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Abstract—With the rapid growth of users adopting public
clouds to run their applications, the types of resources procured
from the different public cloud resource offerings are critical in
simultaneously achieving satisfactory performance and reducing
deployment costs. Typically, no one resource type can meet all
application requirements, and thus combining different resource
offerings is known to considerably reduce the performance-cost
problem. However, it is non-trivial to use blended resources,
due to the manual overhead of designing and implementing
such blended approaches. Specifically, it necessitates rewriting
the application code to suit a given resource and scaling it on
demand.

In order to overcome this manual hurdle, we take the first
step by proposing Splice, an automated framework for cost-
and performance-aware blending of IaaS and FaaS services.
The three major goals of Splice are: (1) while cost-saving
opportunities exist from blending resources, we aim to largely
automate the blending process for public cloud services through
a compiler-driven approach; (2) more specifically, we focus on
automated blending of VMs and serverless functions; and (3) for
serverless applications which contain multiple chained functions,
we unearth the potential choices in determining a portion of
the services to be blended cost-efficiently. We implement Splice
on Amazon Web Services (AWS) using an Abstract Syntax Tree
(AST), and extensively evaluate its effectiveness using several ap-
plications with real-world traces. Our experiments demonstrate
that, through automated blending, Splice is able to reduce SLO
violations by 31% compared to VM-based resource procurement
schemes, while simultaneously minimizing costs by up to 32%.

Index Terms—automation, compiler, serverless, blending

I. INTRODUCTION

The public cloud is being extensively used by different

types of tenants for hosting their applications. Many such

applications have performance requirements (e.g., latency),

also called service-level objectives (SLOs). The types of cloud

offerings procured to host these applications play a pivotal role

in meeting their SLOs as well as determining the cost they

incur. Henceforth, we refer to this as the performance-cost
problem.

Public cloud resources have typically been procured via

Infrastructure as a Service (IaaS) offerings such as virtual

machines (VMs or instances), containers, block storage de-

vices, etc. Offerings based on Platform/Function as a Ser-

vice (PaaS/FaaS) and Software as a Service (SaaS) have

also begun to be offered. For instance, a Machine Learning

(ML) inference-based application can be hosted using a fully-

managed solution, such as AWS SageMaker [7], or a semi-

managed solution, such as AWS Elastic Container Service [5].

Key selling points for FaaS and SaaS offerings over IaaS

include their finer-grained billing; reduced management and

administrative effort/costs; and (alleged) reduced effort and

cost of application development if such development is being

done from scratch. From extant literature, e.g., [2], [33], it is

evident that no single resource offering can best cater to all

application requirements and blending different resource offer-

ings greatly alleviates the performance-cost problem. Several

recent works have focused on blending different types of IaaS

offerings. Some recent works have also proposed blending

IaaS with FaaS [20], [22], [40]. These blended solutions

have been found to be more cost-efficient when compared to

solutions based on a single offering type.

A major impediment in offering blended services is the

manual effort required from developers to rewrite the appli-

cation towards catering to each offering type that is being

used in the blended solution. In fact, the human cost of

these transformations itself constitutes a key constraint which

has been ignored in the blending-related works cited above.

This motivates the need to automate different aspects of

such transformations by providing an efficient means to blend

different resource offerings. Within the large space of blending

possibilities, in this work, we focus on the following scenarios

to address the performance-cost problem:

• IaaS to IaaS+FaaS: Code being migrated from a private

cloud (e.g., an enterprise setting) to the public cloud “as

is” (sometimes labeled “lift and shift”) can benefit from

refactoring parts of it to use FaaS offerings. Specifically,

FaaS can be used as an agile transition mechanism when

spinning up new VMs (note that serverless functions can

be launched in a few milliseconds while VMs may take

tens of seconds to minutes to start up), thus reducing

over-provisioning of VMs to address the performance-

cost problem.

• FaaS to IaaS+FaaS: Prior related research [20], [22]

indicate that using FaaS in a standalone manner may be

more expensive than using VMs depending on the work-

load properties, owing to the higher per-unit resource cost

of FaaS. For this reason, cost savings may be possible for

certain existing FaaS application chains by splitting them

carefully and hosting suitable portions (especially stateful

ones) within VMs.

While the above-mentioned blending scenarios can help
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alleviate the performance-cost problem, as previously stated,

the major downside in designing blended solutions is the

manual overhead of rewriting applications to suit the diverse

platforms in consideration. For instance, monolithic appli-

cations may need to be redesigned as multiple independent

functions to leverage FaaS offerings. Moreover, for existing

FaaS chains (multi-functions), deciding which functions to

offload to VMs at runtime impacts both performance and

cost. Therefore, it would be highly desirable to largely au-

tomate the identification and realization of such cost savings

opportunities through blending. We take the first step towards

this by proposing Splice, an automated framework for cost-

and performance-aware blending of IaaS and FaaS services.

The key components of Splice include the following: (1)

an annotation schema in which users can specify the type

of code transformations to be undertaken; (2) a compilation

framework to automatically generate the code for different

blended versions; and (3) a dynamic load balancer which can

seamlessly switch between the blended versions based on user-

specified cost and performance constraints. To this end, the key

contributions of the paper are summarized below:

• For blending resources, we characterize the manual over-

head involved in intermixing IaaS and FaaS, and provide

key insights which enable efficient automation of the

blending process.

• We build Splice, which consists of an annotation scheme,

static compiler, controller, load-balancer and scaling pol-

icy, and can support both single function and multi-

function applications.

• We implement Splice using various AWS cloud comput-

ing services and abstract syntax tree module. Splice is

evaluated with real-world request arrival traces (WITS

and Wikipedia) and benchmark suites (ResNet inference

service, feature generation, matrix multiplication, and

image processing) under different SLOs.

• We demonstrate that Splice minimizes SLO violations of

inference queries by 16%-31% compared to employing

only VMs. In addition, Splice saves up to 32% on

costs when compared to standard resource procurement

methods.

• We further analyze offloading different combinations of

functions for a multi-function image processing applica-

tion, and show that Splice reduces the SLO violations by

up to 13% compared to using only VMs.

The remainder of this paper is structured as follows. Sec. II

presents the necessary background and motivation for Splice.

In Sec. III-A, we explain how to model the automation in

Splice, followed by the design and implementation of Splice

in Sec. III and IV. The experimental results are discussed in

Sec. V, followed by related work in Sec. VI.

II. BACKGROUND AND MOTIVATION

To appreciate why service blending may be desirable (over

using only a single service type), consider Table I, which offers

a glimpse of the trade-offs across different cloud service types.

Recent literature [20], [22], [40] has explored these trade-offs

and established them concretely. Specifically, these works have

let both stateless and stateful tasks run on AWS Lambdas [25]

(a FaaS/PaaS offering), as well as VMs (IaaS); AWS Lambda

is generally a Function as a Service (FaaS) that can also

manage automated scaling depending on user specifications

(PaaS), and thus it is termed a “FaaS/PaaS offering.” We

explain the different blended versions that we consider in this

work in detail.

A. IaaS to IaaS + FaaS

There are two primary reasons why using a PaaS offering

may assist in lowering costs compared to IaaS, and they have

been examined to different extents in related work (see Sec. VI

for details). All of these apply to latency-critical workloads.

Going forward, we use the term “Lambdas” for PaaS and

“VMs” for IaaS, while acknowledging that PaaS and IaaS are

more general terms.

1) Lambdas for handling fine time-scale variability: For

latency-critical workloads, auto-scaling techniques need

to provision for close-to-peak needs. Lambdas may

allow one to provision VMs for less than the peak.

Lambdas also provide finer-grained pricing than con-

tainers inside VMs for highly intermittent applications.

This benefit applies most readily to stateless workloads.

Moreover, in some stateful workloads, careful design has

been shown to offer tangible benefits (e.g., SplitServe

[22]).

2) Lambdas for transition: When new VMs need to be

added (the system is under-provisioned on purpose, or

due to prediction errors, or as part of failure recovery),

Lambdas, which have faster spin-up compared to VMs,

can serve as transition mechanisms. Again, while this

benefit is exploited for stateless workloads, it can also be

used by stateful workloads through careful design [36].

B. FaaS to IaaS + FaaS

Currently, Lambdas are significantly expensive per-unit re-

sources compared to VMs. This makes economic sense [21]

– PaaS and SaaS are akin to “value-added services” in more

conventional markets. Consider Amazon EC2 Instances and

Amazon Lambdas as IaaS and FaaS, respectively. For 1 h,

Lambda is approximately 3.5 times more expensive than a

single vCPU on AWS t3.medium EC2 on-demand instance [3].

We configure Lambda memory to 4096MB as t3.medium
has same memory size. 1. Lambda’s current per-GB-second

invocation cost in us-east-1 is $0.0000166667, excluding

Lambda’s per-million-request pricing. With the t3.medium
general-purpose instance type, one can obtain 4GB of memory

and 2vCPUs for $0.0416/h.

Besides the costs stemming from these “primary” sources,

a second contributor to the higher costs of PaaS comes from

the shared-state management. Generally, PaaS-based products

need to rely upon additional services to persist and share

1The amount of memory allotted to AWS Lambda is usually proportionate
to the number of vCPUs, with one vCPU equating to approximately 1765MB.
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Service
Type

Billing
Granularity

Spin-up
Delays

Programming
Difficulty

Price per unit
resource

IaaS Coarse Very High High Very Low
PaaS Fine Low High High
FaaS Very Fine Low High High
SaaS Very Fine Very Low Very Low Very High

TABLE I: Comparison of different cloud service types.

state with associated costs. In particular, AWS Lambda-based

stateful applications often rely upon S3 [6], Simple Queue

Service (SQS) [8], shared caches (Memcached or Redis hosted

on VMs or offered as PaaS/SaaS offerings), or shared file

systems hosted on VMs (EFS) [11]. Similarly, Microsoft’s

Durable Functions [9] provide stateful orchestration of func-

tion execution. They are simply a collection of Azure Func-

tions that use the Storage Account. The cost model for Azure

Functions includes the number of executions, execution time,

and storage consumption. The cost of Azure Storage does not

begin to accrue until the first gigabyte is consumed, but if large

amounts of data are stored in queues, the cost will increase

substantially.

C. Cost Savings from Blending

Combining IaaS and FaaS has been found to save oper-

ational, as well as runtime, costs, and recent research has

been performed on service blending using AWS Lambdas.

Spock [20], SplitServe [22], and MArk [40] leverage FaaS as

a transition mechanism while scaling-up IaaS resources and

handling traffic spikes. Spock achieves cost savings in ML

inference service queries by up to 33% compared to VM-

based resource procurement schemes. SplitServe, an Apache

Spark enhancement that integrates Amazon Lambdas and other

cloud functions, reduces cloud expenses by up to 55% for

workloads with minor-to-moderate amounts of shuffling and

31% for workloads with high amounts of shuffling, both when

compared to VM-based auto-scaling. MArk, a cost-effective

and SLO-aware ML serving system, has been demonstrated to

obtain cost reductions of up to 7.8%, compared to the leading

auto-scaling machine learning platform SageMaker.

D. Manual Overhead of Blending

Unfortunately, achieving optimal blending is far from trivial.

From our experience, doing so necessitates extensive modifi-

cations to the application (usually covering both user-written

and runtime/libraries), as well as substantial programmer time

and effort. It is worth noting that, although *aaS and the

emergence of “cloud-native” programming languages [10]

make the construction of cloud-ready applications relatively

easier, in most cases, they still require the application to be

completely redesigned.

Consider, as an example, AWS Lambda, in which program-

mers typically spend time in converting original functions

to Lambda-based functions, taking library modules, as well

as global variables, into account. Program analysis is then

necessary to determine function dependency, which results in

the manual use of external storage for data dependency (AWS

S3 [6] or EFS [11]); AWS Lambda is stateless, which implies

that programming constraints exist when using storage for data

flow. Finally, one must also construct a deployment zip file

containing FaaS-ready code and use a cloud-provider tool to

build the final Lambda code.

Due to the above-mentioned overhead, a tool for automating

the creation of blending services, such as [16], [34], can

be highly useful in practice. If customers are aware that

transferring a specific section of code to FaaS will lower

the cost, a means to automate the blending service using

simple annotation schemes will provide flexibility and reduce

requisite human work to rewrite the program. The primary

objective of this study is to eliminate this manual effort by

developing an automated compilation system that is capable

of switching seamlessly between multiple blended versions

based on user-specified requirements/constraints.

III. OVERALL DESIGN OF SPLICE

A. Design Space Exploration

While an automated compiler can alleviate the manual

overhead of blending, several challenges exist in porting parts

of the code to appropriate FaaS/IaaS services. Firstly, we

need to develop an annotation schema [29] to perform code

transformations. However, in order to develop an annotation

scheme, two critical questions must be answered: (1) how

would the compiler identify which function to offload?; and

(2) how to design a systematic form of annotations for the

compiler to recognize service selection; otherwise, users would

have to edit code directly from the compiler’s intermediate

representation. It is worth noting that the inherent assumption

here is that we consider tenants who have insights about

application structure, resource needs, etc.

While addressing the challenges mentioned above, numer-

ous related issues may arise even if there is a standard

form for the annotations. In particular, developers may find

that combining multiple sections per functional unit reduces

wasteful network calls. Users might also provide certain limits,

such as mapping some of the code to FaaS when a measure

of interest (such as the number of requests over a given time

or CPU/memory consumption) exceeds a specified thresh-

old. Providing rules/constraints is critical because different

resource offerings may benefit from different cloud settings,

such as leveraging Lambda for parallelism and short-running

jobs.

The requirements mentioned above necessitate the use of

extra annotations for flexibility. Additionally, there is difficulty

in communicating these rules/constraints to the load balancer,

directing the servers to run blended services when acquiring

additional resources. We need an intuitive way of integrating

annotations with a load balancer. Although annotations can

specify rules and constraints for blending services, challenges

remain for blending, as they require extensive application

changes, as discussed earlier in Sec. II-D.

B. Proposed Splice Design

Based on the discussion above, providing an automated

means of integrating services can become crucial towards

minimizing manual work. Towards this, we propose Splice,
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Fig. 1: High-level design of Splice depicting its various

components.

which applies methodologies and tools to avoid the requisite

programming and system processes to convert these insights

into cloud-ready code. The high-level design specifications

of Splice are shown in Fig. 1. Splice comprises a “pragma-

based” annotation mechanism that the programmer may use

to annotate the application code. The programmer’s goal

would be to convey domain knowledge of desirable “basic

execution units” (BEUs), an execution granularity for blending

selections that we would create. Splice systematically uses the

annotations to identify specific BEU-to-service type mappings.

Splice analyzes such annotated code and builds an intermedi-

ate representation (IR), which our proposed compiler employs

to construct cloud-ready code automatically. The user specifies

workload with annotations and an SLO.

We begin with the initial servers connected to the Load-

balancer, which handles resource selection and procurement.

The Splice engages when the Load-balancer decides to auto-

scale. Splice interacts with its components and informs the

Load-balancer to use blending services when applicable.

C. Component Details

1) Compiler: The Compiler is responsible for turning

source code into *aaS executables. It begins by searching for

annotated pragmas. If metrics are defined via user annotations,

the Compiler forwards them to the Controller module. The

Compiler then performs automatic transformation, enabling

program analysis and automated creation of cost-effective

cloud-ready programs. The Controller gathers information and

orders the Compiler to upload executable code to all servers

through AWS S3 once the Compiler has prepared the cloud-

ready blended code.

2) Monitor: This module monitors AWS CloudWatch and

Load-balancer. It collects CloudWatch (CPU and memory

utilization of running servers) data and the Load-balancer’s

(a) Offloading whole
application

(b) Annotation for sep-
arate function

(c) Grouping functions
to one Lambda func-
tion

Fig. 2: Illustrative image processing application snippet with

annotations highlighted.

metric (the current request arrival rate). In the case of cal-

culating the cost of Lambda, CloudWatch is also used for

retrieving the billed duration of Lambda’s execution. These

measurements are conveyed to the Scaling Policy.

3) Scaling Policy: The Scaling Policy determines how

many more instances will be made available to handle incom-

ing requests. The Scaling Policy receives information about

the current request arrival rate and metrics of servers from the

Monitor module. For scaling-out resources, it calculates how

many more VM instances are needed and sends the result

to the Controller. For scaling-in resources, the Scaling Policy

finds VMs that are idle for more than three minutes and sends

them to the Controller; this heuristic is leveraged in order

to avoid early termination of instances in the case of short-

term request rate changes (as suggested by [19]). It is to be

emphasized that Splice is capable of adapting to any scaling

policy, including predictive and reactive scaling.

4) Controller: The Controller is responsible for allocat-

ing cloud resources and selecting services. It collects data

from the Scaling Policy and user-annotated metrics from

the Compiler. It is worth noting that, depending on how

developers implement annotation, a blending service could

imply merely using FaaS. The Controller can make several

decisions based on the user-annotation type. Specifically for

scaling-out resources, it can: (1) create more VM resources

as a standard auto-scaling policy; (2) manage incoming re-

quests utilizing blending services while generating more VM

resources; or (3) employ blending services to handle incoming

requests only when the current status meets the requirements

of user-annotation metrics, such as executing on FaaS when

the request rate exceeds the specified value. The Controller

informs the Compiler to upload the blended cloud-ready code

to all servers when the specified metric is satisfied. The Load-

balancer later redirects requests to use the blended code to

match incoming requests while acquiring additional resources.

D. Annotation Schema

Recall that the term “Basic Execution Unit (BEU)” refers

to a program fragment defined as a unit of entire application

functionality. Explicit pragmas are applied to a collection of

related functions considered appropriate for consideration as

Lambda functions by developers (otherwise, the compiler sees

a logic unit as VM). Our current compiler implementation
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Pragma Type Description

BEU FaaS
Placement on
a Lambda function.

BEU FaaS
[arrival rate >R]

Placement on a Lambda
function with load
balancing rule.

BEU FaaS
Combine L1

Grouping functions
to the same Lambda function.

TABLE II: Pragmas supported in Splice.

identifies two types of pragmas, i.e., those representing a single

function and those representing multi-functions.

To demonstrate how our proposed approach works in prac-

tice, let us consider the sample application code fragment in

Fig. 2a, obtained from an image processing application that

calls functions in sequential order. Each function affects the

image generated by the previous function uniquely. A sample

annotation of this fragment (with highlighted annotations) with

several types of programmer-inserted BEUs for these functions

is shown in Fig. 2.

The function gray scale, from Fig. 2b, is designated as an

appropriate function for insertion on a Lambda function as

an example of a new type of annotation (pragma BEU FaaS).

The example in Fig. 2b additionally shows how the user is

leveraging domain knowledge to provide a formula for a Load-

balancer’s resource selection rule that Splice should consider

(pragma BEU FaaS [arrival rate > R]), i.e., the compiler

should insert a load balancing rule into the cloud-ready code

that routes requests exceeding the specified threshold to the

Lambda-based version of the function. The parameter R is later

compared with the “current arrival rate” by Splice’s Controller.

The request rate is just one representative example that we

use, while the Load-balancer rule is extendable to incorporate

additional metrics with respect to the application constraints.

“BEU FaaS” in the main function declares that the entire

program is a Lambda function, and the pragma BEU FaaS

Combine L1 indicates that the compiler locates and unifies

functions with the prefix “L1.”, as illustrated in Fig. 2a

and Fig. 2c, respectively. The ability to group one or more

functions allows for some flexibility. Consider a group of

BEUs with high point-to-point communication (state transfer)

overhead. Combining BEUs to form a single execution unit

(FaaS) may be the most cost-effective solution because it

reduces network transfer delays on external storage, such as

AWS S3, allowing FaaS to finish within its limited lifespan.

E. Application Representation

Splice parses the application code for programmer-inserted

pragmas and generates an intermediate representation (IR). We

see functions as logical units (BEUs) by default, apart from

user-annotated BEUs. Table II lists the programmer-inserted

annotations supported by Splice. Splice uses BEUs to create

a graph form of the IR that expresses the service selection for

each BEU, as well as relevant dependencies between them.

Similar to a conventional call graph, each vertex/node in the

graph represents a unique BEU, and the directed edge contains

data exchange between BEUs. Using a graph data structure

allows our compiler to automate the addition of the function’s

Fig. 3: Splice compiler pipeline.

input/output to an external datastore (Amazon S3 [6]) and

upload/download them using the corresponding external URL

for data dependency between nodes.

IV. IMPLEMENTATION AND EVALUATION

In this section, we discuss in detail the implementation

details of Splice on AWS using Python Abstract Syntax Tree

(AST), followed by the evaluation methodology.

A. Implementation Details

Splice is implemented using the AST module for automatic

code transformation.2

ASTs [32] are data structures that are commonly used in

compilers to describe the structure of program code. They

are essentially an intermediate representation of the program,

which facilitates further analysis/transformations. We created

a Splice compiler in Python with approximately 3,000 lines

of code. The implementation pipeline for Splice is depicted

in Fig. 3. It begins by detecting an annotated pragma. If the

pragma contains metrics, it forwards them to the Controller,

and then begins creating the corresponding Lambda code by

examining the function name, parameters, libraries to pack,

and global variables. It then searches for dependencies, such

as function calls and data flow. Based on the dependencies,

Splice automatically adds external storage (S3) and related

library modules for the function’s input and output. It takes

data from the outcomes of dependencies and converts function

calls to Lambda-invoked function calls. It finally generates

the Lambda code via an AWS Command Line Interface using

a deployment zip file that includes FaaS-ready code, library

modules, and global variables.

B. Experimental Setup

Workload Memory Al-
located (MB)

Average Ex-
ecution (ms)

Requests per
vCPU

Resnet18 Inference 1712 129 6
Feature Generation 2048 358 2

Matrix Multiplication 2048 207 3
Image Processing 2048 6922 x

TABLE III: Workload description for VM and Lambda func-

tions. The second column shows memory configuration for

Lambda, and the fifth column represents the number of re-

quests that are running in parallel per vCPU for VM.

To achieve a fair comparison, we change the memory

configuration for Lambda (as shown in Table III) for an iso-

performance experiment in which both VM and Lambda-based

deployments execute in the same amount of time. Note that

2The current version of our implementation in Python is shared in https:
//github.com/mjaysonnn/Splice
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we omit requests per vCPU for image processing application

since it is used for a different scenario (see Sec. IV-B4).

We limit our testing to instances from the same EC2 family

(C5) to guarantee fairness which we chose because Lambdas

have hardware comparable to C5.large VMs (2vCPUs, 4GB

RAM) [37].

To handle millions of simultaneous requests, we use an

AWS EC2 C5.2xlarge (8vCPUs, 16GB RAM) instance as a

front-end with an Nginx load-balancer. Out of numerous load

balancing methods (such as “Round-Robin”, “IP Hash”, or

“Weighted Round-Robin”), we utilize the “Least Connection”

method, which sends requests to the server with the fewest

active connections to minimize idle VM resource consump-

tion. AWS CloudWatch (a component of the Monitor) is used

periodically in the front-end to collect CPU/memory utilization

of running servers, the Load-balancer’s metric, and billed

duration of AWS Lambda. Note that the front-end’s running

time and the number of API requests of AWS CloudWatch are

counted towards the VM and Lambda cost models.

To serve the individual requests, we use numerous C5.large

instances. Each server comes with a library for executing

workloads and FastAPI [17], a Python-based web platform that

optimizes the server’s resources. To avoid high data transfer

costs, we conduct our tests in AWS’s us-east-1 region.

To prevent cold starts on initial invocations, we manually

invoke an idle Lambda function every 20min. Lambda func-

tions are kept warm for at least 20 min after they are called

[19], and the median cold start latency in AWS is less than

200ms. We take these extra invocations into consideration

when calculating monetary costs. In addition to the cost of

invocation and computation, we examine the cost of S3, which

serves as stateful storage for retrieving the pre-trained model

used in the inference workload and contains the deployment-

code zip for creating Lambda functions.

1) Workload Generator: To assess the advantages of Splice,

we developed a high-fidelity event-driven Workload Generator.

The Request Generator (described further in Sec. IV-B2)

provides input to the Workload Generator, which generates

request arrival times based on real-world trace. The work-

loads used for evaluation are MXNet ResNet-18 model in-

ference, feature generation, matrix multiplication, and image-

processing applications (see Sec. IV-B3 and IV-B4).

2) Request Generator: We used WITS [39] and

Wikipedia [38] (WIKI) traces as input to the Request

generator. WIKI trace is a real-time record of users interacting

with the Wikipedia website, with traffic patterns modeled by

Poisson arrival times, short-term burstiness, and diurnal level

fluctuations. Compared to the WIKI trace, the WITS trace

contains a large variation in peaks. For the single function

workloads (ResNet model inference, feature generation,

matrix multiplication), we scaled both traces down to an

average of 130 requests per second. For the multi-function

workload (our image-processing application), we scaled the

WITS trace down to an average of 65 requests per second

due to its longer duration. This mimics a real-world situation

in which the web service responds to different queries every

second.

3) Single Function Workload Scenario: Each request from

the Request Generator corresponds to running a separate

single-function workload. We evaluate our proposed system

using ML inference, feature generation, and matrix multipli-

cation.

For inference queries, the ResNet-18 model (of size 120MB)

is pre-trained using the Imagenet dataset, and we use the

MXNet ML module [13] to deploy and perform model

inference. We manually modified the serverless benchmark

suites [24], created VM-based applications, and performed

feature generation and image processing (cf. Sec. IV-B4). For

feature generation, we use the Amazon Fine Food Review3

text dataset [4] as input. Each request for feature generation

corresponds to fetching a review dataset from S3 and using

the Pandas library [31] to transform it into a TF-IDF vector.

For the matrix-multiplication application, we multiply two

square matrices (each is of size 500 × 500) using the NumPy

library [1].

Throughout the experiment, to manage 130 requests per

second for both WITS and WIKI traces, we choose the

number of initial servers depending on the number of requests

each vCPU can handle in parallel per workload, subject to a

response time goal of 1000ms (described in Table III). We use

the first 60 minutes of the WITS and WIKI traces.

4) Multi-Function Workload Scenario: Each request from

the Request Generator corresponds to execution of image

processing application (shown in Fig. 2a). The application

has five functions, i.e., Flip, Rotate, Gray Scale, Filter, and

Resize, with response time of approximately 1.24s, 1.86s,

0.66s, 2.67s, and 0.3s, respectively. To run the application,

we use C5.large VM instances and all Lambda functions

have a RAM configuration of 2000MB for iso-performance

experiments. The average response time for performing image

processing is 7 seconds on a C5.large instance, and thus we

use 455 (= 7×65) servers to handle an average of 65 requests

per second for the first 10 minutes of the WITS trace. Out of

the 32 (= 25) ways of deploying sequential functions in VM

or Lambdas or a blending, we sample 10 representative cases

that exhibit variations in response time and monetary cost.
C. Evaluation Setup

We evaluate our results by comparing Splice’s mone-

tary cost and response time (as specified in the SLO)

when deploying in the following resource acquisition sce-

narios: (1) All Lambda; (2) VMs with auto-scaling (VM-
autoscaling); and (3) VM with conservative over-provisioning

(VM-overprovision), i.e., 1.5 times the amount of resources

needed. VM-overprovision is frequently employed in auto-

scaling, to minimize SLO violations. To eliminate the effect of

abnormal cloud noise, the workloads are performed five times.

The cost of VMs is calculated as a cumulative sum of the

product of workload duration and the price per second of

each VM. For the cost of Lambda functions, each Lambda

function’s pricing is determined by: 1) The number of times

each function is invoked (N), 2) RAM allocated (M in GB), 3)

execution time (E in sec) (specifically, billed duration stated in
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Fig. 4: Comparison of running ResNet-18 model inference

between VM-only auto-scaling policy and Splice.

AWS CloudWatch), and 4) cost of 1 GB-s ($0.00001667/GB-

s). Equation 1 captures the cost model (C) based on the

above metrics (The constants below are modeled after Lambda

function’s pricing).

C =
(
M × E × 1.667× e−5 ×N

)
+
(
N × 2.4× e−7

)
(1)

Besides the computation costs, storage costs are similar for

VMs and Lambdas, and therefore they do not affect our cost

comparisons. For the cost model of Splice and All Lambda, we

also include the cost of the front-end server (EC2 C5.2xlarge

instance) that uses Splice as well as AWS CloudWatch, which

is used for retrieving metrics (CPU/memory usage) of servers

and billed duration of Lambda functions.

The “response time” is defined as the end-to-end elapsed

period between the time when the request is sent from the

client and the time when the response is received from

servers through the load-balancer (including communication

to/from S3). “SLO violation” is calculated as the percentage of

requests whose response time exceeds the given target (SLO).

V. ANALYSIS OF RESULTS

In this section, we present the major results from our

evaluation of Splice in terms of SLO and cost, followed by

sensitivity analysis, discussion, and future work from results.

A. Benefits of Splice

To demonstrate detailed advantages from Splice, Fig. 4

shows the comparison of ResNet-18 model inference work-

load produced by WITS between VM-autoscaling and Splice.

The horizontal axis depicts the time, while the vertical axis

represents the response time distribution per second, in a box-

plot presentation with min and max, and an SLO of 1s. For

readability, we omitted other important data such as percentiles

and median response time.

When the requests spike and SLO violations occur (exceed-

ing the orange line of the SLO), as shown in the purple circle

of Figure 4, the scaling policy identifies and starts procuring

new resources. For the conventional scaling policy (VM-

autoscaling), however, requests still get queued on existing

VMs. This is because new VMs are shown to have a start-

up delay of 60s to 100s (the start-up delay is 61s and 64s,

for VM-autoscaling and Splice, respectively), according to

prior works [14], [27]. Due to VM’s start-up delay, VMs

stay active for long periods of time. Splice, on the other

(a) WITS (b) WIKI

Fig. 5: SLO (1000ms) violations and cost reductions for

ResNet-18 model inference under different scaling policies.

hand, automates the process of blending (making Lambda-

based functions ready), and manages requests effectively via

Lambda during resource acquisition, decreasing query queuing

to current VMs and SLO violations. As a result, unused VMs

created during the scale-out phase may be scaled in early.

It is important to note that, whenever Splice decides to use

blending, there is a compilation and data transfer overhead

to inject the blended-code-snippet to the server. Note that

Lambda functions have a size restriction of about 250MB

for the deployment package when deployed from S3. This

constraint will be discussed in Sec. V-F. For varying code

snippet sizes ranging from 18MB to 230MB 3, we profile the

time taken by Splice to compile and transfer the blended code

from S3 to the servers. It is observed that this time ranges from

2s to 15s, which could constitute overhead for servers when

employing blending. We also compute the blending overhead

for feature generation, where Splice packs the code snippet,

Panda library, and its dependent NumPy library (a total size

of 100MB). The result shows that the overhead is about 10s.

However, given that the new VMs start-up delays range from

60s to 100s, we overlap the blending overhead with the VM

provisioning, which we believe is a reasonable technical design

choice that we made in Splice.

B. Single Function Scenario

Fig. 5 demonstrates a comparison of SLO violation and cost

savings for performing the MXNet ResNet-18 model inference

service using WITS and WIKI under different scaling policies.

The total number of requests is 469,394 and 463,599 for WITS

and WIKI, respectively. The horizontal axis indicates different

resource procurement schemes. The primary y-axis represents

the percentage of SLO (1000ms) violations with response time.

The secondary y-axis shows the monetary cost normalized to

the All Lambda, resource procurement scheme that only uses

Lambda.

It can be observed that, compared to the VM-overprovision
policy, Splice lowers SLO violations by 16% and 13% for

WITS and WIKI, respectively. The number of violated re-

quests when using Splice is 62,733 and 13,371 for WITS

and WIKI, respectively. The number of violated requests for

VM-overprovision is 72,926 and 15,168 for WITS and WIKI,

3The code snippet size is primarily determined by the size of the parameters
in the ML inference model.
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SLO violation (%) Cost reduction (%)
SPLICE 0.134 32
SPOCK 0.129 34

TABLE IV: SLO violations and cost reduction of Splice and

Spock for ResNet-18 model inference against VM-autoscaling.

respectively. The reduction of SLO violation is less than

regular VM-autoscaling since more resources are available to

serve requests during peak surges. However, because of these

additional VMs, Splice significantly saves costs by 32% and

10% for WITS and WIKI, respectively.

Splice also reduces SLO violations by 32% and 22% for

WITS and WIKI, respectively, compared to VM-autoscaling.

Specifically, one can see that the number of violated requests

for VM-autoscaling is 82,625 and 16,348 for WITS and WIKI,

respectively. At the same time, Splice lowers the cost of

WITS by 6%. However, running the WIKI does not show cost

savings. This is because, when compared to the WITS, the

WIKI exhibits a less significant variance in peak-to-median

request rates, resulting in few VMs being procured. Note

that Lambda’s per-unit price is higher than VM’s per-unit

price. Compared to less VM procurement, the cost of Lambda

invocation leads to a negative effect on cost savings.

For the remaining workloads, feature generation and matrix

multiplication, our proposed system shows a reduction in cost

and SLO violations. We omit the graph since the results

for single-function workloads are similar. Splice lowers SLO

violations by up to 25% and 27% for feature generation

and matrix multiplication. There is more reduction in SLO

violations in these two workloads compared to the ResNet

inference workload. This is primarily because these two work-

loads involve more CPU-intensive jobs where the fluctuations

in request rate could lead to more resource contention, and

Lambda could be more efficiently leveraged as a transition

mechanism during provisioning (VM autoscaling) [20], [22].

Thus, Splice saves costs by up to 20% and 26%, respectively,

for feature generation and matrix multiplication only for

WITS. On the other hand, note that, using the WIKI results

leads to no cost savings since, as previously stated, it has a

lower variation in peak-to-median request rates.

C. Comparing the proposed method to Spock

Similar to Splice, Spock [20] exploits FaaS as a transition

mechanism while handling load spikes when scaling-up new

VMs. Spock converts single function into Lambda-based-

ready function for blending in case of short-term request

rate fluctuation. However, as stated in Sec. II, Spock incurs

a manual overhead of creating blending services. To show

the advantages of our proposal over Spock, we conduct an

experiment comparing Splice and Spock in terms of SLO

(response time target is 1000ms) and cost-reduction. Using

the first 60 min of WITS trace with an average request rate

of 130, we run workload of running MXNet inference over 5

iterations.

Table IV compares the cost saving and SLO violation

reductions to the VM-autoscaling. The total number of requests

is 469,394 , and the number of requests that violated SLO is

(a) Different blending combinations for image processing.

(b) Comparing the best blended version with VM and Lambdas for
image processing.

Fig. 6: SLO violations and cost savings for image processing

using WITS.

62,733 and 60,551 , for Splice and Spock, respectively. Both

are measured to show benefits in terms of SLO violations and

cost-reduction against VM-autoscaling. Although Splice shows

similar benefits in ensuring SLO and monetary cost benefits,

Splice alleviates the requisite work of blending.

As mentioned above, compared to Spock, Splice automates
manual overhead of turning code into FaaS-executable code.

However, it faces additional overhead of compilation and data

transfer at runtime. Based on our observation, this overhead of

blending (turning MXNet ResNet-18 inference code to AWS

Lambda code) while VM provisioning incurs only a marginal

latency of 5.589ms. However, since the start-up duration of

new VMs ranged from 61 to 94 seconds throughout the

experiment, and Splice achieved comparable results to Spock,

we believe Splice can outperform Spock in alleviating the

requisite work of blending.

D. Multi-Function Scenario

Fig. 6a shows the SLO violation and cost savings for

running the image processing workload using WITS under

different blended versions. The workload comprises five func-

tions, i.e., Flip, Rotate, Gray Scale, Filter, Resize, with each

function’s average response time described in IV-B4. Each

function is executed in a VM when marked as 0 or in a

Lambda when marked as 1. For example, “00010” means that

only the fourth function, i.e., Filter function, is executed as

a Lambda and the rest are executed in the VM. The total

number of requests is 41,482. The primary y-axis indicates

the percentage of SLO violations, and the secondary y-axis

represents the total cost normalized to running the workload

only on All Lambda.
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(a) 500ms (b) 1500ms

Fig. 7: SLO violations and cost savings for ResNet-18 model

inference using WITS with different response time targets.

1000ms is shown in Fig. 5a.

We observe that “00010”(1%), “01010”(1%), and

“00011”(2%) have the lowest SLO violations. These 3

combinations execute the most time-consuming function

(Filter function) as Lambda. This allows the VMs to handle

more requests for other functions, as they can be bin-packed

more efficiently. However, offloading more functions (that

have longer response time) to run as Lambda increases

the cost. As a consequence, “01010” costs 28% more

than “00010”. Therefore, the best-blended version for this

particular trace is “00010”, i.e., when we execute only the

Filter function as Lambda.

From the observations made above, Splice uses the best-

blended version (“00010”) and we compare it against the VM-
autoscaling, VM-overprovision, and ALL Lambda in Fig. 6b.

The total number of requests is the same, i.e., 41,482 The

primary y-axis indicates the percentage of SLO violations, and

the secondary y-axis gives the normalized cost, as mentioned

in the previous paragraph. We see that Splice reduces the

SLO violations by 13% and 3% for VM-autoscaling and

VM-overprovision, respectively, while costing 7% more than

VM-overprovision case and 42% less than All Lambda case.

This scaled WITS has a request rate of 65 or less for 47%

of the entire duration, with a peak request rate of 135. If

the peak request rate is increased, such that the workload is

unpredictable, we can expect a greater reduction in cost and

fewer SLO violations than any other policy. While the results

that we present here are for one single application, we believe

that the Splice framework has the capability to assess different

function combinations for other applications and identify the

most cost-efficient and SLO-aware solution.

E. Sensitivity Study

To demonstrate the efficiency of the proposed system with

various response time requirements (SLOs), we evaluate Splice

by running the MXNet ResNet-18 model inference service

using WITS under 500ms, 1000ms, and 1500ms response time

targets. To ensure fairness, we fix the number of total requests

(469,394 ) and calculate the number of requests per vCPU for

VMs for each given SLO. The number of requests per vCPU

is 4, 6, and 9 for 500ms, 1000ms, and 1500ms, respectively.

Note that we use the Workload Generator from WITS, whose

average request rate is 130. For servers to handle enough

requests throughout the experiment, we adjust the number

of servers depending on the number of requests per vCPU.

For Lambda functions, we adjust RAM configuration to meet

different SLOs.

Fig. 7 shows a comparison of SLO violation and cost

savings under different scaling policies on the severity of

SLOs. The x-axis represents different resource procurement

schemes, and the primary y-axis indicates the percentage of

SLO violations. The secondary y-axis shows the normalized

cost to the ALL Lambda. It is observed that Splice decreases

the number of SLO violations compared to other scaling

systems, irrespective of the severity of the SLO (up to 48%,

32%, and 23% for 500ms, 1000ms, and 1500ms, respectively).

The numbers of violated requests for the standard Splice
policy are 112,007 , 62,733 , and 60,238 for increasing order

of the SLO. When the SLO increases, the maximum number

of requests per vCPU for VMs increases, withstanding the

sudden rise in latency (The number of instances that were

created and terminated during the experiment is 64 and 24

for 500ms and 1500ms, respectively.) As a result, the SLO

violation gap between VM-autoscaling and VM-overprovision
narrows. However, since Lambda is serverless and used to

handle millions of requests, Splice is unaffected by the limit

on requests per vCPU.

When compared to the VM-overprovision method and run-

ning workloads only on Lambda, Splice shows cost benefits

regardless of SLO. However, compared to the VM-autoscaling
approach, cost savings are inconsistent. As the execution-time

target increases (SLO slackens), Lambda’s RAM configuration

value decreases, but Lambda’s execution time increases (due to

the iso-performance comparison). Considering the cost model

of VM and Lambda, increasing SLO results in a much higher

FaaS cost. The cost savings of Splice compared to VM-
autoscaling policy declines and eventually vanishes as the

execution-time target increases (34%, 16%, -1%). This demon-

strates how Lambda settings (RAM/number of invocations)

and latency-sensitivity may influence the benefits brought by

Splice.

F. Discussion and Future Work

In this subsection, a few design limitations of Splice are

identified, along with our planned future work. Firstly, we

plan to reduce the overhead of compiling and transferring the

blended code from S3 to the servers while blending. Instead

of sending the entire code-snippet to the server, we plan to

use the de-duplication technique to transfer only the modified

portions of the code. Secondly, Splice creates Lambda code

by downloading a zip package from S3, which could be quite

time-consuming. As an alternative, we plan to experiment with

the AWS Elastic File System (EFS) to provide shared file

access [11] to all Lambdas. Subsequently, we plan to conduct

an extensive study to determine optimal storage solution based

on workload and user requirements.

From our observations with respect to the higher cost of

using Lambdas for a relaxed SLO (Sec. V-E), we plan to

also include execution time as a metric in Splice. Based on

available slack in SLO, Splice can tune Lambda configurations
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such that cost is minimized. In addition, Splice’s automatic

code transformation is dependent on programming framework

characteristics, such as libraries, attributes, and class methods.

We will bypass these limits by using additional optimization,

such as Lambda lifting. We plan to evaluate Splice for large-

scale applications containing 10s to 100s of functions, and also

investigate blending other cloud services, such as SaaS.

VI. DISCUSSION OF RELATED WORK

Compiler Optimizations: Compiler optimizations have been

extensively incorporated into numerous domains through

certain techniques, such as annotation schemas [28]–[30],

[35] and source-to-source translators [12]. Weld [28] and

LLVM [26] aim to demonstrate the benefits offered by com-

mon intermediate representations (IRs) for a variety of applica-

tions. In contrast, Splice combines annotations and compiler

optimizations to generate blended cloud-ready code. In the

cloud domain, few works have focused on compiler-driven

code transformation. “FaaSification” [34] produces modules

that dynamically decompose, convert, and deploy unmodified

code as AWS Lambda functions. Similarly, “Costless” [15]

automatically transforms code written with cloud functions

to take advantage of cost savings from function fusion and

splitting. We argue that our method is quite flexible, as it can

shift the specific portions of the code to FaaS instead of the

entire workload, which is deemed expensive, especially for

long-running workloads.

Service Blending: Blending resources, especially IaaS with

FaaS, has been thoroughly discussed in Sec. II. Blending

within IaaS has been extensively used in the past where dif-

ferent-sized VMs, transient VMs or etc. [36], are multiplexed

for cost and performance efficiency. In terms of FaaS, highly

parallelizable applications, such as video analytics, have been

entirely redesigned to Lambda functions to achieve lower

latencies at reduced cost [18], [23].

VII. CONCLUDING REMARKS

In this work, we demonstrate the effectiveness of combining

several types of IaaS with FaaS, and present an automated

way of combining various resource offerings. We propose

Splice, an automated cost- and performance-aware platform

for blending IaaS and FaaS services based on users’ modest

pragma annotations of the source code. Our detailed ex-

perimental evaluation using various workloads indicates that

Splice minimizes SLO violations of ML inference queries by

up to 31%, while saving up to 32% on costs, compared to the

standard resource procurement methods.
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