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ABSTRACT

Function-as-a-Service is a popular cloud programming model that
supports developers by abstracting away most operational concerns
with automatic deployment and scaling of applications. Due to the
high level of abstraction, developers rely on the cloud platform to
offer a consistent service level, as decreased performance leads to
higher latency and higher cost given the pay-per-use model. In
this paper, we measure performance variability of Google Cloud
Functions over multiple months. Our results show that diurnal
patterns can lead to performance differences of up to 15%, and
that the frequency of unexpected cold starts increases threefold
during the start of the week. This behavior can negatively impact
researchers that conduct performance studies on cloud platforms
and practitioners that run cloud applications.
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1 INTRODUCTION

Function-as-a-Service (FaaS) is a serverless cloud computing de-
livery model where developers compose their applications from
event-driven stateless functions and all operational tasks are man-
aged by the cloud provider [5, 17, 23]. Functions are billed on a
pay-per-use basis at second or even microsecond granularity and
offer rapid elasticity and scale [5, 11, 23]. The abstraction from
operational concerns has made FaaS a popular cloud execution
model, with offerings by all major cloud providers, e.g., Amazon
Web Services Lambda' and Google Cloud Functions? [2, 5, 11].

The flip side of high levels of resource sharing in the cloud and
abstracting from resource management is that developers must
rely on the cloud platform provider to offer stable and consistent
performance. Somewhat counterintuitively, FaaS users must actu-
ally pay more when a Faa$S platform underperforms and latency
is higher, as billed function execution is also longer [2, 36]. Most
cloud FaaS$ platforms do not offer service level agreements beyond
limited guarantees regarding general uptime [1, 21, 44].

Cloud computing is subject to performance variations [7, 33], and
FaaS is no exception, as previous studies on the long-term (day-to-
day) performance changes of FaaS$ platforms have shown [16, 27, 40].
A general improvement of FaaS services over time is expected as
platform providers update and advance there infrastructure [42],
yet there are also much finer effects in the short term.

In this paper, we benchmark and analyze these effects using
highly frequent (every 40s) cloud FaaS benchmarks over the course
of two months against Google Cloud Functions (GCF), which has
received fewer attention in previous studies. Our main finding is
that performance varies greatly during the course of the day, with
an increase of request-response latency of up to 15% and more
than three times as many unexpected cold starts from day to night
within the same day, and that these effects are most noticeable at
the start of the week. These findings impact how we interpret the
results of cloud FaaS benchmarks and are significant for cloud FaaS
developers. In summary, we make the following contributions:

e Based on a number of existing serverless benchmarks, we
propose a methodology for evaluating temporal performance
variations in cloud FaaS platforms (§3).

!https://aws.amazon.com/lambda/
Zhttps://cloud.google.com/functions/
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e We execute our benchmark with frequent (every 40s) runs
on Google Cloud Functions over the course of two months
and show how request-response latency exhibits strong (up
to 15% difference) diurnal variation (§4.1).

o We further uncover an increase in unexpected cold starts at
specific times of the day that suggest increased rates of in-
stance recycling in GCF during times of high demand (§4.2).

o We evaluate long-term trends in our data and identify possi-
ble causes (§4.3).

e We survey existing cloud FaaS benchmarking studies and
find that almost two thirds provide insufficient information
on how the performance variability effects we identify are
controlled for (§5.1).

o We discuss implications of our findings for practitioners that
run applications on cloud FaaS platforms (§5.2).

In order to enable other researchers and practitioners to extend
and replicate our experiments, we make the artifacts used to pro-

duce this paper available as open-source’.

2 RELATED WORK

Existing research on FaaS performance variability focuses on ei-
ther short-term or long-term (i.e., more than a week) variability.
Short-term studies include a report by Lambion et al. [27], who
have benchmarked the performance of various functions on AWS
Lambda over the course of a day. The authors execute their func-
tions in different time zones and using different hardware archi-
tectures, and find a 6% shorter function duration during the night.
Mahmoudi et al. [29] propose an analytical performance model to
predict performance metrics of functions. To validate their model,
they repeat the same one-hour experiment ten times, and find that
request arrival rate, average response times, and function timeout
can be used to predict performance up to five minutes in advance.
Ginzburg and Freedman [20] analyze performance variations on
AWS Lambda over the course a week. They call 1000 functions
every two hours and show that the daily performance of the same
function inside the same region and between regions can vary sig-
nificantly, which is mainly caused by local inactivity and lack of
performance isolation between tenants. Since they only measure
for one week, their analysis focuses on daily variations, which they
measure at 1-2%.

A long-term study of serverless systems is presented by Eismann
et al. [16], who have executed the same serverless application on
Lambda once a day over ten months. They find long-term perfor-
mance changes that are likely to be caused by platform changes, and
short-term variations between days. Figelia et al. [19] measure the
performance of various functions running on Lambda over seven
months, but do not analyze their dataset for regular variability.

The focus of our paper is to close the gap between long-term
and short-term studies by collecting frequent measurements over
a longer period of time. Additionally, we go beyond the focus on
AWS Lambda and present a general methodology for experiments
that are applicable to all FaaS platforms. We collect our results on
Google Cloud Functions, which has received fewer attention in
previous studies despite its popularity.

3https://github.com/umbrellerde/night-shift-code
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3 METHODOLOGY

To assess performance variations in FaaS, we repeatedly execute
a FaaS function in short intervals across a large time span. By
controlling for execution region, resource parameters (through the
memory option on cloud FaaS providers), and function type, we
can focus on cloud platform performance.

Functions. We use three FaaS functions from existing serverless
benchmarks in our experiments. All functions perform isolated
computations that do not rely on external services, the performance
of which could influence our results [22]. The float workload of
Kim et al. [26] that performs floating point operations. The matrix
function of Werner et al. [41] that performs matrix multiplication.
Finally, we adapt the face detection model of Barosum et al. [4] for
the ml function. To minimize the impact of external fluctuations on
our measurements, we embed all inputs directly into the functions.

The resources available to a function instance are determined
by the memory configured for that function: On GCF, the amount
of vCPUs allocated to a function instance is tiered and increases
with every multiple of 128MB memory, while AWS Lambda scales
vCPUs linearly with memory [14]. To capture effects of resource
configurations, we deploy float and matrix with 128MB, 256MB, and
512MB of memory, while ml is deployed with 512MB and 1024MB
as it has higher resource requirements.

Execution. Cloud function invocations can be both “warm” and
“cold”: When a function is invoked for the first time, a new function
instance is created. This is called a “cold start” and incurs a creation
overhead [3, 6, 31]. Subsequent (but possibly not parallel) invoca-
tions of the same function can reuse the existing instance and avoid
this overhead, the “warm starts”. Typically, cloud platforms will
keep existing instances for future invocations for a limited amount
of time and then evict them to reclaim resources [13].

To capture both cold and warm start latencies, we invoke func-
tions in loops: We first call the function once, creating a cold start,
and then call the function again. In theory, this second invocation
should be served by the existing function instance. We then wait 20
minutes to make sure that the next function call is a cold start again
and restart the same loop. To collect more measurement points than
twice every 20 minutes, we deploy parallel copies of a function that
we cycle through.

Metrics. We consider three main metrics: request-response latency,
unexpected cold starts, and long-term trends. For request-response
latency, we use the billed duration that is output for every func-
tion execution by the FaaS platform. Unexpected cold starts are
cold starts that occur directly after a function has already been
called once, so that they should be warm. Unexpected cold starts
imply that a platform was unable to find a warm function instance,
possibly because it has been evicted due to resource contention.

Finally, we conduct a seasonal trend decomposition using LOESS
(STL) [12], which can handle complex seasonal patterns. We use
the following model for our data:

Yr = Tt + St + It
, where T; represents the trend, S; represents a seasonal compo-

nent (days in our case), and I; represents the remaining noise. We fit
our data to this model using a method to create smoothed estimates
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Figure 1: Billed Duration of warm calls to float with 128MB
memory. During working hours, the billed duration increases
by up to 15%. The area around the dashed line shows the 95%
confidence interval.

with a seasonality of one day. The trend component T; shows the
overall progress in the billed duration over the whole duration of
the experiment. A non-flat trend line indicates that longer-term
changes to the platform have occurred, e.g., long-term seasonal
changes or updates to the platform that influenced performance.
The seasonal component S; shows periodic recurring deviations in
the data from the trend. The I; component is random noise centered
around 0. Outliers in the noise indicate that the performance at spe-
cific times could not be explained by the previous two components.
The trend component from the STL is also used for Change Point
Detection [39], which can detect structural changes in data.

4 EXPERIMENTS

In this section, we present initial results of our experiments with
Google Cloud Functions in the europe-west3 region. The measure-
ment period started on Dec 12, 2022 and ended on Feb 27, 2023.
We report all execution times in local time (CET). We first analyze
the performance variability of the platform (§4.1). Afterwards, we
explore unexpected cold starts (§4.2) and outliers as well as change
points and long-term trends in our data (§4.3).

4.1 Performance Variability

To analyze performance variability, we analyze the billed duration
of comparable invocations. We show the billed duration of the
float function with 128MB memory in Figure 1. We observe a clear
performance increase during the night, with a noticeable latency
spike during working hours. The average billed duration between
23:00 and 06:00 was 106ms, and increased by 15% to 122ms between
07:00 and 16:00. When aggregated by the day of the week, the
average billed duration fluctuates between 113.86ms on Saturdays
and 117.28ms on Mondays. Overall, billed duration is slightly lower
on the average weekend compared to the start of the week. The
weekly trend is much smaller than the daily trend, as the billed
duration only decreases by ~4% during the weekend.

SESAME °23, May 8, 2023, Rome, Italy

20.0%
€ ¢
L2 100%
g
o >
50
e
32 0.0%
%
g c
Z 8§
% s —10.0%
@
—20.0%
0 5 10 15 20
Hour of Day
(a) float
20.0%
Memory
— 51
S-E 10.0% -
£ 100% - 1024
[ad s
£3
o5 L
q>)£ 0.0% e - -
Q= =
L0
> C
=
% s —10.0%
04
—20.0%
0 5 10 15 20
Hour of Day
(b) ml

Figure 2: Performance change over a day of warm instances
ordered by memory size. The y-Axis is normalized to the
average and shows the relative change, e.g., bigger values
show a bigger deviation from the average billed duration. The
area around the curves shows the 95% confidence interval.

When looking at larger memory sizes, the relative performance
change over time becomes smaller. As shown in Figure 2, the
float function with 128MB memory changes ~10% during a day,
while 512MB only changes up to 5%. The ml functions with 512MB
and 1024MB memory equally changed ~4% during an average day.
Noticeably, the average billed duration of the float function with
256MB of memory differed more than 15% during a day. This can
be explained by looking at the distribution of latency values over
all invocations (Figure 3): Around 50% of functions with a mem-
ory size of 256MB follow the same distribution as functions with
512MB of memory, and the other half follows the same distribu-
tion as the 128MB functions. The results for the matrix function
exhibit similar results but are omitted due to space constraints. The
high variability in performance and uneven distribution of billed
durations indicates that GCF internally uses 128MB and 512MB
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Figure 3: Cumulative distribution of billed durations of the
float function without cold starts. We argue that GCF uses
128MB and 512MB containers to execute 256MB functions.
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Figure 4: Relative frequency of unexpected cold starts, aver-
aged by the hour of the week they happened in. On Mondays
during the day, up to 13% of invocations can be unexpected
cold starts, compared to less than 5% during the night and on
weekends. The area around the curve shows the 95% confi-
dence interval.

function instances to handle requests to the 256MB functions, as
also shown by Malawski et al. [30].

While cold start durations also follow the daily patterns shown
in §4.1, the configured memory size has no impact on the duration
of cold starts. The billed durations of cold starts follow a normal dis-
tribution and are on average around 9-10x longer than the average
warm latency, but all memory sizes follow the same distribution.
This indicates that the cold start overhead is dependent on resources
that can be configured by changing the function configuration.

4.2 Unexpected Cold Starts

We show the relative frequency of unexpected cold starts in Fig-
ure 4. While the billed duration of warm instances seems to only
follow a daily trend, the frequency of unexpected cold starts has a

Trever Schirmer, Nils Japke, Sofia Greten, Tobias Pfandzelter, and David Bermbach

130 : :
—— STL Trend

125 === Change Point
Outlier

120

115

Billed Duration
Trend Component [ms]

) 39 o) N )
o W e @ g

Function Start

Figure 5: Trend Component of the STL, with Change Points
and Outliers marked as horizontal lines.

weekly seasonality, with clear trends of increased cold starts during
working hours. On average, the frequency of unexpected cold starts
was 3.7% during the night (20:00—08:00), 3.6% during the weekend,
9.8% during working hours (09:00—17:00 Mon—Fri), and 12.3% dur-
ing working hours on Monday. For comparison, there were less
than 0.15% unexpected warm starts, where a function instance was
still warm after more than 20 minutes.

4.3 Outliers & Long-Term Trend

Based on the STL introduced in §3, we show change points and
outliers in Figure 5. We define an outlier as every hour during which
the average execution duration is outside the fourth interquartile
range, i.e., more than four times the difference between the first
and third quartile, away from the average. Our data contains four
outliers, which were all within three days of the turn of the month.
This indicates to us that the platform is under unusual load at these
times, possibly due to additional load from monthly jobs.

All change points, i.e., points when the average execution du-
ration changed, occurred during the night, indicating that they
coincide with scheduled updates to the platform.

Over our whole measurement period, there is no clear permanent
trend towards better or worse overall performance. Based on the
long-term study by Eismann et al. [16], we only expect to find
permanent trends in longer measurement periods. Compared to
the authors’ study of AWS, which finds statistical trends below 10%,
our trend component changes between 105ms during December to
128ms during February, a 21% increase.

5 IMPLICATIONS

In this section, we discuss how our findings impact serverless sys-
tems. First, we focus on the implications for benchmarking. After-
wards, we describe implications on serverless applications.

5.1 Validity of Benchmarks

When running benchmarks, researchers want to minimize effects of
external factors to their measurements, which otherwise might con-
found results [9]. In the case of benchmarking serverless systems,
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we have shown that the number of cold starts and the performance
of functions undergoes changes within a single day. For compara-
tive performance studies, benchmark results are only comparable
if experiments are conducted at comparable times. If an experi-
ment is short, i.e., does not capture the performance variation of
an entire day, daily variations can skew results. Similarly, long-
term performance changes can impact measurements taken over
longer periods of time, e.g., a three-day study with one group bench-
marked over the weekend and another benchmarked during the
week. A possible remediation for such experiments is adopting
parallel benchmarking techniques such as duet benchmarking [10].

We show an overview of existing publications on cloud FaaS
performance measurements surveyed for this paper in Table 1.
For every paper, we give an overview of cloud platforms under
test, cloud regions, and time of day of the benchmark execution, if
stated. Based on this metadata, we must assume that published re-
sults could be affected by daily performance variations if execution
time is not given or different regions are used (implying different
time zones). Overall, 10 out of a total of 16 papers do not provide
sufficient information to rule out effects of performance variability.
While this does not mean that the reported results are invalid, it
shows that the research community has not paid enough attention
to these effects in performance measurements.

As an example, we replicate an experiment from Copik et al. [13]
that compares the execution time of a dynamic HTML generator
(110.dynamic-html) between AWS Lambda and GCF. We deploy
this function in the eu-central-1 (Lambda) and europe-west3
(GCF) regions with 128MB of memory and run 50 sequential in-
vocations every hour over the course of five days. As shown in
Figure 6, the performance on GCF exhibits temporal variations
that can skew results: The smallest performance difference during
our experiments happened on the 23rd of February 2023 at mid-
night, when the average performance difference was <2.8s (GCF
52% slower). Shortly after, at 09:00, we observe the largest perfor-
mance difference with the average difference increasing to >25s
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(GCF 6.8x slower). These performance changes show that short-
term variation in performance between serverless platforms can
have a significant impact on benchmarking results and need to
be controlled for. We recommend repeating experiments over the
course of a day and mentioning execution time when describing
experiment setup.

5.2 Application Performance

The performance variability that we have shown for GCF affects
serverless applications in several ways: During daytime, functions
have increased latency, suffer more cold starts, and their execu-
tion cost is increased due to the pay-by-second billing model. For
low-latency, event-driven functions, it is not feasible to postpone
their execution to the night or a weekend to decrease costs. A
possible way forward, however, is to shift function execution to
another cloud region with better performance. This may increase
network latency and transmission costs, but an up to 20% reduc-
tion on function execution times and the associated decrease in
costs can outweigh this overhead for long(er)-running functions.
Such an approach requires constant evaluation of FaaS platform
performance in different regions, possibly also based on application
metrics [8].

Researchers have also proposed systems that adapt FaaS appli-
cations to improve performance and cost on cloud Faa$ platforms.
Such systems rely on initial performance measurements of applica-
tions on cloud platforms [14, 15, 18, 24] or a feedback loop between
platform, application, and optimizer [36]. Both approaches are af-
fected by performance variability of the FaaS platform, as the opti-
mizer or model cannot differentiate between performance changes
that are caused by deployment updates and those that are caused
by platform instability. A possible way forward for these systems is
to control for temporal performance variations, e.g., by deploying
multiple parameter sets concurrently or performing longer initial
measurements.

6 LIMITATIONS & FUTURE WORK

We have shown considerable performance variability in Google
Cloud Functions and discussed how these affect applications and
performance measurement research. We plan to build on this initial
work in the future to arrive at a more holistic view of performance
variability in cloud Faa$S platforms.

FaaS Platforms. Our initial experiments are limited mostly to GCF,
with some additional validation on AWS Lambda. Although we have
seen that in our experiments, Lambda suffers from less performance
variability than GCF, parameters such as memory size, hardware
architecture, geographical region, or programming language could
further influence variability. We plan to conduct additional exper-
iments on different FaaS platforms in the future, controlling for
these additional parameters.

Platform Changes. Faa$S platforms are evolving quickly, and our
measurements and experiments can only capture the behavior of
such a platform at a specific point in time. Continuous updates could
increase or even eliminate the performance variability effects we
observe in the future, making continuous measurements important.
Subsequently, researchers that want to account for the described
behavior in their own measurements on FaaS platforms should
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Table 1: Selection of serverless benchmarks and whether they could be impacted by short-term performance fluctuations. Bold

lines are papers where a daily impact could not be ruled out.

Authors Cloud Platform(s) Region(s) Specified Execution Time of Day
Copik et al. [13] AWS, Azure, GCP US (AWS), EU (Azure, GCP) -
Eismann et al. [16] AWS - daily (19:00) for 10 months
Figiela et al. [19] AWS, Azure, IBM, GCP EU (AWS), US (GCP) every 5 minutes
Jackson et al. [25] AWS, Azure - hourly over 6 days
Grambow et al. [22] AWS, Azure, GCP EU -
Kim et al. [26] AWS, Azure, GCP - -
Lopez et al. [28] AWS, Azure, IBM - -
Malawski et al. [30] AWS, GCP EU (AWS), US (GCP) “permanently”
Manner et al. [31] AWS, Azure - -
McGrath et al. [32] AWS, Azure, GCP - -
Pelle et al. [34] AWS “multiple regions” -
Scheuner et al. [35] AWS UsS -
Shahrad et al. [37] Azure “entire infrastructure” every minute
Somu et al. [38] AWS, GCP - -
Werner et al. [41] AWS EU -
Zhang et al. [43] AWS, GCP - -

conduct their own experiments using our methodology, as our
measurement results may be outdated by then.

Performance Dimensions. The functions we use in our experiments
are CPU-bound, which gives a good indication for general platform
performance and minimizes the impact of the performance of ex-
ternal services. Beyond CPU performance, other resource metrics
such as memory access, disk I/O, and network latency or band-
width can be affected by platform variability. As our findings may
not be unconditionally applicable to workloads that are bound in
these dimensions, we will investigate their variation with additional
functions in the future.

7 CONCLUSION

In this paper, we have presented the results of our multi-month
performance variability benchmark measuring the performance
of multiple functions on Google Cloud Functions every 40s. Our
results show that the execution duration of a function varies up to
15% per day, and the frequency of unexpected cold starts varies over
aweek and per day. While more resources reduce daily performance
variability, they do not shorten cold start durations. By looking at
the long-term trend, we identify likely updates to the platform and
outlier behavior around the turn of the month. These results have
implications for both researchers and practitioners.
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