
ery. Backing up an object CR requires the CRD, as does restoring
it. A recipe can handle this situation by capturing an active object
(ApmServer CR) along with the CRD it uses. This is preferred to

176

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, & Veera Deenadhayalan

installing the full operator which includes the CRD on the recovery
cluster, as the recovery cluster version may not match the operator
version without prior planning.

Combinations of groups enable sequencing a recovery process.
If a particular resource is dependent on another in a parent-child
relationship, they can be split up into two groups to ensure the
parent resource exists before the child resource. Groups address
the absence and order problems encountered with ElasticSearch,
where the ElasticSearchCluster CR needs to be available before the
EnterpriseSearch CR (Recipe Example 1).

Hooks can address scenarios where an object must be modified
after restoration [3]. Restoring an object involves copying the re-
source contents from the home cluster and reproducing them on
the recovery cluster. Some applications, like OpenShift Data Sci-
ence, embed cluster-specific information in their resources, like
Notebooks. Kubernetes resources can become available, but the
application is inaccessible through an endpoint, which uses a stale
URL. By correcting this data, Hooks can address the stale issues
encountered in the case study.

Hooks can also address scenarios where selectively ordering or
filtering resource groups is insufficient to recover an application.
Redis requires that a recovery mode is specified on the CR when a
majority of nodes become unavailable [37]. During recovery, Re-
dis begins without any nodes available, and setting the recovery
mode is required to launch pods and continue operation. Adding
spec.clusterRecovery=true to the RedisEnterpriseCluster CR to be-
gin the recovery mode that is required by Redis. Hooks can be
used to add the recovery mode field on application CRs, addressing
mode-type scenarios found during the case study.
4.2 Recipe API and Examples
Now that the high level abstractions have been explained, the API
can be introduced. The sample recipe is based on ElasticSearch, but
adds hooks to demonstrate the feature. The recipe object itself is
divided into the three abstractions: groups, hooks and workflows.
The captureWorkflow is used for the backup/capture sequence, and
the recoverWorkflow is used for the restore/recover sequence. A
sequence is defined using a map of strings, where a user specifies
a type (Group or Hook), then the name of that group or hook (for
example: "group: everything"). Each step of the sequence must be
completed before the next one begins.

Groups are defined with a unique name identifier, and may in-
clude and exclude resource types by name. Groups use namespace-
scoped visibility by default, but may opt-into cluster-scoped re-
sources with an additional field (includeClusterResources = true).
Since capture and recovery sequences may not be symmetrical, a
backupRef field is used to source recovery contents.

A full Recipe is shown below in Recipe Example 1. In the current
recipe implementation, groups are processed independently. There-
fore, it is possible to restore duplicate resources across different
groups. Using excludedResourceTypes avoids this scenario.
Recipe Example 1

apiVersion: ramendr.openshift.io/v1alpha1
kind: Recipe
metadata:

name: recipe-demo
namespace: eck

spec:
appType: eck
volumes:

name: volumes
type: volume
labelSelector: {} # select all PVCs

groups:
- name: everything

type: resource
includedResourceTypes:
- "*"

- name: cluster
backupRef: everything
type: resource
includedResourceTypes:
- elasticsearches.elasticsearch.k8s.elastic.co

- name: enterprise-search
backupRef: everything
type: resource
includedResourceTypes:
- enterprisesearches.enterprisesearch\

.k8s.elastic.co
- name: misc

backupRef: everything
type: resource
excludedResourceTypes:
- enterprisesearches.enterprisesearch\

.k8s.elastic.co
- elasticsearches.elasticsearch.k8s.elastic.co

hooks:
- name: demo-hooks

labelSelector:
matchLabels:

appname: eck
type: exec
ops:
- name: date

container: main
timeout: 10m

command: # runs as single command: "/bin/sh -c date"
- "/bin/sh"
- "-c"
- "date"

captureWorkflow:
sequence:
- hook: demo-hooks/date
- group: everything

recoverWorkflow:
sequence:
- group: cluster
- group: enterprise-search
- group: misc

4.3 Implementation
Recipes are a general concept which may be used as a library com-
ponent [10]. The controller logic discussed in this paper was imple-
mented within Ramen, an open-source Disaster Recovery solution

177

Baking Disaster-Proof Kubernetes Applications with Efficient Recipes ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Category Application
Type 1 Jenkins, Kafka, MongoDB, Spark
Type 2 Elasticsearch, MariaDB
Type 3 EnterpriseDB, PyTorch, Redis, Tensorflow
Table 2: Kubernetes Applications Categorization

[20]. Ramen handles volumes replication across clusters, while
recipes handle application recovery. The separation of API and
controller logic allows for customization of the software stack, if
a user desires. Ramen was released as a part of OpenShift Data
Foundations (formerly OpenShift Container Storage) v4.7 [32].

5 EVALUATION
We evaluated the performance of recipe-based disaster recovery
following the design described in Section 4. We implemented the
recipe based on Ramen [20]. Our key evaluation metrics are relia-
bility and efficiency of application recovery.

5.1 Environment Setup
We setup two RedHat Openshift Container Platform (OCP) [16]
4.12 clusters, one cluster serves as the home cluster where appli-
cations are installed and initially deployed. Another cluster serves
as the recovery cluster. When a simulated disaster happens, all the
applications deployed on the home cluster are recovered on the
recovery cluster. The application deployed on the home cluster is
removed completely including all the Kubernetes resources and
persistent volumes to mimic real-world production outages. Both
clusters use the same external RedHat OpenShift Data Foundation
(ODF) Ceph [33] cluster as the storage backend for all the appli-
cation persistent data. ODF offers the Metro Disaster Recovery
(MetroDR) solution which synchronously replicates persistent data
between the home and recovery clusters. We deployed Ramen on
both OCP clusters to protect Kubernetes application resources ev-
ery 5 minutes. We simulate a disaster scenario by removing all the
applications on the home cluster, and then initiate disaster recovery
on the recovery cluster.

5.2 Kubernetes Applications Categorization
Applications are categorized into three types, which reflects the
amount of custom handling required with a Recipe to enable DR
protection for the application. Type 1 applications do not require
Recipes: all the resources can be captured and recovered on its own.
Type 2 applications require Recipe Groups: either resource filtering
and/or ordering are required to restore the application. Type 3 ap-
plications require both Recipe Groups and Hooks: if an application
requires a program to run to reach a consistent application state,
this is done with a Hook. The categorization of the 10 applications
is shown in Table 2 based on the naive DR approach we studied
(Section 3).

We focus the evaluation on type 1 and type 2 applications in this
paper and type 3 applications evaluation will be future work. We
evaluated 6 modern applications that are either type 1 or type 2
applications which are a subset of the 10 applications introduced in
Section 3. The applications include Elasticsearch (v2.8.0), Jenkins
(v2.432), Apache Kafka (v2.5.0), MariaDB (v0.20.0), MongoDB (v7.0),

Application Ramen w/o Recipes Ramen w Recipes
Elasticsearch 0% 100%
Jenkins 100% 100%
Kafka 100% 100%
MariaDB 0% 100%
MongoDB 100% 100%
Spark 100% 100%
Table 3: DR Success Rate Without & With A Recipe

and Apache Spark (v3.1.1). Among them, Elasticsearch andMariaDB
are type 2 applications and use recipes. Elasticsearch uses 3 recipe
groups for ordering while MariaDB uses 4 recipe groups for both
ordering and filtering. All other applications are type 1 applications
and do not use recipes.

During the evaluation, each application is tested alone for its
disaster recovery reliability and efficiency. We tested disaster re-
covery 40 times one way for each application from home cluster
to recovery cluster and then back from recovery cluster to home
cluster back to back. Each disaster recovery iteration consists of
Kubernetes resource restore time and application recovery time.
Kubernetes resource restore time is the time for Ramen to create
all the Kubernetes resources. Ramen’s role in application recovery
ends once the Kubernetes objects have been created on the recovery
cluster. Application recovery time includes the Kubernetes resource
restore time, but also includes the time for the application to be-
come fully usable. We will show the success rate and the recovery
efficiency for the 80 runs in the following sections.

5.3 Recipe Reliability And Efficiency
Table 3 shows the success rate for the 40 runs of disaster recovery
of the 6 applications. Without recipe, Elasticsearch and MariaDB
cannot be successfully recovered. All the type 1 applications were
able to achieve 100% success rate of recovery. After applying the
recipe, Elasticsearch and MariaDB recovered successfully 100% of
the time. Also, the code modifications to Ramen to include the new
recipe design do not reduce the reliability of type 1 applications,
all the applications were recovered 100% of the time.

Figure 2 shows the the total recovery time v.s. the Kubernetes
resource restore time for the six applications. All the applications
were able to complete disaster recovery within 5 minutes. The
longest one was Kafka, which takes around 265 seconds. The short-
est one wasMongoDB, which takes around 106 seconds. Kubernetes
resource restore time takes a small portion of the total recovery
time, with an average of 28%. For most applications, it takes around
20% of the total application recovery time to restore Kubernetes
resources. MongoDB and Jenkins finish Kubernetes resources re-
store the fastest with 29 seconds. MariaDB takes the longest to
restore Kubernetes resources with 92 seconds around 61% of the
total recovery time. All the applications were able to finish recover-
ing Kubernetes resources within one and half minutes. Note that
besides the resource size, resource types also make a difference to
the resource restore time. Certain resources like pods take longer
to recover due to the underlying design of Velero where the restore
process requires querying of the server object by object.

After Ramen restores all the resources, it takes some more time
for the application to become ready by reconciling the application

178

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Runyu Jin, Paul Muench, Travis Janssen, Brian Hatfield, & Veera Deenadhayalan

Kubernetes resource restore time

Total app recovery time

T
im

e
 (

s
)

0

50

100

150

200

250

300

Elasticsearch Jenkins Kafka MariaDB MongoDB Spark

Figure 2: App DR Time v.s.
Resource Restore Time

1 group 2 groups 3 groups

K
u

b
e

rn
e

te
s
 R

e
s
o

u
rc

e
 R

e
s
to

re
 T

im
e

 (
s
)

0

10

20

30

40

50

60

 Spark Kafka

Figure 3: Adding Recipe
Groups Overhead

R
e

s
o

u
rc

e
 s

iz
e

 (
M

B
)

0

2

4

6

8

10

12

Elasticsearch Jenkins Kafka MariaDB MongoDB Spark

Figure 4: Application Re-
source Size In Megabytes

P
e

rs
is

te
n

t
v
o

lu
m

e
 s

iz
e

 (
G

B
)

0

10

20

30

40

Elasticsearch Jenkins Kafka MariaDB MongoDB Spark

Figure 5: Application Data
Size In Gigabytes

to match the desired application state in the Kubernetes resources.
MariaDB takes the shortest time around 58 seconds to become ready.
Kafka takes the longest of 227 seconds to become ready. Compared
to other applications, Kafka has two sets of pods, zookeeper and
kafka, to reconcile. MariaDB and Elasticsearch which are type
2 applications do not have a substantially longer recovery time
compared to other type 1 applications.

To measure the overhead of using recipe groups, we forcefully
added recipe groups to type 1 applications and show the Kuber-
netes resource restore time after adding different number of recipe
groups. Figure 3 illustrates the results. Adding 1 group has the same
Kubernetes resource restore time as not using recipe. When we add
more recipe groups, the Kubernetes resource restore time increases.
For Spark, from 1 group to 2 groups increases the restore time by 7
seconds. It further increases the restore time by 15 seconds from 2
groups to 3 groups. For Kafka, 2 groups and 3 groups add around 9
seconds of overhead. Most of the overhead come from communi-
cating with API server or Kubelet when switching groups which
takes around 5 seconds. We haven’t tuned API server to be efficient
and we believe this overhead can be eliminated after optimization.
Given the reliability that recipe enhanced, recipe overhead is low
in seconds and still restores resources with a reasonable amount of
time.

The total recovery time is largely related with the amount of
Kubernetes resources each application has. Figure 4 shows the size
of the Kubernetes resources in Megabytes. In general, the larger
the resource size, the longer it takes to recover the application. We
can see Kafka has the largest amount of resources so it takes the
longest to recover. For Elasticsearch and MariaDB which are type 2
applications, recipe adds some overhead to the total recovery time.

Figure 5 shows the total data size of all the Persistent Volumes
(PV) for each application. Because we are using MetroDR which
synchronously backups data volumes across the clusters, the data
volumes don’t need to be restored during disaster recovery. This
brings the benefits that the disaster recovery time is not related to
the data size of the PVs. Although MongoDB has the largest PV
size, it doesn’t take the longest to restore MongoDB.

6 RELATEDWORKS
Disaster recovery for Kubernetes applications is new enough that
there are no standards for how it should be deployed. Disaster
recovery solutions can be divided into two classes, solutions for
stateless applications and solutions for stateful applications. At this
time the techniques used for each class of disaster recovery solution
are distinct, but how techniques can be reused between the two
classes is an open area of research. So this section will compare our
solution with both classes of application disaster recovery.

The most common disaster recovery approach for Kubernetes
stateful applications is to use a backup/restore solution with persis-
tent volumes and Kubernetes resources being protected on a remote
site. De et al [11], Pakrijauskas and Mažeika [29] and Rubio [38]
all evaluate backup/restore solutions in the cloud. These studies
do not focus on evaluating successful disaster recovery for a set
of Kubernetes applications. This can explain why De et al [11],
Pakrijauskas and Mažeika [29] and Rubio [38] do not mention the
need for a disaster recovery solution based on more than simple
replication. Torta [41] focuses on disaster recovery managed by
data management systems. Due to the active-active nature of data
management system disaster recovery the associated recovery time
can be very small. The limitation of using the disaster recovery
strategy in Torta [41] is that every application must have its own
disaster recovery solution. This application by application approach
to disaster recovery can be complex to manage and hence risky to
operate. Tran et al [42] investigates the mechanisms for the protec-
tion and recovery of running containers based based on application
checkpoints. Tran et al [42] does not investigate the protection and
recovery of Kubernetes applications with persistent volumes and
Kubernetes resources.

Stateless applications do not use persistent volumes and do not
rely on updates to Kubernetes resources. Hence these applications
can easily be recovered after a disaster. Moshfeghifar [28] studies
stateless applications in the form of serverless computing. The key
challenges addressed in Moshfeghifar [28] are deploying applica-
tions across multiple clusters and getting those clusters to act like
a single cluster environment.

7 CONCLUSION AND FUTUREWORK
This paper presents a disaster recovery (DR) solution for Kubernetes.
The novelties of this work lie in first, categorization of the problems
that current modern Kubernetes applications have when doing DR;
second, present a novel disaster recovery solution called recipes to
enable DR for all the modern applications without modifications to
the applications; third, evaluate the recipe solution to confirm that
recipe can achieve 100% success rate of DRwith low overhead. In our
future work, we will further explore recipe design with hooks and
how hooks can help disaster recovery of type 3 applications. Besides,
we will explore the disaster recovery solution’s applicability for
large scale database deployments and databases under continuous
load. We will also validate application data staleness.

REFERENCES
[1] Omdia Analyst. 2022. The Evolution of ML Frameworks Report - 2022. Technical

Report. Omdia.
[2] The Kubernetes Authors. 2023. Kubernetes Object Management.

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-

179

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/

Baking Disaster-Proof Kubernetes Applications with Efficient Recipes ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

management/
[3] Velero Authors. 2023. Velero 1.12 Restore Resource Modifiers. https://velero.io/

docs/v1.12/restore-resource-modifiers/
[4] Velero Authors. 2023. Velero Docs - Restore Reference. https://velero.io/docs/v1.

9/restore-reference/#restore-order
[5] Velero Authors. 2023. velero/pkg/backup/backup.go

at 9b5678f32a4aa696de5d645d15bc0ff1f989f464 · vmware-
tanzu/velero. https://github.com/vmware-tanzu/velero/blob/
9b5678f32a4aa696de5d645d15bc0ff1f989f464/pkg/backup/backup.go#L410-L419

[6] Michael Azoff. 2023. Omdia Universe: DevOps Release Management Solutions, 2023.
Technical Report. Omdia.

[7] Florian Beetz and Simon Harrer. 2022. GitOps: The Evolution of DevOps? IEEE
Software 39, 4 (2022), 70–75. https://doi.org/10.1109/MS.2021.3119106

[8] Elasticsearch B.V. 2022. Elasticsearch Platform — Find real-time answers at scale
| Elastic. https://www.elastic.co/

[9] Elastic B.V. 2023. Prerequisites | Enterprise Search documentation [8.11] | Elas-
tic. https://www.elastic.co/guide/en/enterprise-search/current/prerequisites.
html#prerequisites

[10] IBM Corp. 2023. Recipe API. https://github.com/RamenDR/recipe/blob/main/
api/v1alpha1/recipe_types.go

[11] Suman De, R Prashant Singh, et al. 2022. Selective Analogy of Mechanisms and
Tools in Kubernetes Lifecycle for Disaster Recovery. In 2022 IEEE 2nd International
Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE,
IEEE, 3 Park Avenue, 17th Floor New York, NY 10016-5997 USA, 1–6.

[12] enterprisedb. 2023. EnterpriseDB. "https://www.enterprisedb.com/"
[13] Apache Software Foundation. 2022. Apache Kafka. https://kafka.apache.org/
[14] MariaDB Foundation. 2022. https://mariadb.org/. MariaDBServer:

Theopensourcerelationaldatabase
[15] The Apache Software Foundation. 2022. Unified engine for large-scale data

analytics. https://spark.apache.org/
[16] The Linux Foundation. 2022. OpenShift Container Platform 4.12 Documentation.

https://docs.openshift.com/container-platform/4.12/welcome/index.html
[17] The Linux Foundation. 2023. Kubernetes Components. https:

//web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/
overview/components/#etcd

[18] The Linux Foundation. 2023. Kubernetes: Running in multiple zones.
https://web.archive.org/web/20231020051135/https://kubernetes.io/docs/setup/
best-practices/multiple-zones/

[19] Red Hat. 2023. OpenShift Disaster Recovery using Stretch Cluster. https://red-
hat-storage.github.io/ocs-training/training/ocs4/ocs4-metro-stretched.html

[20] Red Hat. 2023. Ramen DR opensource project. https://github.com/RamenDR/
ramen/

[21] IBM. 2021. Overview of Kubernetes Backup Support. https://www.ibm.com/
docs/en/spp/10.1.5?topic=containers-overview

[22] Jenkins. 2022. Jenkins. https://www.jenkins.io/
[23] Alex Johnston. 2022. Connectivity is the watchword as Confluent continues to

expand. Technical Report. 451 Research.
[24] Th. Lumpp, J. Schneider, J. Holtz, M. Mueller, N. Lenz, A. Biazetti, and D. Petersen.

2008. From high availability and disaster recovery to business continuity solu-
tions. IBM Systems Journal 47, 4 (2008), 605–619. https://doi.org/10.1147/SJ.2008.

5386516
[25] Parth Sandip Mehta. 2023. NoSQL Databases in Kubernetes. Master’s thesis. San

Jose State University. https://doi.org/10.31979/etd.qrrp-3equ
[26] Christine Miyachi. 2021. The Rise of Kubernetes. In 2021 Cloud Continuum.

IEEE, 3 Park Avenue, 17th Floor New York, NY 10016-5997 USA, 1–5. https:
//doi.org/10.1109/CloudContinuum54760.2021.00002

[27] Inc. MongoDB. 2022. MongoDB: For the next generation of intelligent applica-
tions. https://www.mongodb.com/

[28] AmirhosseinMoshfeghifar. 2022. Active Disaster Recovery Strategy for Applications
Deployed Across Multiple Kubernetes Clusters, Using Service Mesh and Serverless
Workloads. Master’s thesis. Tampere University.

[29] Kęstutis Pakrijauskas and Dalius Mažeika. 2021. On recent advances on stateful
orchestrated container reliability. In 2021 IEEE Open Conference of Electrical,
Electronic and Information Sciences (eStream). IEEE, IEEE, 3 Park Avenue, 17th
Floor New York, NY 10016-5997 USA, 1–6.

[30] Portworx. 2023. Disaster Recovery. https://docs.portworx.com/portworx-
enterprise/operations/operate-kubernetes/disaster-recovery

[31] pytorch. 2023. PyTorch. "https://pytorch.org/"
[32] Inc. Red Hat. 2021. OpenShift Container Storage 4.7 release notes.

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_
storage/4.7/html-single/4.7_release_notes/index

[33] Inc. Red Hat. 2022. Red Hat OpenShift Data Foundation. https://www.redhat.
com/en/technologies/cloud-computing/openshift-data-foundation

[34] Inc. Red Hat. 2023. Introduction to OpenShift Data Foundation Disaster
Recovery. https://web.archive.org/web/20231010175615/https://access.redhat.
com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-
single/configuring_openshift_data_foundation_disaster_recovery_for_
openshift_workloads/index#introduction-to-odf-dr-solutions_common

[35] Inc Red Hat. 2024. Recommended etcd practices. https://web.
archive.org/web/20231105012238/https://docs.openshift.com/container-
platform/4.14/scalability_and_performance/recommended-performance-scale-
practices/recommended-etcd-practices.html

[36] redis. 2023. https://redis.io/. Redis
[37] Redis. 2023. Recover a Redis Enterprise cluster on Kubernetes | Redis Docu-

mentation Center. https://docs.redis.com/latest/kubernetes/re-clusters/cluster-
recovery/

[38] Sergio Fernández Rubio. 2022. Disaster Recovery Analysis of different Cloud
Managed Kubernetes Clusters. Master’s thesis. Edinburgh Napier University.
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/
363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_
Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-
Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf

[39] solid IT. 2023. DB-Engines Ranking. https://db-engines.com/en/ranking
[40] tensorflow. 2023. TensorFlow. "https://www.tensorflow.org/"
[41] Francesco Torta. 2023. Business Continuity in Kubernetes Multi-Cluster Environ-

ments. Ph. D. Dissertation. Politecnico di Torino.
[42] Minh-Ngoc Tran, Xuan Tuong Vu, and Younghan Kim. 2022. Proactive Stateful

Fault-Tolerant System for Kubernetes Containerized Services. IEEE Access 10
(2022), 102181–102194.

180

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://velero.io/docs/v1.12/restore-resource-modifiers/
https://velero.io/docs/v1.12/restore-resource-modifiers/
https://velero.io/docs/v1.9/restore-reference/#restore-order
https://velero.io/docs/v1.9/restore-reference/#restore-order
https://github.com/vmware-tanzu/velero/blob/9b5678f32a4aa696de5d645d15bc0ff1f989f464/pkg/backup/backup.go#L410-L419
https://github.com/vmware-tanzu/velero/blob/9b5678f32a4aa696de5d645d15bc0ff1f989f464/pkg/backup/backup.go#L410-L419
https://doi.org/10.1109/MS.2021.3119106
https://www.elastic.co/
https://www.elastic.co/guide/en/enterprise-search/current/prerequisites.html#prerequisites
https://www.elastic.co/guide/en/enterprise-search/current/prerequisites.html#prerequisites
https://github.com/RamenDR/recipe/blob/main/api/v1alpha1/recipe_types.go
https://github.com/RamenDR/recipe/blob/main/api/v1alpha1/recipe_types.go
"https://www.enterprisedb.com/"
https://kafka.apache.org/
MariaDB Server: The open source relational database
MariaDB Server: The open source relational database
https://spark.apache.org/
https://docs.openshift.com/container-platform/4.12/welcome/index.html
https://web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/overview/components/#etcd
https://web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/overview/components/#etcd
https://web.archive.org/web/20231025011453/https://kubernetes.io/docs/concepts/overview/components/#etcd
https://web.archive.org/web/20231020051135/https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://web.archive.org/web/20231020051135/https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://red-hat-storage.github.io/ocs-training/training/ocs4/ocs4-metro-stretched.html
https://red-hat-storage.github.io/ocs-training/training/ocs4/ocs4-metro-stretched.html
https://github.com/RamenDR/ramen/
https://github.com/RamenDR/ramen/
https://www.ibm.com/docs/en/spp/10.1.5?topic=containers-overview
https://www.ibm.com/docs/en/spp/10.1.5?topic=containers-overview
https://www.jenkins.io/
https://doi.org/10.1147/SJ.2008.5386516
https://doi.org/10.1147/SJ.2008.5386516
https://doi.org/10.31979/etd.qrrp-3equ
https://doi.org/10.1109/CloudContinuum54760.2021.00002
https://doi.org/10.1109/CloudContinuum54760.2021.00002
https://www.mongodb.com/
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/disaster-recovery
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/disaster-recovery
"https://pytorch.org/"
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.7/html-single/4.7_release_notes/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.7/html-single/4.7_release_notes/index
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231010175615/https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.13/html-single/configuring_openshift_data_foundation_disaster_recovery_for_openshift_workloads/index#introduction-to-odf-dr-solutions_common
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
https://web.archive.org/web/20231105012238/https://docs.openshift.com/container-platform/4.14/scalability_and_performance/recommended-performance-scale-practices/recommended-etcd-practices.html
Redis
https://docs.redis.com/latest/kubernetes/re-clusters/cluster-recovery/
https://docs.redis.com/latest/kubernetes/re-clusters/cluster-recovery/
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://www.researchgate.net/profile/Sergio-Fernandez-Rubio/publication/363632856_Disaster_Recovery_Analysis_of_different_Cloud_Managed_Kubernetes_Clusters/links/6325ee52873eca0c0094f0e1/Disaster-Recovery-Analysis-of-different-Cloud-Managed-Kubernetes-Clusters.pdf
https://db-engines.com/en/ranking
"https://www.tensorflow.org/"

	Abstract
	1 Introduction
	2 BACKGROUND
	3 Naive Kubernetes DR
	3.1 Limitations Of The Naive Approach
	3.2 Case Study Using The Naive Approach

	4 Robust Kubernetes DR using recipes
	4.1 Recipe
	4.2 Recipe API and Examples
	4.3 Implementation

	5 EVALUATION
	5.1 Environment Setup
	5.2 Kubernetes Applications Categorization
	5.3 Recipe Reliability And Efficiency

	6 RELATED WORKs
	7 CONCLUSION AND FUTURE WORK
	References

