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Abstract

Containers are alightweight alternative to virtual machines, building
on sandboxed processes whose permissions are restricted by addi-
tional security mechanisms such as seccomp-bpf. However, these
mechanismsincrease the kernel’s attack surface, thus prompting new
security challenges. In this paper, we ask the question of whether
a system with processes properly restricted by design enables a
container infrastructure with better security posture. For instance,
microkernels with capability-based access control provide container-
style isolation out of the box. On the basis of real-world CVEs, we
argue that this conceptual simplicity actually results in a better
security posture than that typically found on monolithic systems.

We propose Oak, a container engine built on top of L4Re, a state-
of-the-art microkernel-based operating system. For startup as well
as for network microbenchmarks, containers running on L4Re ex-
posed performance characteristics similar to that of containers on
Linux. We thus conclude that building containers on microkernel
is an approach worth pursuing further under both a performance
and a security perspective.

CCS Concepts: - Software and its engineering — Operating
systems; « Security and privacy — Virtualization and security.
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1 Introduction

Currently, virtual machines (VMs) and containers are the two preva-
lent mechanisms for isolating untrusted workloads running on a
shared system in the cloud. Generally speaking, containers are a
more lightweight approach to isolation as they do not attempt to
emulate an entire computing platform. Instead of spawning dis-
tinct operating system instances, multiple containers running on
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the same host share a single kernel and only expose separate in-
stances of userland to applications. This allows them to achieve
runtime performance close to that of the bare metal system [24].
Moreover, starting a container is much faster than booting a virtual
machine [22]. These advantages made containers the premier choice
for isolating workloads in settings such as serverless computing.

Interestingly, when looking at containers from the perspective
of an OS engineer, they are only little more than hardened pro-
cesses (or process groups) that are restricted in their resource us-
age through dedicated in-kernel mechanisms such as cgroups or
seccomp-bpf [2]. These facilities however, add a lot of complexity
to core OS abstractions. This additional complexity in turn harms
cross-container isolation by exposing a larger in-kernel code base
that is shared between distrusting containers [4, 5].

In fact, the intricacies of implementing the isolation mechanisms
required for containers on monolithic OSes stem from the fact that
these OS architectures are not designed with the principle of least
authority (PoLA) in mind. Hence, on such systems, the implemen-
tation of containers needs to prevent applications from exercising
ambient authority that they should not have in the first place. As
a consequence, seccomp-bpf is used to retroactively restrict the
of system calls (and their parameters) that are available to a con-
tainer. This not only adds complexity but also introduces a slight
performance penalty as the respective checks need to be carried
out at runtime [20]. Even though this overhead has been reduced
recently [3], it will never disappear completely.

Modern microkernel-based OS designs [15, 21] in contrast, en-
force PoLA by default. On such systems, processes have to explicitly
request access to any system service (drivers, file systems, etc.), in-
stead of implicitly having the authority to use them. Also, upon grant-
ing a process access to a system resource, the administrator can di-
rectly restrict the set of possible request parameters that this process
can issue to the service managing said resource. As a consequence,
implementing container-style isolation on such platforms does not
require additional resource constraining mechanisms or runtime
checks as the OS itself provides strong compartmentalization of
processes by default. Hence we argue, that on a microkernel-based
OS, processes provide the same isolation properties as containers
on monolithic systems.

From a security perspective, a microkernel design can signifi-
cantly decrease the amount of code that mutually distrusting con-
tainers need to share since the core system that each process has to
rely on is rather small. Because all other system services are imple-
mented as separate processes in userspace, the trusted computing
base (TCB) of each container is much smaller than on monolithic
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systems, as it does not include any system components not used
by the respective container. Consequently, this leads to an overall
improved security posture of the system.

However, microkernel-based OS architectures are mostly used in
embedded systems today, raising the question of how well microker-
nel concepts scale to large machines typically used in a cloud setting.
In order to answer this question and investigate the feasibility of
our concept for containers on microkernels, we built a prototype
container engine on top of L4Re [15], a state-of-the-art microkernel-
based OS. To this extent, we demonstrate how to provide container-
grade isolation, including resource restriction, accounting, and the
necessary system services, on such a system. Following a discussion
on the security properties of the resulting approach, we show the
results of several microbenchmarks, getting first insights into the
performance of containers on L4Re.

2 Background

This section explains the background of (Linux) Containers and light-
weight virtual machines, as both are used for isolating workloads in
the cloud. We then introduce L4Re and capabilities, an access-control
mechanism used with modern microkernels.

2.1 Containers on Monolithic Operating Systems

Broadly speaking, a container is an OS mechanism that virtualizes
the execution environment of applications while sharing a single
kernel. Examples for such facilities can be found on a variety of oper-
ating systems such as BSD (Jails [19]) and Linux [13]. Even though
the exact implementation differs, containers on all platforms rely
on three common mechanisms with respect to security: Access to
unnecessary (kernel) interfaces is denied. For necessary interfaces,
the visibility of resources is restricted. Where resources have to be
shared, resource accounting is enforced.

Interface restrictions: As shown by Canella et al. [10], many
cloud applications only require a fraction of the large kernel inter-
face exposed by monolithic OS designs. Container implementations
usually exploit this fact to increase security by preventing a con-
tainer from executing certain system calls, thus reducing the attack
surface of the shared kernel. Current solutions like seccomp-bpf
on Linux build on top of the Berkeley Packet Filter (BPF) [23] and
allow the administrator to specify small filtering programs that the
kernel executes upon every system call of a container to determine
whether it adheres to the container’s security policy.

Visibility Restrictions: Containers typically impose additional
visibility restrictions on top of traditional processes. By using kernel
features like Linux’ namespaces, the administrator is able to hide
certain parts of the system, such as other processes, from appli-
cations running inside a container. Namespaces further allow for
implementing a limited form of virtualization.

Within the scope of containers, visibility restrictions are applied
to, e.g., the file system by setting a separate root directory using the
chroot system call. Furthermore, container implementations often
virtualize network interfaces, process IDs, and mount points. Also,
container-grade virtualization assures that processes running inside
a container cannot communicate across container boundaries.

Resource restrictions: For reasons of accountability, operating
systems also restrict the resource usage of containers using dedicated
mechanisms that extend traditional resource control mechanisms
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like ionice. One prominent example of such resource constraining
frameworks is Linux’ cgroups feature. Resource restriction frame-
works for containers are often capable of organizing restrictions in
a hierarchical manner, allowing containers to pass on a fraction of
their already constrained resource budget [8]. Furthermore, they can
prioritize access to system resources, thus guaranteeing a minimum
share of a certain resource to each container.

Beyond the core mechanism, most implementations of contain-
ers also provide an ecosystem for managing containerized appli-
cations. For instance, on Linux, a high-level container runtime like
containerd manages container images and the resources that a con-
tainer requests for execution such as access to the network. The Open
Container Initiative (OCI) provides standards for the container run-
time interface and container images, which allows OCI-compliant
container managers to interact with any OCI-compliant low-level
container runtime. Low-level container runtimes like runC are re-
sponsible for setting up a container by configuring the lightweight
virtualization mechanisms provided by the OS.

2.2 Lightweight Virtual Machines

Virtual machines (VMs) provide a higher degree of isolation than
containers, as distrusting applications do not share a single kernel
instance. Lightweight virtual machine implementations like Fire-
cracker [6] try to overcome traditional performance shortcomings
of VMs by optimizing virtual machine monitors for use cases like
serverless computing, thus providing performance close to that of
containers [7]. Furthermore, the use of unikernels as a VM guest [22]
is a way to increase the performance of VMs, as unikernels run in
a single privilege level, saving context switches during execution.

2.3 A Primer on the L4Re Microkernel OS

Being a microkernel, the L4Re kernel only implements functionality
that cannot be realized in userspace, such as page table manipula-
tion or mechanisms for inter-process communication (IPC). The
L4Re microkernel represents each of the abstractions that it offers to
userland processes as kernel objects. Examples for kernel objects are
threads and IPC gates which represent an IPC channel to a process.

Every other component of the operating system such as the mem-
ory management or device drivers run as processes in userspace
(dubbed tasks in L4Re). During bootup the L4Re microkernel starts
a root task called moe. Moe provides the basic system abstractions of
L4Re such as memory allocation or access to the read-only boot file
system to other applications. Moe allows to define quotas for resource
allocations, thus being able to constrain the resource consumption
of application tasks.

2.4 Capabilities

L4Re, like most modern microkernel-based operating systems, uses
capabilities [11] for implementing access control. A capability is an
unforgeable token of authority, which grants the possessing process
the power of carrying out operations on kernel objects. For instance,
such an operation could be an IPC call to an other processes.

A central feature of capability-based access control is the absence
of ambient authority. Tasks in L4Re start with no authority, i.e. no
capabilities by default. To perform useful work and interact with
the system they must be granted the required capabilities explicitly.
Other parts of the system cannot be accessed and are in fact not even
visible to said task. Sharing object access is simple as the owner of
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a capability is free to grant it to other tasks (delegation). The reverse
is also possible. The owner of a capability can revoke (i.e., void) it,
preventing its future use.

In L4Re, capabilities manifest as the permission to interact with a
certain kernel object. Depending on the type of the respective object
and the rights of the capability pointing to it, such interactions could
e.g. send an IPC message to another thread via an IPC gate, or destroy
akernel object. With L4Re, a capability can be delegated by sending
it over an IPC gate connected to another process, whereat the kernel
takes care of copying the capability into the target process of the IPC.
Similarly, the owner of a capability can instruct the kernel to revoke
it at any time. Consequently, the L4Re microkernel is responsible for
maintaining the system’s security by shielding the capability tables
of all userspace processes against unauthorized manipulation. Note,
that the destruction of a kernel object implicitly revokes all capabil-
ities pointing to it. This property enables L4Re processes to revoke
all capabilities handed out to a certain client in a single operation.

3 Containers on L4Re

This section describes how the functional features and the security
properties of Linux containers can be implemented on a microkernel-
based OS like L4Re. In the following, we will use the term compart-
ment for referring to an entity with container-style isolation running
on L4Re, differentiating it from the Linux equivalent which we keep
calling container.

3.1 Onthe Compartment Architecture

The management of compartments on L4Re is handled by a compart-
ment service called Oak. In Linux terminology, Oak would be similar
to a program like runC. As common for microkernel architectures,
most other system services run in separate tasks, yielding strong
isolation between them.

Just as with Linux, at the core, a compartment on L4Re consists of
a set of processes. Hence, the smallest compartment possible is a sin-
gle task (L4Re process). All tasks of a compartment share a common
set of capabilities, which define which parts of the system the tasks
belonging to the respective compartment can see and interact with.

In order to make these restrictions transparent to the applica-
tion running inside a compartment, L4Re also provides namespaces
that allow a task to refer to a capability using a name. Similar to
namespaces on Linux, this abstraction provides some form of virtu-
alization as the compartment service can set the mapping of names
to capabilities for each compartment individually. For instance, two
compartments could both see a capability named “/usr”, but for each
compartment the capability linked to the name could grant access
to a different file system service. This mechanism enables Oak to
present different views of the system to compartments.

Upon receiving a request for launching a compartment, Oak first
gathers the resources that the respective compartment needs to run.
To this extent Oak creates new sessions with each of the system
services in charge of managing the requested resources. As a result
of creating a new session with a system service, the compartment
service receives a capability to a new IPC gate. This gate acts as a
handle for accessing the session with the system service.

Now, the compartment service delegates the capabilities gathered
during the resource allocation phase to each task of the compartment,
giving them access to the corresponding system services. It then
launches the compartment’s tasks and monitors their exit status.
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Figure 1. Example for an L4Re system service exposing different
interfaces (IF) in multiple sessions (white boxes). The diamonds
represent capabilities to the respective IPC gates.

As the last step in the life cycle of a compartment, Oak collects the
artifacts left over from the execution of a compartment. This also
implies that the compartment service closes all remaining sessions
allocated for a compartment by deleting the corresponding kernel
objects. This revokes all capabilities pointing to the compartment’s
sessions and also frees the resources attached to them.

3.2 Enforcing Compartment Restrictions

A system service in L4Re can securely identify a client based on the
IPC gate used by the client for sending messages. System services
leverage this property to adapt the interface that they offer viaan IPC
gate. As shown in Figure 1, system services often expose a dedicated
IPC gate for invoking control plane operations like the creation of a
new session. In the context of compartments, only the compartment
service gets access to such gates as untrusted applications running
inside a compartment must not be able to spawn arbitrary sessions
and thus break their resource constraints. The compartments receive
capabilities to session-specific gates that merely expose data-plane
operations such as sending or receiving data from the network. This
scheme allows for a fine-grained limitation of the API accessible to a
compartment. Dedicated mechanisms for restricting the system in-
terface available to a compartment (such as seccomp-bpf on Linux)
are hence not required with L4Re.

The secure identification of clients furthermore allows L4Re ser-
vices to implement resource groups, a resource constraining mech-
anism similar to Linux’ cgroups. By attaching a resource consump-
tion context to each IPC gate as shown in Figure 1, a service is able
to control the resource usage of each of'its clients. Depending on the
concrete resource, a consumption context may contain a priority or a
budget. Whenever arequest arrives via a certain gate, a service would
first decide whether to admit it based on the remaining resource
budget in the corresponding resource consumption context.

In L4Re, the compartment service takes care of creating appro-
priate resource groups for constraining a compartment. To this end,
it adds a description of the respective resource limits to each session
creation request executed before launching the compartment. By del-
egating the resulting capability, the compartment is then implicitly
added to the resulting resource group.

3.3 Implementing Compartments

In order to perform meaningful work in a compartment, L4Re needs
to provide more functionality than the plain Oak compartment ser-
vice. We chose to implement system services (networking etc.) as
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native L4Re applications. Compared to using an L*Linux VM [18]
that provides the respective features, native system services do not
come with the drawback of a large TCB shared by all compartments.

In addition to writing the compartment service described before,
we therefore implemented several components to provide a proto-
type execution environment to L4Re compartments. First, we built
anetwork stack to make the Oak service accessible remotely. To this
end, we ported the driver for Intel’s X540 NIC from the Ixy driver
framework [12] to L4Re. We furthermore designed and implemented
LUNA, a network service that multiplexes a NIC between multiple
applications and implements a simple UDP/IP stack. Second, we
created an in-memory file system service called spafs. Spafs has read
and write support and implements directories.

Lastly, we enabled moe to run on multiple cores, avoiding expen-
sive cross-core IPC when interacting with it. However, the internals
of moe are still serialized, as they are protected by a single lock.

4 Security Evaluation

To substantiate our claim, that a container infrastructure based on a
microkernel is more secure compared to the Linux implementation,
we present a short comparison of the respective TCBs and a brief
vulnerability discussion based on selected, past CVEs.

4.1 Trusted Computing Base Comparison

The Linux kernel, a monolith, has a large code base, supporting a
multitude of system calls, submodules, and device drivers. Even with
a selective configuration, Linux runs a lot of code in privileged mode,
thus resulting in a large TCB. In contrast, the L4Re microkernel is
much smaller, only implementing basic mechanisms. Many func-
tionalities are outsourced to unprivileged userspace services. This
simplicity and modularity allows for the smaller, more manageable
TCB of Oak.

In general, the reduced kernel code size of microkernels makes
them amenable to formal verification [21] as well as security certifi-
cation as [9]. Outside the kernel, microkernel-based systems benefit
from the absence of an all-powerful root account, and capability-
based access control which encourages a system design following
the principle of least authority.

4.2 Vulnerability Study

The smaller TCB size and privilege-reduced components should
result in a better security posture. To demonstrate this point, we con-
ducted a study of existing vulnerabilities in container infrastructure
on Linux. In the following, we will discuss some sample vulnera-
bilities that highlight how a microkernel approach can reduce the
attack surface of a container infrastructure.

Seccomp uses the Berkeley Packet Filter (BPF) [2] to filter system
calls at kernel level to restrict the kernel interface available to con-
tainers. With BPF [23] being a code interpreter at kernel level and
seccomp using BPF to express its filter rules, security issues arise
from flaws in either seccomp or the underlying BPF.

Oak does not require such filtering mechanisms. Only interfaces,
for which capabilities are granted are visible to a container. To bypass
this access control, the capability implementation itself would need
to be compromised, which is part of the microkernel. While imple-
mentation bugs in a microkernel may exist, due to little code running
in CPU privileged mode, we consider such a compromise unlikely.
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Futhermore, the namespace isolation is also a possible source of
bugs. CVE-2018-18955 [1] describes a vulnerability, allowing priv-
ilege escalation via mishandling of nested user namespaces. In L4Re,
resource access is enforced by capabilities, so such an escalation can
only occur by compromising the capability system itself. Thus, such
a vulnerability is less likely to arise on L4Re.

Similarly, cgroups have also had vulnerabilities. CVE-2022-0492 [4]
describes an exploit, where a container can escalate privileges and
bypass namespace isolation due to a flaw in a cgroups feature. In
Oak, resource restrictions are implemented by resource contexts in
userspace components. As these components may exhibit similar
implementation flaws, resource restrictions may be equally circum-
ventable. However, such a compromise would only affect a single
resource and would certainly not affect the kernel or inter-container
memory isolation.

5 Performance Evaluation

In the following, we compare the implementation of compartments
on L4Re with standard Linux solutions for containers from a perfor-
mance perspective. The microbenchmarks we use aim at creating
preliminary insights into the performance of compartments on L4Re.
As we want to focus on the bare virtualization mechanisms, we did
not deploy warm start optimizations such as provisioning of hot
standby containers with pre-initialized runtimes.

As a comparison for L4Re compartments, we measured Linux
stock processes, runC [17], and Kata Containers [14] with Fire-
cracker [6]. While standard Linux processes do not offer the same
security properties as containers, they represent an optimal baseline
with respect to performance.

5.1 System Setup

All measurements presented in the following were done on two
identical dual-socket servers that are equipped with two Intel Xeon
Platinum 8358 CPUs and 500 GiB of main memory each. For all
benchmarks, we disabled both hyperthreading (SMT) and temporary
overclocking (TurboBoost). We furthermore set the CPU’s pstate
configuration to maximum performance mode. Additionally, the
servers both feature a 10 Gbit (Intel 82599 / Intel X540) Ethernet NIC.

The results for benchmark setups running on Linux were recorded
using kernel version 6.7.4, runC version 1.1.10, containerd version
1.7.9 and Kata version 3.3.0 with a small patch to enable the measure-
ment of startup times in Firecracker.

5.2 Container Startup Latency
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Figure 2. Average startup latency of a single container as function
of the number of idle containers present in the system.
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First, we measured the time spent for creating and launching
an empty container. The containers benchmarked in this setup all
consist of a single process and only measure a timestamp before ter-
minating. For runC the container creation phase includes the setup
of cgroups, seccomp filters, and file systems. To obtain best-case
performance, we set empty seccomp filters. With Kata Containers
the boot time of the Firecracker microVM is measured by using the
boot-timer device provided by Firecracker. On L4Re, meta operations
for spawning a compartment, like creating a new session with the
Oak service contribute to the startup latency.

Figure 2 shows the startup latency of a single container as a func-
tion of idle containers already present in the system. We chose this
metric to examine whether the overall number of running containers
influences their startup performance. Spawning a standard process
on Linux is the fastest option with a startup latency of roughly 190 ps,
regardless of the number of processes in the system. Starting a com-
partment on L4Re takes around 720 ps for less than 32 background
compartments. If there are more running compartments, the startup
latency increases slowly up to 5 ms with 384 compartments active.
We attribute this increase to NUMA effects that occur since the com-
partment engine of L4Re schedules compartments round-robin on
all cores and L4Re currently has no awareness of NUMA memory
architectures. Starting an empty container with runC is considerably
slower, with a startup latency of 45 ms for a single container. We
attribute the difference to L4Re to the setup overhead of in-kernel
constraining mechanisms like cgroups. Kata with firecracker shows
the highest boot times (around 200 ms), as the setup of a virtual
machine is more expensive than creating a container.

As a second benchmark, we recorded the container startup la-
tency when starting multiple containers in parallel. Figure 3 shows
the results of these measurements. Linux processes again have an
almost constant startup time, independent of the number of pro-
cesses spawned in parallel. The same holds for Kata Containers with
Firecracker that is able to retain its boot time from the sequential
benchmark (200 ms) regardless of the number of instances spawned
inparallel. On L4Re, it takes roughly 15 ms to start two compartments
in parallel. This number grows to 100 ms for eight parallel compart-
ment launches. RunC takes significantly longer for a low parallelism
of container starts (30 ms for two parallel launches). When starting
more than 16 containers in parallel, runC and L4Re compartments
performed roughly similar, both showing high tail latency.

5.3 I/0 Performance

In order to obtain an estimate of the I/O performance that a micro-
kernel OS like L4Re is able to provide, we compared the network
performance available to compartments on L4Re to that achieved by
Linux containers. We performed a UDP-based ping-pong benchmark
over a 10 GiB/s Ethernet interface. The remote host that was pinged
always ran a native Linux process, while the latency was recorded on
the client side. We varied the client platform and measured for Linux
processes, L4Re tasks, and RunC containers. The latency was roughly
the same on all platforms with an average value of 40 yis. We observed
runC to have more outliers, which we attribute to the additional
in-kernel layers traversed during the processing of a packet.
Figure 4 shows the bandwidth measured using multiple sockets
in parallel. As expected, Linux and runC performed similar as they
use the same network stack. With a low degree of parallelism, Linux
achieved a higher bandwidth than L4Re (900 MiB/s vs. 350 MiB/s)
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since L4Re does not implement advanced NIC features such as re-
ceive side scaling (RSS), and all driver processing is done on a single
core, which is also used by the first thread of the benchmark. With
increasing parallelism and thus more threads sending traffic from
different cores, this effect diminishes.

6 Related Work

The emergence of microservices motivated research for optimizing
lightweight virtualization with respect to performance and security.
Chestnut [10] allows for automatically generating seccomp-bpf fil-
ters from application binaries, only granting access to system calls
the application needs. Such Linux-related container-hardening tech-
niques become superfluous with our approach because a capability-
based approach like L4Re promotes adherence to the principle of
least authority.

BlackBox [16] implements secure container execution on an un-
trusted operating system. Containers are shielded against the op-
erating system using virtualization and system call sanitization.
Although BlackBox achieves a small TCB for confidentiality, the oth-
erwise untrusted operating system needs to be trusted to guarantee
availability. The same applies to container implementations on both
L4Re and Linux.

In pursuit of increasing the security of lightweight virtualization,
lightweight VMs gained traction. Amazon’s Firecracker [6] proved
that these VMs are competitive in large deployments. Manco et al.
demonstrated the use of unikernels together with carefully designed
VM infrastructure, yielding startup times and application perfor-
mance even better than that of containers on Linux [22]. In contrast
to unikernel-based VMs, containers on L4Re have native access to
operating system features like multithreading for performance and
address-space-based compartmentalization for security.

7 Conclusion and Future Work

In this paper we investigated the design and implementation of con-
tainers on a microkernel-based OS. While Linux needs to implement
additional restriction mechanisms for providing container-grade
isolation to processes, such mechanisms are either not needed or
conceptually much simpler on a capability-based microkernel, since
it fully isolates processes by default. Due to the fundamental security
benefits of these microkernels, their container design awards a more
robust security posture compared to containers on Linux, since the
overall attack surface exposed to malicious clients is much smaller.
Early performance measurements showed that even without major
optimizations, microkernel platforms are able to provide competitive
performance both with respect to container startup latency as well
as for I/O performance.

We thus believe that our approach is worth exploring further. To
demonstrate the applicability of our ideas to real-world use cases,
we currently work on implementing a python3-based Function-as-
a-Service environment on L4Re. Moreover we plan to take actions
towards enabling our container engine to execute OCI-compliant
container images.
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Figure 4. Bandwidth for transmitting data over a 10 GBit Ethernet
interface (using 1472 B UDP packets) as a function of the number
of parallel data streams.
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