
Architecture-Specific Performance Optimization of
Compute-Intensive FaaS Functions

Mohak Chadha∗, Anshul Jindal∗, Michael Gerndt∗
∗Chair of Computer Architecture and Parallel Systems, Technische Universität München

Garching (near Munich), Germany

Email: mohak.chadha@tum.de, jindal@in.tum.de, gerndt@in.tum.de

Abstract—FaaS allows an application to be decomposed into
functions that are executed on a FaaS platform. The FaaS plat-
form is responsible for the resource provisioning of the functions.
Recently, there is a growing trend towards the execution of
compute-intensive FaaS functions that run for several seconds.
However, due to the billing policies followed by commercial FaaS
offerings, the execution of these functions can incur significantly
higher costs. Moreover, due to the abstraction of underlying
processor architectures on which the functions are executed, the
performance optimization of these functions is challenging. As
a result, most FaaS functions use pre-compiled libraries generic
to x86-64 leading to performance degradation. In this paper,
we examine the underlying processor architectures for Google
Cloud Functions (GCF) and determine their prevalence across
the 19 available GCF regions. We modify, adapt, and optimize
three compute-intensive FaaS workloads written in Python using
Numba, a JIT compiler based on LLVM, and present results
wrt performance, memory consumption, and costs on GCF.
Results from our experiments show that the optimization of FaaS
functions can improve performance by 12.8x (geometric mean)
and save costs by 73.4% on average for the three functions.
Our results show that optimization of the FaaS functions for the
specific architecture is very important. We achieved a maximum
speedup of 1.79x by tuning the function especially for the
instruction set of the underlying processor architecture.

Index Terms—Function-as-a-service (FaaS), serverless com-
puting, performance optimization, cost, heterogeneity, Numba,
LLVM

I. INTRODUCTION

Since the introduction of AWS Lambda by Amazon in 2014,

serverless computing has grown to support a wide variety of

applications such as machine learning [1], map/reduce-style

jobs [2], and compute-intensive scientific workloads [3], [4],

[5]. Function-as-a-Service (FaaS), a key enabler of serverless

computing allows a traditional monolithic application to be

decomposed into fine-grained functions that are executed in

response to event triggers or HTTP requests on a FaaS plat-

form. The FaaS platform is responsible for the isolation and

execution of these functions in dedicated function instances,

usually containers.

FaaS platforms follow a process-based model for resource

management, i.e., each function instance has a fixed number

of cores and quantity of memory associated with it [6]. While

today’s commercial FaaS platforms such as Lambda, GCF

abstract details about the backend infrastructure management

away from the user, they still expose the application developers

to explicit low-level decisions about the amount of memory

to allocate to a respective function. These decisions affect

the provisioning characteristics of a FaaS function in two

ways. First, the amount of CPU provisioned for the function,

i.e., some providers increase the amount of compute available

to the function when more memory is assigned [7]. Select-

ing an appropriate memory configuration is an optimization

problem due to the trade-offs between decreasing function

execution time with increasing memory configuration and

costs. Moreover, assigning more memory than desired can

lead to significant resource over-provisioning and reduced

malleability [8]. Second, the addition of a per-invocation

duration-utilization product fee measured in GB-Second (and

GHz-Second with GCF [9]). FaaS is advertised as a pay-per-

use model, where the users are billed based on the execution

time of the functions measured typically in 100ms (GCF) or

1ms (Lambda) intervals. As a result, for compute-intensive

functions that require more than the minimum amount of

memory the duration-utilisation component fee can lead to

significantly higher costs.

While compute-intensive applications are written in a wide

variety of high-level languages such as Java, R, and Julia.

In this paper, we focus on Python since it is a widely used

high-level programming language for compute-intensive work-

loads [3]. Furthermore, it is supported by all major commercial

FaaS platforms. To facilitate the performance improvement of

applications written in Python several approaches exist. These

include using an alternative Python interpreter such as PyPy

or using a Python to C/C++ transpiler such as Cython. Using

a replacement Python interpreter has the disadvantage that it

has it’s own ecosystem of packages which are significantly

limited. Disadvantages of using a transpiler is that it offers

limited static analysis, and that the code has to be compiled

Ahead-of-Time (AOT). This leads to under-specialized and

generic code for a particular CPU’s architectural family (such

as x86-64) or can cause code bloating to cover all possible

variants [10]. To this end, we utilize Numba [11], a function-

at-a-time Just-in-Time (JIT) compiler for Python based on

LLVM [12] for optimizing and improving the performance of

compute-intensive FaaS functions. Using Numba has several

advantages. First, it gets around the native Python interpreter

(CPython) and generates machine code. Second, LLVM com-

piler optimizations and support for special instruction set

extensions based on the underlying processor architecture such

as AVX-2/AVX-512. Third, gets around the Global-interpreter

Lock (GIL) and supports multiple threading backends (Intel

478

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00062

20
21

 IE
EE

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

78
-1

-6
65

4-
00

60
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D5

38
61

.2
02

1.
00

06
2

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:00:59 UTC from IEEE Xplore. Restrictions apply.

TBB, OpenMP). Finally, it is easy to use and involves simply

decorating the Python function with the Numba decorator

(@njit) to get good performance.

On invocation of a deployed function, the function instances

are launched on the FaaS platform’s traditional Infrastructure

as a Service (IaaS) virtual machines (VM) (microVMs in

Lambda) offerings. However, the provisioning of such VMs

is abstracted away from the user. As a result, the user is

not aware of the details of the provisioned VMs such as the

CPU architecture and the number of virtual CPUs (vCPUs).

This makes performance optimization of FaaS workloads

challenging.

Identification of the set of architectures dynamically used in

current commercial FaaS platforms is important for the perfor-

mance optimization of FaaS functions. Previous works [6], [7]

have reported the presence of Intel based processors ranging

from Sandy Bridge-EP to Skylake-SP architectures in the

provisioned VM. However, due to the rapid development

in FaaS offerings of major cloud providers, and to offer

updated insights, we investigate the current CPU processor

architectures for GCF.

Our key contributions are:

• We investigate the current CPU architectures present in

GCF across the different regions.

• We analyze the impact of heterogeneity in the underlying

processor architectures on the performance of a FaaS

function.

• We modify, adapt, and optimize three FaaS workloads1

from FunctionBench [4], and the Python performance

benchmark suite (Pyperf) [13] using Numba.

• We deploy the optimized workloads on GCF for the

different memory profiles and analyze the impact on

performance, costs, and memory consumption.

II. RELATED WORK

FaaS Optimizations. Majority of the previous works [14],

[15] have focused on optimizing the cold start problem associ-

ated with FaaS. Mohan et al. [14] identify the creation of net-

work namespaces during container startup as the major reason

for overhead for concurrent function invocations. Towards this,

they propose the usage of Pause Containers (PCs), i.e., a set

of pre-created containers with cached networking endpoints,

thereby removing network creation from the critical path.

Fuerst et al. [15] develop FaasCache, based on OpenWhisk,

that implements a set of caching-based keep-alive policies

for reducing the overhead due to function cold-starts. In

contrast to previous works, we optimize the performance of

a representative set of common FaaS workloads and present

benefits/tradeoffs in terms of performance, memory consump-

tion, and costs when deployed on a public cloud provider, i.e.,

GCF.

Understanding the Backend Infrastructure in Commer-
cial FaaS Platforms. The most notable works in this domain

have been [6], [7]. Wang et al. [6] performed an in-depth

study of resource management and performance isolation with

three popular serverless computing providers: AWS Lambda,

1https://github.com/kky-fury/Optimizing FaaS Workloads

��������	

������

��������	

��������

��	����	��������� �������	

���

���	
�������

�

�����	���	
��� �����	���	
��� �����	���	
���

�����
�

�������

��������	

���������	 ��

����
�����

�

� ��

�����

�������

Fig. 1: Architecture of our benchmarking and data acquisition

tool Optimus.

Azure Functions, and GCF. They show that the provisioned

VMs across the different platforms have great heterogeneity

wrt the underlying processor architectures and configuration

such as number of virtual CPUs. Kelly et al. [7] provide an

updated view on the VM toplogy of the major FaaS platforms

including IBM Cloud Functions. While these previous works

have inspired some of the methodology of the experiments

used in this work, there are some key differences. First, we

identify the prevalence of different processor architectures

in the provisioned VMs across the 19 different available

GCF regions. Second, we demonstrate how the underlying

VM configuration such as the number of vCPUs can be

used for optimizing the performance of functions. Third, we

demonstrate the effect of microarchitectural differences in the

underlying processor architectures on the performance of FaaS

functions.

III. METHODOLOGY

To facilitate the deployment, deletion, benchmarking, and

metric data acquisition of functions on GCF, we have de-

veloped Optimus. It’s architecture and different components

are shown in Figure 1. Optimus takes a YAML file as input

that specifies the GCF function configuration parameters for

the function deployment, the function to be deployed, and

configuration parameters for the load generator. Following this,

the Function Deployer which encapsulates the functionality

of the gcloud function command-line tool deploys the

function according to the specified parameters. To invoke and

evaluate the performance of the deployed function, we use k6.

k6 is a developer-centric open-source load and performance

regression testing tool. As part of each k6 test, two additional

parameters are configured, i.e., Virtual Users (VUs), and test

duration which can be specified in the input YAML file. To

collect the metric data on completion of a function load test,

we implement a monitoring client using the Google Cloud

client library. The different monitoring metrics extracted as

part of each test are shown in Table I.

The individual FaaS workloads used in this work and the

suites to which they belong are shown in Table II. The Image
processing application uses the Python Pillow library to blur

a RGB image using the Gaussian Kernel and then converts the

blurred image to grayscale. Following this, the Sobel operator

is applied to the grayscale image for edge detection. After

completion of the function the modified images are written to

a block storage. The Montecarlo function calculates the area of

a disk by assigning multiple random values to two variables to

generate multiple results and then averages the results to obtain

479

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:00:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Collected GCF monitoring metrics. The metric data

is sampled every 10 seconds.

Metric Description
Active instances The number of active function instances.

Function Invocations The number of function invocations.

Allocated Memory Configured function memory

Execution time The mean execution time of the function

Memory usage The mean memory usage of the function.

TABLE II: FaaS workloads used and optimized.

Name Input Suite
Image processing JSON with image urls FunctionBench [4]

Montecarlo JSON with number of iterations PyPerf [13]

Kerneldensityestimate (KDE) JSON with distribution size, kernel bandwidth, and evaluation point Other

an estimate. The KDE workload uses the gaussian kernel to

estimate the density function. The native implementation is

written using Numpy. On completion, it returns the calculated

density estimate at the evaluation point.

To optimize and maximize the performance of the FaaS

workloads using Numba we refactored the native implemen-

tations of the workloads to enable automatic optimization.

Towards this, we made use of different decorators supported

by Numba such as @stencil and additional libraries such as

Intel Short Vector Math Library (SVML), and Intel TBB. An

important aspect of optimizing compute-intensive functions is

vectorization of loops to generate Single Instruction Multiple

Data (SIMD) instructions. The LLVM backend in Numba

offers auto-vectorization of loops as a compiler optimization

pass. On successful vectorization, the compiler will gener-

ate SIMD instructions depending on underlying processor’s

supported SIMD instruction set such as Advanced Vector

Extensions (AVX)-2, AVX-512. In this paper, we use the Intel

TBB library as a threading backend supported by Numba to

parallelize the Montecarlo, and individual kernels (gaussian

blur, and RGB to gray conversion) of the Image processing
workload. For all workloads, we also added the argument

fastmath=True to the @njit decorator. This relaxes the

IEEE 754 compliance for floating point arithmetic to gain

additional performance. Furthermore, it permits reassociation

of floating point operations which allows vectorization.

IV. PLATFORM ARCHITECTURE

The GCF service is regional, i.e., the infrastructure on which

the function instance is launched varies across the different

available regions [16]. To investigate the different underlying

processor architectures of the provisioned VMs across the 19

available GCF regions we used the proc filesystem on Linux.

Table III shows the different attributes we read from the Linux

procfs. We implemented a function that reads the attributes

and collates them into a JSON response. Following this, we

deployed the function for the different supported memory

profiles at the time of the experiments2 across all the available

regions using the function deployer component in Optimus. We

fixed the number of VUs and the duration of the test in k6
to 60 and 1 minute respectively. As a result, multiple function

instances were launched simultaneously to handle the requests.

We repeated the k6 load test every two hours and collected

2The experiments were performed in Feb-March 2021.

TABLE III: Data collected from the proc filesystem of the

provisioned VM on GCF.

Attribute System Information
vCPUs Number of virtual CPUs configured in the VM.

CPU Model CPU model present in the VM.

CPU Family Family of processors to which the CPU belongs.

Total Memory Total memory configured in the VM.

Fig. 2: The different Intel processor architectures across the

19 available GCF regions along with percentage of functions

invoked on them.

the measurements for a period of two weeks, leading to more

than a billion function invocations.

From the collected data, we found that across all regions the

VMs provisioned were based on Intel Xeon CPUs. Although

Google uses a proprietary hypervisor for running the function

instances which hides the model name attribute from the

Linux procfs, we were able to infer the different proces-

sor architectures using the model and family attributes [17].

Particularly, we found three different models from the same

family 6, i.e., 85-Skylake, 79-Broadwell, and 63-Haswell.

In contrast to the results reported by [6], [7], we did not find

the architectures (62,6)-IvyBridge, (45,6)-SandyBridge

on any of the provisioned VMs across all GCF regions.

We believe since these models were launched in 2013 and

2012 respectively, they have been phased out. Figure 2 shows

the prevalence of the different architectures we found across

the 19 available GCF regions. For a particular region, we

combined the results for all the memory profiles. We found

that Intel Skylake was the most prevalent architecture across

all regions. Only for the regions asia-northeast1,
europe-west1, us-central1, and us-east1 we

found function instances being launched on VMs with all the

three processor architectures. We found the greatest hetero-

geneity in the asia-northeast1 region. For all regions,

we found that irrespective of the configured memory profile the

VMs were configured with 2GB of memory and 2 vCPUs. This

was also true for a function configured with 4GB of memory.

As a sanity check, we wrote a simple function which allocates

3GB of memory when the function is configured with 4GB.

This results in a heap allocation error. We believe that this is

a bug and have reported it to Google.

While the Intel Skylake processor has several new microar-

chitectural features, which increase performance, scalability,

and efficiency as compared to the Broadwell and Haswell

architectures [18], in this paper, we focus only on differences

in the SIMD instruction set. The Intel Skylake processor

480

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:00:59 UTC from IEEE Xplore. Restrictions apply.

(a) Mcbenchmark. (b) Imageprocessing (c) Kerneldensityestimate

Fig. 3: The obtained speedup and average memory consumption of the three optimized FaaS workloads as compared to their

native implementations for the different memory configurations on GCF. All functions are deployed on the us-west2 region.

supports the AVX-512 SIMD instruction set as compared to

AVX-2 in both Broadwell and Haswell architectures. This

means that each SIMD unit in Skylake has a width of 512 bits

as compared to 256 bits in Broadwell and Haswell which trans-

lates to increased FLOPs/cycle and improved performance.

On successful autovectorization, the LLVM backend compiler

used in Numba will try to generate SIMD instructions based

on the highest available instruction set.

V. EXPERIMENTAL RESULTS

A. Experimental Configuration

To compare the optimized and the native FaaS workloads

wrt performance, memory consumption, and costs we deploy

both versions on the us-west2 GCF region for all the

available memory profiles using Optimus. For all workloads,

we set the maximum number of function instances to 50 and

the timeout to 300 seconds. We chose us-west2 since it was

one of the regions where we observed homogeneous processor

architecture, i.e., Skylake in the provisioned VMs (§IV). As

configuration parameters to k6, we set the maximum number

of VUs to 50 and total duration of the load test to five minutes.

For all our experiments, we repeated the k6 test five times

every two hours and then averaged the results.

For all the optimized FaaS workloads, we enabled file-based

caching of the compiled function machine code generated by

Numba. We modified the Numba configuration to save the

cached code in /tmp filesystem available for GCF. This was

done to ensure that function instances provisioned on the same

VM have access to the compiled machine code to avoid over-

head due to recompilation. This behaviour was first reported

by [7], where functions executing on the same VM could read

a unique id written to a file in the tmp filesystem. From our

experiments, we observed that caching improved the speedup

by 1.2x on average as compared to the non-cached version.

The speedup was not much more significant because Numba

jitted functions are stored in memory and retain their state

between warm invocations. This means that recompilation of

a Numba jitted function (with same function argument types)

only occurs with a function cold start. Moreover, for the

parallelized FaaS functions, we configured the number of TBB

threads to two due to the availability of two vCPUs.

B. Comparing performance and memory consumption

For comparing the performance of the optimized FaaS

workloads with their native implementations, we calculate the

metric speedup. This is done by dividing the obtained average

execution time of the native implementation by the obtained

average execution time of the optimized workload for a par-

ticular GCF memory configuration. For a particular function

and GCF memory configuration, the average execution time is

obtained by calculating the weighted average of the number

of function invocations and the mean execution time of the

function (see Table I). To compare memory consumption, we

use the default GCF monitoring metric, i.e., Memory usage

and average it across all the available datapoints. The obtained

speedup and average memory usage for the different work-

loads for the different available GCF memory configurations

is shown in Figure 3. We report all performance results for

double precision floating point operations.

We obtained an average speedup of 28x, 32x for the single-

threaded and parallelized versions of the Mcbenchmark across

the different memory configurations as shown in Figure 3a.

The main reason for the significant increase in the perfor-

mance of the FaaS functions optimized with Numba is the

generation and execution of machine code. On the other hand,

for the native FaaS function, Python automatically generates

bytecode which is executed by the default bytecode interpreter.

Although the underlying provisioned VMs are configured with

two vCPUs, we do not observe an increase in speedup for the

parallel function as compared to the single-threaded function

for all memory configurations. This is because GCF uses a

process-based model for resource management, where each

function has a fixed memory and allocated CPU cycles. Since

Intel-TBB follows a fork-join model for parallel execution,

the generated threads are inherently limited by the resource

constraints of the parent process. We observe that the speedup

of the parallelized function as compared to the single-threaded

version increases with the increase in the allocated CPU clock

cycles, i.e., when more memory is configured.

For the Image Processing workload, we obtained an av-

erage speedup of 1.40x, 1.23x across the different memory

configurations for the single-threaded and parallelized versions

respectively. The speedup values obtained are comparatively

small since the native implementation of the benchmark uses

the Python Pillow library. As shown in Figure 3b, the

single-threaded Numba optimized Image processing function

performs better than the native implementation due to LLVM

compiler optimizations, and vectorization using the highest

underlying SIMD instruction set. In contrast, Pillow is

pre-compiled and generic to x86-64. This means that the

vector instructions generated will be for the Streaming SIMD

Extensions (SSE) instruction set. The parallelized Numba

optimized function performs worse than the native implemen-

tation for the memory configurations 512MB, 1GB, due to

limited CPU clock cycles and parallelization overhead. For

481

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:00:59 UTC from IEEE Xplore. Restrictions apply.

(a) Mcbenchmark. (b) Imageprocessing (c) Kerneldensityestimate

Fig. 4: Comparison of cost per million function invocations (in USD) of the three FaaS workloads as compared to their native

implementations for the different memory configurations on GCF. The cost values highlighted with red represent the minimum

values obtained across the different memory configurations, while the cost values highlighted with purple (if present and

different) represent the values wrt the maximum percentage cost savings.

the optimized Kernel Density Estimate functions we observe

an average speedup of 53x across the different GCF memory

configurations respectively. We observe a maximum speedup

of 61x for the optimized KDE functions for the memory

configuration of 1GB as shown in Figures 3c.
For all benchmarks, we observe that the average memory

usage of the Numba optimized functions is higher than their

native implementations as shown in Figures 3a, 3b, and 3c.

This can be attributed to (i) additional variables required

for Numba’s internal compilation workflow, (ii) additional

module dependencies such as LLVM, icc_rt, and (iii) in-

memory caching of the generated machine code. The memory

required for the Numba parallelized functions is more as

compared to the single-threaded functions because of the

additional intel-tbb library. Note that, due to the presence

of coarse grained memory profiles and billing policy adopted

by GCF [9], users will be charged based on the configured

memory, irrespective of the function memory usage.

C. Comparing costs
Figure 4 shows the cost per million invocations of the

optimized FaaS workloads as compared to their native im-

plementations for the different memory profiles on GCF. To

compute the invocation cost of a particular function and GCF

memory configuration, we follow the rules and pricing values

specified by Google [9]. We observe 96.2%, 96.4% average

cost savings for the two Numba optimized functions of the

Mcbenchmark. The minimum cost value of $25.8 is obtained

for the single threaded function when configured with 1GB of

memory as shown in Figure 4a. The maximum cost savings

of 97.64% is obtained with a memory configuration of 4GB

for the parallelized function.
We observe 26.1% average cost savings for the single-

threaded Image processing function across the different mem-

ory configurations. The cost values obtained for the par-

allelized function are higher as compared to the native

implementation for the memory configurations 512MB and

1GB respectively. But, they decrease when higher memory

is configured as shown in Figure 4b. We observe 97.75%

average cost savings for the optimized KDE function across

the different memory configurations. The minimum cost value

and maximum cost savings of $9.6 and 98.1% are obtained

for the memory configuration of 1GB as shown in Figure 4c.
Although the speedup obtained for the different optimized

function varies across the different memory configurations,

we do not observe a significant difference in costs for the

Numba optimized functions across the memory configurations

as shown in Figure 4. GCF offers the possibility of unlimited

scaling of function instances to meet user demand [19]. To

avoid memory over-provisioning and due to the significant

speedup obtained with Numba for the lowest possible memory

configuration for a particular function, the minimum memory

configuration can always be selected. Moreover, we observe

that parallelization of functions is only beneficial when config-

ured with a memory of 2GB and higher because of constraints

on the allocated CPU clock cycles.

D. Effect of heterogeneity in the underlying processor archi-
tectures on performance

To analyze the effect of different processor architectures on

the performance of a FaaS function, we use the Kernel Density
Estimate (KDE) workload and deploy it for all supported

memory configurations in the asia-northeast1 region.

We chose this region since it had the greatest heterogene-

ity and prevalence of the three processor architectures. We

instrumented the KDE workload to compute the execution

time required for calculating the estimate at the evaluation

point given as input. The processor architecture is determined

similarly as described in §IV. As described in §III, Numba

automatically generates SIMD instructions for highest under-

lying instruction set. However, to emphasize the importance of

generating architecture-specific code, we modified the Numba

configuration to generate only AVX-2 and SSE instructions on

the Skylake processor. Figure 5b shows the average execution

time for the different processor architectures and SIMD in-

struction sets across the different memory configurations for

the Numba optimized KDE function.
For all processor architectures the average execution time

decreases with increasing memory configuration since more

compute is assigned. For the native KDE implementation

(see Figure 5a), the Skylake processor obtains a speedup of

1.10x, 1.03x, on average across all memory configurations

as compared to the Haswell and Broadwell processors. On

the other hand, for the Numba optimized function, we ob-

serve an average speedup of 1.79x, 1.36x for the Skylake

processor (with AVX-512) as compared to the Haswell and

Broadwell processors respectively. We observe a difference in

performance for the different architectures. This is because of

several microarchitectural improvements to the Skylake pro-

cessor [18]. The difference in performance is more significant

482

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:00:59 UTC from IEEE Xplore. Restrictions apply.

(a) Kde Native. (b) Kde Numba

Fig. 5: Comparison of the execution times for the optimized

and native versions of the Kde FaaS workload for the dif-

ferent underlying processor architectures. The functions were

deployed on the asia-northeast1 region.

for the Numba optimized function because the LLVM compiler

in Numba autovectorizes the jitted function in the KDE work-

load to generate instructions using the AVX-512 instruction

set on the Skylake processor and using the AVX-2 instruction

set on the Haswell and Broadwell processors. As a sanity

check, we also confirmed this by examining the assembly code

of the jitted function and checking the registers used in the

generated vector instructions. The Broadwell processor obtains

a speedup of 1.03x, 1.31x on average across all memory

configurations as compared to the Haswell processor for the

native and Numba optimized functions respectively. This can

be attributed to a higher Instructions per cycle (IPC) value and

reduced latency for floating point operations as compared to

the Haswell processor [20].

In comparison to the Numba optimized function with SSE

and AVX-2 generated instructions on the Skylake proces-

sor, the version with AVX-512 instructions obtains a best

speedup of 1.67x and 1.16x on average across all memory

configurations respectively. Moreover, the SSE version on

the Skylake processor is 1.23x slower on average than the

optimized version with AVX-2 instructions on the Broadwell

processor. Although there is an illusion of homogeneity in

most public FaaS offerings, the actual performance of a FaaS

function can vary depending on the underlying architecture of

the provisioned VM where the function instance is launched.

As a result, the cost incurred for the same function will also

vary.

VI. CONCLUSION & FUTURE WORK

In this paper, we adapted and optimized three compute-

intensive FaaS workloads with Numba, a JIT compiler based

on LLVM. We determined the different processor architectures

used by GCF namely Haswell, Broadwell, and Skylake in

the underlying provisioned VMs on which the function in-

stances are launched. Furthermore, we identified their preva-

lence across the 19 available GCF regions. Moreover, we

demonstrated the use of the underlying VM configuration,

i.e., number of vCPUs for parallelizing FaaS functions. We

found that the performance of a particular optimized FaaS

function can vary by 1.79x, 1.36x on average depending on

the underlying processor. Moreover, under-optimization of a

function based on the underlying architecture can degrade

the performance by a value of 1.67x. In the future, we plan

to investigate strategies for caching the compiled optimized

machine code to reduce the startup times of functions.

VII. ACKNOWLEDGEMENT

This work was supported by the funding of the German

Federal Ministry of Education and Research (BMBF) in the

scope of the Software Campus program. Google Cloud credits

were provided by the Google Cloud Platform research credits.

REFERENCES

[1] M. Chadha, A. Jindal, and M. Gerndt, “Towards federated learning using
faas fabric,” in Proceedings of the 2020 Sixth International Workshop on
Serverless Computing, ser. WoSC’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 49–54.

[2] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: Distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, 2017, pp. 445–451.

[3] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric
for science,” in Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
65–76. [Online]. Available: https://doi.org/10.1145/3369583.3392683

[4] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[5] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen, “Function
delivery network: Extending serverless computing for heterogeneous
platforms,” Software: Practice and Experience.

[6] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 133–146.

[7] D. Kelly, F. Glavin, and E. Barrett, “Serverless computing: Behind the
scenes of major platforms,” in 2020 IEEE 13th International Conference
on Cloud Computing (CLOUD), 2020, pp. 304–312.

[8] J. Spillner, “Resource management for cloud functions with memory
tracing, profiling and autotuning,” ser. WoSC’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 13–18. [Online].
Available: https://doi.org/10.1145/3429880.3430094

[9] Google Cloud Functions Pricing, https://cloud.google.com/functions/
pricing, accessed 09/24/2020.

[10] A. Quach and A. Prakash, “Bloat factors and binary specialization,”
in Proceedings of the 3rd ACM Workshop on Forming an Ecosystem
Around Software Transformation, ser. FEAST’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 31–38. [Online].
Available: https://doi.org/10.1145/3338502.3359765

[11] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, ser. LLVM ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2833157.2833162

[12] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[13] The Python Benchmark Suite, https://github.com/python/pyperformance,
accessed on 09/24/2020.

[14] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and
V. Sukhomlinov, “Agile cold starts for scalable serverless,” in 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotcloud19/presentation/mohan

[15] A. Fuerst and P. Sharma, “Faascache: Keeping serverless computing
alive with greedy-dual caching,” 2021.

[16] GCF Locations, https://cloud.google.com/functions/docs/locations, ac-
cessed on 09/24/2020.

[17] Intel CPUs, https://en.wikichip.org/wiki/intel/cpuid, accessed on
09/24/2020.

[18] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg, “Energy
efficiency features of the intel skylake-sp processor and their impact on
performance,” in 2019 International Conference on High Performance
Computing & Simulation (HPCS). IEEE, 2019, pp. 399–406.

[19] Controlling Scaling Behavior, https://cloud.google.com/functions/docs/
max-instances, accessed on 09/24/2020.

[20] M. K. Kumashikar, S. G. Bendi, S. Nimmagadda, A. J. Deka, and
A. Agarwal, “14nm broadwell xeon® processor family: Design method-
ologies and optimizations,” in 2017 IEEE Asian Solid-State Circuits
Conference (A-SSCC), 2017, pp. 17–20.

483

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 08:00:59 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T23:55:46-0400
	Preflight Ticket Signature

