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Abstract

Serverless computing shifts the responsibility of managing
and configuring the cloud infrastructure from the user to
the provider. However, in the FaaS model, users are still
faced with non-trivial resource allocation and management
choices, in particular with respect to the way that intra- and
inter-function parallelism is managed. As a consequence,
deploying a cloud function with an incorrect configuration
for either of these two dimensions of parallelism can lead to
an unnecessary increase in execution time, cost, or both.

In this paper, we call the attention to the fact that this is
one of the final hurdles to realizing the vision behind server-
less computing. To overcome it without requiring changes to
the existing cloud infrastructure, we propose the design of
1, a system that transparently manages the balance between
intra- and inter-function parallelism on behalf of the user.
4 is designed as a shim layer to be mostly transparent to
the application developer and fully compatible with today’s
cloud services. Our design allows for running multiple tasks
in a single function, using the extra resources that the user
is already paying for. This allows for maximizing resource
utilization, and leads to cost reductions and performance im-
provements, without the requiring the user to reason about
resource allocation.
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1 Introduction

Serverless computing is an extension of cloud computing
where the concept of a server is hidden to the user. In this
paradigm, the responsibility of managing and configuring the
cloud infrastructure is shifted from the user to the provider,
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making it a simpler option with a lower entry barrier when
compared to traditional cloud computing models like IaaS.

FaaS is a serverless solution where the user uploads small
pieces of code known as cloud functions or lambdas. These
can then be configured to execute on a given trigger. Func-
tions run their code on a temporary and ephemeral virtual
machine or container, with the user paying only for the re-
sources used during the execution time of the function. This
execution environment has access to a certain number of
vCPUs and amount of memory, defined when the function
is deployed [3].

In many respects, FaaS embodies the vision underlying
serverless computing [16]: the developer only needs to write
the code for the application, upload it to the provider and
assign triggers. Load balancing is no longer an issue, no setup
whatsoever is needed, and scaling is assured by the provider,
with the user paying only costs that are proportional to the
service load, due to the pay-as-you-go nature of the services.

However, there is still one lingering aspect of resource
management that is left for cloud users to handle, which is
parallelism. When building and deploying a FaaS application
that will execute a set of parallel tasks, the programmer is
called to choose the right balance between parallelism across
multiple function invocations and inside each function. As
we show later in the paper, a wrong choice in the balance
between inter- and intra-function parallelism can lead to a
poor utilization of the available resources: in one extreme of
the spectrum, if the programmer only exploits inter-function
parallelism (with many invocations of a single-threaded func-
tion), then the resources allocated to the function may be
underutilized and the user may be paying unnecessary mon-
etary costs. In contrast, if the function code is only instan-
tiated once but runs too many threads in parallel, then the
resources will be oversubscribed and performance will suffer.
Handling this aspect of resource management may be the
final roadblock to realizing the vision of serverless comput-
ing. This paper aims at establishing a road-map to remove
this roadblock with a bolt-on architecture.

To demonstrate that it is possible to relieve the user from
the burden of deciding between intra- versus inter-function
parallelism, while also maintaining backward compatibility
with today’s offer of FaaS services, we present the design and
a preliminary evaluation of y, a system that is able to reduce
costs and improve performance by automatically leveraging
the internal parallelism that is present on FaaS function in-
stances, to the extent that the system allows it. The goal of p
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is to provide a service capable of executing multiple requests,
called tasks, on a single function invoked in FaaS, known
as a worker. By doing so, u takes advantage of the ability
to have parallelism within a cloud function. Furthermore,
to dynamically determine the right balance between inter-
and intra-function parallelism, the design of y includes a re-
source monitoring component that keeps track of the status
of each worker; and a scheduler that uses that information
to dispatch incoming task invocations to either an existing
under-subscribed worker or a newly-spawned worker.

Finally, we identify key limitations in our preliminary
design and discuss the challenges and opportunities to work
around them.

We implemented p as a shim layer around function in-
stances that are deployed on AWS Lambda. The results from
our preliminary evaluation using a benchmark cloud func-
tion show that y reduces costs by up to 72.9% while acceler-
ating the execution time by up to 61.2%.

2 Background and related work

From the user’s perspective, serverless — and Faa$, in particu-
lar - is easier to use than the traditional serverful alternatives
(such as IaaS), since it no longer requires a basic understand-
ing of system administration. In Faa$S, the user only needs to
write the code for the application, upload it to the provider
and assign triggers. Each function must also be configured
with a certain number of vCPUs and an amount of mem-
ory that will be allocated to each invocation of the function.
The configuration of these resources varies depending on
the specific service being used; e.g., in some providers the
number of vCPUs is proportional to the amount of memory
chosen by the user, while in others the vCPU allocation is
not configurable [3]. However, the programmer is still re-
sponsible for choosing the right balance between inter- and
intra-function parallelism in order to make the best possible
use of the resources that were allocated.

In recent years, the research community has essentially fo-
cused on the problems associated with the first dimension of
this dichotomy, namely managing inter-function parallelism
in Faa$ [8, 9, 11, 15, 17, 19].

Inter-function parallelism occurs when multiple instances
of one or more functions are called in parallel, and is one of
the most fundamental features of FaaS. However, effectively
exploiting it raises challenges such as efficiently decompos-
ing the workload into parallel function invocations, shar-
ing data between the parallel function instances, as well as
rapidly scaling and scheduling function invocations. Recent
proposals such as Wukong [11], gg [9], FIRM [19], Kappa
[15], Crucial [8] and NumPyWren [17] try to overcome such
challenges for this type of parallelism.

In contrast to inter-function parallelism, intra-function
parallelism consists of having parallel computations inside
a single function invocation on FaaS. It can be achieved

Diogo Pacheco, Joao Barreto, Rodrigo Rodrigues
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

by having the function code spawn multiple threads. Inter-
function parallelism can be traded for intra-function paral-
lelism, which enables reducing the number of function invo-
cations (when compared to running the same set of tasks in
single-threaded functions, in parallel). This brings two po-
tential advantages. First, since multiple function invocations
share the resources of the same container, it can improve re-
source usage — namely, CPU and memory -, hence reducing
costs. Second, it can reduce the occurrences of cold starts
and, thus, mitigate the associated performance penalty.

To our knowledge, the benefits of intra-function paral-
lelism in Faa$S have only been studied in depth by Kiener et.
al. [13]. Their results show that intra-function parallelism
can effectively accelerate function execution and improve
resource utilization, leading to a cost reduction for the user
in commercial Faa$S offerings. As of today, for a programmer
to take advantage of such benefits, it is his or her respon-
sibility to choose the intra-function parallelism degree and
implement such parallelism inside the respective functions.
The goal of our work is to overcome what we perceive as
being the last hurdle separating us from a vision where the
users of serverless computing do not have to reason about
any resource management.

In a distinct research avenue, recent proposals rethink
the design of FaaS platforms to enable each container to
run multiple function instances in parallel, either as pro-
cesses [4, 14, 18] or threads [12] within a container. Such
proposals are able to mitigate many bottlenecks of today’s
Faa$S container-based platforms when faced with bursts of
function invocations [18], including the inefficient use of
resources as well as cold-start costs. Therefore, their advan-
tages partly overlap with our work. However, they imply
re-engineering the Faa$ platform, whereas the bolt-on na-
ture of our proposal enables cloud customers to deploy u
today on any Faa$ service.

3 p
In this section, we describe the proposed architecture of y
and its proof-of-concept implementation.

3.1 Architecture

The architecture of p is outlined in Figure 1. It consists of a
centralized coordinator running on an AWS EC2 [7] instance,
responsible for the overall orchestration and scheduling of
function invocations; a worker function, executed as an in-
stance of FaaS, which acts as an execution environment
capable of running several tasks in parallel (intra-function
parallelism); and a shim layer API package made available to
clients, so they can spawn their own instances of tasks and
deploy them on p. In this architecture, each worker collects
its own resource metrics and periodically sends them to the
coordinator, to guide its scheduling decisions. The coordina-
tor keeps track of pending tasks that need to be executed in
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Figure 1. System architecture of u

a request pool, and schedules them based on the information
it maintains about the state of the system.

3.2 Life cycle of a function and the scheduling
algorithm of y

We now explain how functions are invoked in y and present
our scheduling algorithm. Our current design assumes that
a worker only executes tasks that correspond to invocations
of the same function by the same client. We discuss how this
limitation can be lifted in Section 5.

Task invocation requests are sent from the user via its shim
layer. Whenever such a request is received by the coordinator
@, it is kept in a request pool. Then, as soon a worker
with enough unused resources polls the coordinator @, the
scheduler takes a request from the pool @ and dispatches
it to that worker @ The worker immediately spawns a
new executor thread and assigns it the new task @ Upon
completion, the executor thread submits the results to the
coordinator (6) who in turn returns them to the user (7).

The logic of the coordinator is detailed in Algorithm 1, and
it describes how p schedules tasks to workers. The idea is
that the coordinator is continuously waiting for poll requests
to arrive from one of the workers. When such a request
arrives, the coordinator checks if the current duration of the
function is still within 80% of the execution timeout. If so,
then the coordinator additionally checks if it is possible to
schedule a new task to run in that worker, which requires
the combination of the following factors: (1) the reported
CPU and memory usage are under predefined thresholds,
(2) the number of tasks the worker is currently running is
smaller than the number of threads it can run, and (3) the
request pool is not empty. If all these checks pass, then a
new task is assigned to that worker and the response reflects
this fact.
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In case a new task has not been assigned to this worker,
then the coordinator checks if it is possible to signal the
worker to shutdown (in case it is no longer running any
tasks). Otherwise, the worker can continue its processing
without any change.

This logic allows for a smooth shutdown of FaaS instances:
when either a worker is nearing the maximum running time
provided by the FaaS platform or there are no more tasks to
run, then this algorithm identifies the worker as end-of-life
and no more tasks are sent to it. Then, upon completion of
its tasks, the container can be shut down.

begin
while true do
req «— server.listen()
worker «— lookup(req.workerld)
if now — worker.start <
thr_time X execTimeout then
if req.currCPU < thr_cpu and
req.currMem < thr_mem and
|req.currTasks| < worker.threads — 1
and requestPool # () then
task «— requestPool.pop()
req.connection.send(task)
continue

end

end

if req.currTasks == () then

‘ req.connection. send(shutdown)
end

else

‘ req.connection.send(continue)
end

end

end
Algorithm 1: Pseudo-code of the coordinator. This im-
plements the scheduling algorithm of p.

3.3 Implementation

We implemented the worker as a generic wrapper func-
tion, whose main thread thread starts by registering the new
worker with the coordinator, then enters a loop that period-
ically measures its container’s usage of CPU and memory
and sends this data to the coordinator via HTTP. If, in re-
sponse, the coordinator dispatches a new task to this worker,
a new thread is spawned to run the code of that task. This
wrapper function was developed in golang and makes use
of goroutines to handle multi-threading. The coordinator
is an HTTP server developed in Node]S using the Express
framework. It contains internal endpoints, to be used by the
workers, and external endpoints, to be used by the client.
The workers run on AWS Lambda [5] and the coordinator
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Memory in MB  Number of cores  Cost in USD ($) per 1ms
2048 2 $0.0000000333
4096 $0.0000000667
6144 $0.0000001000
8192 $0.0000001333
10240 $0.0000001667

RS NN

Table 1. Selected memory configuration with the associated
number of cores and cost per 1ms

is hosted on an AWS EC2 [7] instance. We believe, however,
that it is straightforward to adapt our implementation to
run on any other Faa$ platform. The shim layer is currently
implemented as an API package for Python, providing an in-
vocation method that can be used instead of the conventional
Faa$S invocation methods. As such, clients can incorporate
this method in their serverless applications to take advantage
of i’s capabilities. By spawning new Faa$ instances through
the shim layer instead of the conventional API, these are then
handled through the sequence of steps depicted in Figure 1.
This allows the client to take advantage of the intra-function
parallelism spawned by u even when the function’s code is
single-threaded.

4 FEvaluation

In this section we describe a preliminary evaluation of the
advantages of using y to automatically trade inter- for intra-
function parallelism. To quantify such advantages, we will
consider two main metrics, cost for the user and latency.

4.1 Methodology

In this study, we use the image thumbnailer benchmark
from the SeBS benchmark suite [10], which we ported to the
Go language. This benchmark receives as input two AWS
S3 bucket names, two AWS S3 file keys, and a width and
height for the final image. In this benchmark, a task starts by
downloading a 3MB image from the first bucket using the
first key. For this, we used the official AWS SDK package for
Golang, in the same way that the original benchmark uses
the AWS S3 SDK for Python. The next step is to perform the
thumbnailing operation on the downloaded image, resizing
it to a size of 100px x 100px. The original benchmark used
Pillow [2], a popular Python image processing library. In
our implementation of the benchmark, we use the Imaging
package of golang. The final step is to upload the image to
the second bucket using the second key. We again used the
AWS S3 SDK for this.

For all tests, our workload consists of a large number
of invocations of the above-mentioned task. We developed
a script in Python that uses both standard AWS Lambda
invocations via the Function URL invocation method as well
as our p shim layer package. As the experimental baseline,
which we denote as conventional FaaS, we consider the usual
approach of invoking the original benchmark code on a
standard AWS Lambda instance for each task to be performed
in the workload.
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Figure 2. Cost analysis for different memory configurations
for a throttled test

AWS Lambda allows for multiple memory configurations.
These memory configurations define proportionally how
many vCPU cores each worker has access to. For our test
runs, we established five different memory configurations to
be used. We selected memory configurations that allow us
to start at two cores and go all the way up to six cores. The
specific memory values, associated number of cores, and cost
per 1ms of invocation (according to AWS Lambda [1]) are
listed in Table 1. These costs correspond to the configuration
we used to deploy functions, namely the x86 architecture
running in region eu-west-3 (Paris) under the category of
the first six billion invocations.

We used AWS Cloudwatch [6] to measure function exe-
cution times and our calculations of the execution costs is
based on the official AWS Pricing Table [1].

Cost analysis. One of the key benefits of y is cost reduction.
The idea behind this is that by introducing intra-function
parallelism we can drastically reduce the number of (FaaS)
function invocations needed to execute all tasks on a given
workload and, with that, reduce the total costs for the user.

To evaluate the total costs of y and compare them with
the AWS Lambda baseline, we used a test where we execute
a total of N requests while maintaining a cap on the amount
of concurrency, namely 8 maximum concurrent requests. In
our experiment, we used 100 invocations of the Thumbnailer
benchmark as the value of N. We tested this workload with
all five different memory configurations and corresponding
costs from Table 1.

The results are shown in Figure 2. In this graph, we plot the
cost per million invocations on each different memory con-
figuration of a thumbnailer workload using y, and compare
it the AWS baseline. We also depict the number of invoca-
tions for each system across every memory configuration in
Figure 3.

Comparing both setups, we see a reduction in cost pro-
portional to the increase in the number of cores. In partic-
ular, from 4096MB and beyond, each worker of p has at
least two cores to execute tasks in parallel (given that one
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Conventional FaaS = p
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Figure 3. Number of invocations for different memory con-
figurations for a throttled test
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Figure 4. Latency analysis for different memory configura-
tions for a throttled test

core is reserved to resource monitoring and communication).
Therefore, for such configurations, yu is able to exploit intra-
function parallelism, resulting in a significant cost reduction
when compared to the baseline. To better understand where
these savings come from, Figure 3 shows that, from 2048
to 4096MB, the number of FaaS function invocations is cut
in half, since we double the number of tasks per function
instance. This compensates for the increase in cost per mil-
lisecond of using more powerful instances, allowing p to
finish computations faster while keeping the cost envelope
relatively constant. In contrast, the AWS baseline nearly dou-
bles in cost when going from 2048 to 4096MB because it does
not take advantage of the extra processing power to achieve
a shorter lifetime, and therefore has to pay the price for the
larger instance. This trend is maintained as we increase the
memory allocated to the worker and, as a consequence, the
number of cores. As a whole, if we factor out the overhead
costs, we can see a 1/N relation between the cost of the
baseline and the cost of our system, where N = #Cores — 1
or, in other words, N is the number of threads free to execute
tasks in a given configuration.
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Latency analysis. In Figure 4, we compare the time needed
to complete 100 invocations on each different memory con-
figuration of a thumbnailer workload using y with the same
workload being processed by native AWS Lambda.

Comparing both setups, we see a significant speedup
on higher memory configurations when comparing y with
conventional FaaS. This is explained by the fact that, from
4096MB onward, each worker of y has at least two cores to
execute tasks in parallel. Therefore, for such configurations,
u is able to exploit intra-function parallelism. resulting in
significant speedups. As seen in Figure 3, starting at 4096MB,
the number of Faa$S function invocations is cut in half, since
we double the number of tasks per function instance. The
reduced number of Faa$ invocations results in fewer func-
tion start delays and faster response times. This trend stops
at 8192MB due to our static policy for spawning workers,
which limits the amount of concurrency.

In summary, our preliminary evaluation shows that p
achieves significant cost and latency reductions when com-
pared to a standard AWS Lambda deployment for any mem-
ory configuration that provides three or more vCPUs. In
particular, as the allocated memory grows, the savings that
are attained by y increase. Regarding latency, we can con-
clude that this is also significantly improved by p, due to
the fact that it can solve the over-provisioning problem and
make better use of the allocated resources when compared
to native AWS Lambda.

5 Discussion

While our preliminary design and implementation of y al-
ready shows promising gains in the benchmark evaluated in
the previous section, it also leaves the door open to address-
ing several challenges and opportunities.

Overheads. A drawback of the current implementation
of p, which affects both performance and cost, is the non-
negligible amount of overhead. Namely, in our design: u
introduces delays on instance spin-up due to the registra-
tion mechanism; it requires I/O operations between each
worker and the coordinator, forcing each instance to dedi-
cate a thread to the resource gathering and communication
loop and potentially reaching a bottleneck on bandwidth;
and the fact that workers fetch tasks based on a polling loop
may cause noticeable delays, particularly for short functions.
While we intend to refine some of the design choices to
improve these aspects, we also envision the possibility of
addressing these by directly modifying an existing FaaS plat-
form instead of taking a bolt-on approach. Incorporating our
system in a full-fledged FaaS platform can remove the need
for a polling mechanism to monitor resources, thus freeing
up extra resources and enabling intra-function parallelism
even for very short tasks.

Multiplexing cores across tasks for better CPU usage.
One of the limitations of our current prototype is that it has
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a somewhat constrained division of resources within the
worker, namely since it allocates one virtual core to moni-
toring and communicating with the coordinator, and then
assigns one entire core to each task. This can be overcome by
modifying the scheduler to exploit configurations where the
number of tasks running in a worker may be higher than the
number of vCPUs allocated to the function instance. This re-
quires a more sophisticated resource monitoring mechanism
than the one currently employed by p. One other possible
direction is to build a better resource usage prediction mech-
anism. If resource usage for any given request could be more
accurately predicted, then our decision-making component
could make more informed decisions regarding where and
when to dispatch tasks. An ideal solution would be a com-
bination of both approaches, where both the resource esti-
mation component and the resource monitoring component
are improved and can provide significantly more accurate
data to the decision-making component.

Dynamic instance spawning. Even though y has the
elasticity to dynamically spawn more worker instances as
more requests arrive, the threshold that the coordinator uses
to decide when more instances are needed is not dynamic.
This can also be improved in a similar way to the previous
points, namely through improved resource monitoring and
resource estimation components, to accurately decide exactly
how many instances are needed to keep the response rate in
check with the request rate.

Sharing data between tasks. A conceptual difference be-
tween s tasks and conventional threads within an instance
of FaaS$ is that threads share an address space and communi-
cate through that shared memory. In p, sharing memory is
made difficult by the fact that the scheduler has the option
of instantiating either intra- or inter-function parallelism,
depending on the current system load.

Given that our current prototype supports only code writ-
ten in Go, this can be solved seamlessly due to the fact that
goroutines share data through channels. The implementa-
tion of these channels can thus by modified so that the data
is communicated via the network in the case of two tasks
that run on different instances of FaaS. However, to extend
1 to other languages, we need to resort to other mechanisms
akin to far memory.

Heterogeneous workloads. Currently, our prototype
only supports task instances that are spawned by the same
client and run the same code. Removing the restriction of
supporting only one cloud client per worker is difficult in
our bolt-on approach, since there is there is an intrinsic need
for isolation for performance and security reasons. However,
if the same client deploys a pipeline of multiple functions,
then it would be possible for our scheduler to leverage this
by co-locating tasks with different profiles. In particular, if a
given user’s pipeline contains some functions that are more
CPU-intensive and others that are more I/O-intensive, then
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co-locating instances of these two classes can lead to a better
resource utilization.

6 Conclusion

In this paper we presented y, a bolt-on system for reducing
the cost and improving the performance of FaaS. y takes
advantage of intra-function parallelism in an adaptive fash-
ion, enabling the use of the extra resources that the user is
already paying for in each function instance to run more
than one task. This can improve resource utilization, thus
providing cost reductions, and, in some cases, performance
improvements. Our proof-of-concept prototype shows that
the system has the potential to improve both performance
and cost. Furthermore, p is an important step towards real-
izing the vision of serverless computing, where cloud users
abstract away all resource management. In the future, we in-
tend to refine our current design, namely to support pipelines
of multiple functions, and also consider a native implemen-
tation that modifies a FaaS platform.
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