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HashCache: Accelerating Serverless Computing by
Skipping Duplicated Function Execution

Zhaorui Wu , Yuhui Deng , Yi Zhou , Lin Cui , and Xiao Qin

Abstract—Serverless computing is a leading force behind de-
ploying and managing software in cloud computing. One inherent
challenge in serverless computing is the increased overall latency
due to duplicate computations. Our initial investigation into the
function invocations of serverless applications reveals an abun-
dance of duplicate invocations. Inspired by this critical observation,
we introduce HashCache, a system designed to cache duplicate
function invocations, thereby mitigating duplicate computations.
In HashCache, serverless functions are classified into three cat-
egories, namely, computational functions, stateful functions, and
environment-related functions. On the grounds of such a function
classification, HashCache associates the stateful functions and their
states to build an adaptive synchronization mechanism. With this
support, HashCache exploits the cached results of computational
and stateful functions to serve upcoming invocation requests to the
same functions, thereby reducing duplicate computations. More-
over, HashCache stores remote files probed by stateful functions
into a local cache layer, which further curtails invocation latency.
We implement HashCache within the Apache OpenWhisk to forge
a cache-enabled serverless computing platform. We conduct ex-
tensive experiments to quantitatively evaluate the performance of
HashCache in terms of invocation latency and resource utilization.
We compare HashCache against two state-of-the-art approaches
- FaaSCache and OpenWhisk. The experimental results unveil
that our HashCache remarkably reduces invocation latency and
resource overhead. More specifically, HashCache curbs the 99-tail
latency of FaaSCache and OpenWhisk by up to 91.37% and 95.96%
in real-world serverless applications. HashCache also slashes the
resource utilization of FaaSCache and OpenWhisk by up to 31.62%
and 35.51%, respectively.

Index Terms—Cloud computing, function-as-a-service, perfor-
mance optimization, serverless computing.
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I. INTRODUCTION

S ERVERLESS computing - a cloud computing model -
has captured popularity among software engineers to de-

velop and deploy applications without concern about underlying
infrastructures. Generally speaking, serverless computing lever-
ages a Function-as-a-Service (FaaS) module to decompose com-
putation into a set of functions. To deploy applications on a FaaS
platform, developers are only obliged to upload the code of one
or several functions and set trigger events like HTTP requests
and timers that invoke these functions. The FaaS platform is
in charge of deploying the uploaded functions and resource
provisioning. Thanks to serverless computing’s advantages such
as rapid deployment, enhanced scalability, and low cost, FaaS
is widely adopted by various enterprises, especially when de-
ploying computing-intensive applications [1], [2], [3]. Repre-
sentative FaaS platforms include AWS Lambda [4], Google
Cloud Functions [5], and Azure Functions [6]. Open source
communities not only embrace this cutting-edge technology, but
also implement numerous FaaS systems represented by Apache
OpenWhisk [7] and OpenFaaS [8].

FaaS platforms execute functions in an isolated runtime envi-
ronment created by the virtualization techniques such as docker
container [9] or ultra-lightweight Virtual Machine (VM) [10].
The creation of an isolated runtime environment involves two
phases, namely, (i) creating and launching the base execution
environment and (ii) fetching and installing necessary libraries
and dependencies. The time interval of building an execution
environment is referred to as a cold start phase. FaaS is slated
to run functions only after the cold start phase is accomplished.
In event-driven serverless computing platforms, a function in-
vocation involves two steps: (i) invoking the function based
on predefined input parameters and (ii) receiving a computing
result of the invoked function. For stateful functions that depend
on external data [11], [12], [13], [14], step (i) encompasses
the procurement of these external states. In other words, the
procurement of external states by stateful functions can also be
regarded as the acquisition of input parameters. We propose to
model a serverless function invocation as three-component parts,
namely, input parameters, a black-box of function execution,
and computing results. We infer that for most of the server-
less functions (computational and stateful functions, detailed in
Section II-B), the only factor that changes the result of their
computation and execution process is their input parameters.

To validate the efficacy of our model and its underlying
assumptions, we conduct a series of experiments. The exper-
imental results confirm that in realistic applications, computing
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results and execution course of the functions are solely deter-
mined by input parameters. On top of that, our findings reveal
that because of the existence of duplicate input parameters
among various function requests, some functions may be repeat-
edly executed multiple times – causing the wastage of computing
resources and application latency (see Section II-B2 for the
details). Such an intriguing observation galvanizes us to devise
HashCache – a novel caching system that avoids duplicate com-
putations by caching computing results of serverless functions.
More prosaically, HashCache caches computing results on a
serverless platform, allowing subsequent invocations to directly
retrieve expected results from the platform without starting
new containers and executing functions. We create a module -
Behavior Monitor, an embedded in the container image, to gauge
whether computing results of functions are effective caching
candidates. We advocate for classifying serverless functions
into three categories, namely, computational functions, stateful
functions, and environment-related functions. Accordingly, we
develop an Action Mapper module for the purpose of caching
functions’ computing results. The dependency state of stateful
functions is maintained in the State Bridge module, which
promptly guarantees the validity of cached results in Action
Mapper when the state is updated. To bolster retrieval efficiency
and reduce memory overhead, the Action Mapper constructs a
function-input-output relation based on the hashing technology
and uses LRU strategy to manage the cache of results. We
implement a hash table using the 32-bit MurmurHash tech-
nique [15], where the sensitivity of the cache size is articulated
in Section IV-D.

Our HashCache exhibits three salient and distinctive features.
First, HashCache equips serverless computing platforms to reuse
computation results cached in the Action Mapper upon arrivals
of invocation requests for the same functions. Second, our
function-level caching mechanism delivers the same optimiza-
tion effect when an application is deployed as a function chain.
Third, HashCache furnishes a State Bridge module to store the
latest versions of states inquired by stateful functions, thereby
curbing invocation latency. We implement our HashCache on the
Apache OpenWhisk - a popular open source serverless functions
cloud platform [7]. In summary, we make the following contri-
butions in this study:
� We examine the execution of realistic application suites

and reveal the existence of repeatedly invoked function
executions due to duplicate input parameters among the
functions.

� We classify serverless functions into three categories
– computational functions, stateful functions, and
environment-related functions, among which computa-
tional and stateful functions’ results are eligible for
caching. The rationality of this classification is feasible
through the analysis of wide-ranged serverless applica-
tions.

� We design a cache system called HashCache that eradicates
duplicate computations by directly reusing the cached re-
sults of functions, thereby achieving low invocation latency
measures. Moreover, HashCache maintains states accessed
by stateful functions to further curtail invocation latency.

Fig. 1. Overview of OpenWhisk architecture.

� We implement HashCache on the Apache OpenWhisk,
where we undertake extensive experiments to evaluate
the performance of HashCache. The experimental results
illustrate that HashCache remarkably shortens invocation
latency and resource overhead compared with the other
state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
introduces background and motivation. The design and imple-
mentation of HashCache are articulated in Section III. Section IV
validates the performance of HashCache through quantitative
evaluation. Section V paints a picture of prior studies related to
our work. Last, Section VI concludes this study.

HashCache’s implementation is open-sourced for community
adoption at https:// github.com/ dscLabJNU/ HashCache.

II. BACKGROUND AND MOTIVATIONS

A. The OpenWhisk Background

OpenWhisk empowers software engineers to deploy server-
less functions written in different programming languages along
with specific event triggers. OpenWhisk limits the size of func-
tional dependencies to 48 MB to retain simple behaviors of
individual functions. In doing so, combining multiple functions
to form function chains – sequences in OpenWhisk – is a com-
mon and viable practice in complex applications. To deploy an
application on OpenWhisk, developers create a series of actions,
each of which consists of user functions, function dependencies,
and a proxy that implements the standard integration protocol. In
OpenWhisk, the execution unit of an action is a docker container;
OpenWhisk provides several container runtime options to an ap-
plication deployment, depending on the programming languages
such as Python, Java and NodeJs. To enable interaction between
OpenWhisk and function invocations, each function’s container
runtime has a built-in web proxy called ActionLoop to handle
HTTP requests from OpenWhisk.

Now let us use a Python application to elaborate on the typical
three steps through which OpenWhisk invokes an action (see
Fig. 1):

Step 1: OpenWhisk boots a container (see 1© in Fig. 1) from
a docker image after an action invocation request is admitted.
Since a proxy that communicates with OpenWhisk is built in
the docker image, the proxy is activated as a service after the
container is booted. In other words, a Python container runtime
with the proxy functionality is booted as illustrated in Fig. 1.
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Fig. 2. Illustration of classified functions.

It is noteworthy that this step only occurs during the cold start
phase where docker image downloads may take place.

Step 2: After the container is working in full swing, Open-
Whisk initiates the requested action by sending a /init HTTP
request (see 2© in Fig. 1). Next, OpenWhisk collects and in-
jects a code snippet associated with the invoked action and its
dependencies into the container (see 3© in Fig. 1).

Step 3: Finally, OpenWhisk invokes a requested action by
releasing a /run HTTP request (see 4© in Fig. 1). In particular,
the runtime executes the main function of the requested action
according to wrapped input parameters. Upon the completion
of the action, the runtime passes the response to OpenWhisk,
which eventually relays the response back to the user.

Existing Optimization Methods: A handful of studies accel-
erated the function execution by improving the three steps of
the serverless function execution process. For example, some
researchers attempted to slash the sandbox startup latency in
Step 1 by function scheduling strategies or virtual environment
accelerating strategies [10], [16], [17]. In other studies, the func-
tion startup process was optimized by reusing the initialization
information in Step 2 [18]. And other optimizations endeavored
to cache container instances or fetch transferred files in Step 3
[19], [20]. Our HashCache distinctly differs from the aforemen-
tioned methods in that HashCache leverages a container runtime
modification in Step 1 to monitor action behaviors, monitoring
the execution information in Step 2, followed by applying a
caching strategy in Step 3 based on valuable monitoring infor-
mation.

B. Motivations

HashCache is conducive to bypassing function executions by
caching computing results of serverless functions, reducing in-
vocation latency and resource utilization via avoiding duplicate
function execution. A primary challenge in this study is that
certain function executions are unsuitable for bypassing due
to the diversity of serverless applications. For example, if the
execution of a function designed to modify an external state
is bypassed, serious data inconsistency problems will become
inevitable.

1) Serverless Function Classification: According to the
characteristics of serverless applications, we classify serverless
functions into three categories, namely, computational func-
tions, stateful functions, and environment-related functions (see
Fig. 2). The classification phase is of paramount importance
because it identifies functions that are good fit for our caching
strategy.

Computational Functions: Amid the execution of a compu-
tational function, the only factors that affect its output are the
input parameters. Typical computational functions include those
that compute the Fibonacci sequence, MapReduce WordCount
application, and the like. Fig. 2(a) depicts the relationship be-
tween the input and output of computational functions F and
G. Assuming that two different input parameters A and B are
issued in different invocations to function F , then function F
will produce two different output results F (A) and F (B).

Function G receives two different invocations with input
parameters C and D, respectively, it may produce two identical
results G(C) and G(D) (i.e., G(C) = G(D)). For example, to
determine if the numbers 4 and 6 are even. These two cases
indicate that function callers are only concerned with the com-
putational functions’ execution results, which are affected by
nothing but input parameters.

Stateful Functions: A stateful function may generate requests
for external resources (e.g., AWS S3) during its execution,
resulting in network traffic. Fig. 2(b) depicts the execution course
of stateful function H . Upon receiving input A, function H
inquires about another input A′ from external object storage.
Then, with both A and A′ in place, function H produces output
H(A). Similarly,H producesH(B) for inputB. These function
executions shed bright light on I/O operations between function
instances and object storage systems. There is a raft of scenarios
in which FaaS users set up stateful functions. For example,
invoking a machine learning function requires training data to be
loaded. Another representative example is persisting data from
a web server to a database system.

Environment-related Functions: When it comes to environ-
ment-related functions, the output varies depending on the re-
source utilization of the current system or the container run-
time. Typical examples of environment-related functions include
those evaluating startup latency or resource utilization. Fig. 2(c)
shows an environment-related function J that receives the same
input A twice. Because function J ought to interact with the
current runtime environment to obtain runtime information (e.g.,
finding the current timestamp and polling resource utilization)
during execution, function J produces two different results
where J(A)!= J(A)′.

Function-classifying Strategy Validation: To verify the effec-
tiveness of the above function-classifying strategy, we examine
the function workflows driven by the eight realistic workloads
or benchmarks: FunctionBench [21], Faastlane [22], FaaSPro-
filer [23], ServerlessBench [2], TrainTicket [24], HotelReser-
vation [25], SocialNetwork [25] and FireBase [26]. We derive
the type of these functions by combining manual analysis and
dynamic detection (detailed in Section III-B), which obtain
the same results. Table I summarizes the experimental results
after removing simple functions (e.g., functions that print “hello
world”). The finding reveals that our function-classifying strat-
egy effectively covers 100% of all the functions. In particular,
among the total number of 129 functions, 25% are computational
functions, 72% accounts for stateful functions, and 3% belongs
to environment-related functions.

2) Computational Duplication: To further validate the fea-
sibility of avoiding function execution by the virtue of
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TABLE I
DISTRIBUTION OF THE REAL FUNCTION WORKFLOW

caching results of computational and stateful functions, we
explore three representative real-world serverless application
suites: TrainTicket [24], HotelReservation [25] and SocialNet-
work [25]. Specifically, TrainTicket comprises 33 functions,
however, we found that only 29 functions are implemented
within the application suite, while the remaining 4 functions are
in fact, not invoked. HotelReservation consists of 6 functions,
and SocialNetwork has 12 functions. We analyze the input-
output relationships of functions during the execution of these
applications. The experimental setup of TrainTicket and Hotel-
Reservation are detailed in Section IV-A. For the SocialNetwork
workload, we performed testing with the benchmark data, which
can be found at the GitHub repository1. SocialNetwork has
constructed a social network of a total of 100 users. It provides
test cases that exceed a scale of 1,000,000 based on a normal
distribution.

Duplication Overview: Performance metrics are of a great
importance for validating the feasibility of our caching strategy.
To this end, we propose the following four metrics to analyze
the duplication in serverless function execution under three
applications, focusing on functions with consistent input-output
relationships during execution (either computational or stateful,
collectively referred to as consistent functions.): (1) the propor-
tion of consistent functions to all functions PN (Const./Total),
(2) the proportion of consistent function invocations to all func-
tion invocations PI(Const./Total), (3) the proportion of dupli-
cate invocations to all consistent functions PI(Dup./Const.),
where duplicate invocations refer to the invocations with the
same input and output, (4) the proportion of the execution time
of duplicate invocations to the execution time of consistent
functions PT (Dup./Const.). Fig. 3 depicts the performance of
the three applications TrainTicket, HotelReservation and Social-
Network in terms of PN (Const./Total), PI(Const./Total),
PI(Dup./Const.), and PT (Dup./Const.). Fig. 3 reveals that
all functions within the application are consistent functions, as
evidenced by the fact that all PN (Const./Total) values amount
to 100%. This, in turn, leads to 100% of the functions invocations

1https://github.com/delimitrou/DeathStarBench.

Fig. 3. Distribution of invocations for serverless applications.

being consistent function invocation, reflected by the average
PI(Const./Total) is 100%.

More importantly, we observe that 75.05% of consistent
function invocations have duplicate inputs, resulting in the same
outputs (Avg. PI(Dup./Const.) is 75.05%). Execution time of
these duplicate consistent functions accounts for 68% of the total
execution time of the consistent functions (PT (Dup./Const.)
is 68%). In short, the duplicate invocations during application
execution spark remarkable waste of computing resources and
significant execution latency.

Function Details: Let’s delve deeper into the analysis of
duplicate execution of functions across the three application
suites. The succeeding illustration (Fig. 4) presents the statis-
tics of duplicate computations and stateful function invocations
(essentially repeated input-output associations) during the entire
execution process, i.e., the proportion of duplicate computations
for each function.

Fig. 4 indicates that out of 29 total functions in TrainTicket,
22 give rise to duplicate function invocations. Among these,
canTick, getLTi, qryTrvl, calcRefd, fndCont, and
chkSec are computational functions, while the remaining eigh-
teen are stateful functions. The occurrence of execution dupli-
cation in TrainTicket is largely due to its function as a ticket
reservation system, where the majority of system read opera-
tions are predominantly generated by user queries. Given the
user’s selected point of departure and destination, applications
linked to ticket inquiries tend to perform repetitive invocations
quite often. More specifically, the set of locations in the ticket
system remains relatively consistent, thereby leading to stable
corresponding location information, train details, and route data.
As a result, within a ticket booking system that is predominantly
governed by read operations, it’s expected to observe a substan-
tial amount of duplicate function invocations.

When it comes to HotelReservation, it consists of a total
of 6 functions, among which 1 is a computational function
(Search), and 5 are stateful functions that generate a substantial
number of duplicate invocations during execution. Similar to
TrainTicket, HotelReservation is also a ticket query system.
In HotelReservation, querying hotels around a given location
is a common process during hotel booking. This process will
generate numerous identical operations, such as multiple users
querying the same hotel price multiple times, querying recom-
mended places to visit under a given hotel, or submitting user
information when booking a hotel.
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Fig. 4. Duplicate execution of different investigation applications.

Fig. 5. CDF of reads between two consecutive writes.

As for SocialNetwork, it consists of 12 stateful functions, a
third of which generate a large number of duplicate invocations
during execution. In this application, browsing posted texts in
the social network is considered a normal operation. This is also
very consistent with the usage habits of social networks in real
life, that is, many operations are generated in read requests. Read
requests produce varying results only when the corresponding
resources undergo changes, and HashCache handles this update
issue with the introduced State Bridge module.

3) Infrequent External State Update: Due to the stateless
nature, serverless functions have to maintain their generated
intermediate data or state via access to cloud object storage
like AWS S3 [27] and Azure Blob storage [28]. Duplicate invo-
cation on stateful functions should be meticulously optimized,
as bypassing updates to state leads to data inconsistency. To
put the accesses patterns of cloud storage objects under the
microscope, we investigate the Azure Blob trace [29], which
contains 14 days of logs, including 33.1 million invocations with
44.3 million data accesses. To avoid the impact of cold data on
the overall situation, we select blob entries with accesses (read +
write) greater than 10 and evaluated the number of read requests
between writes. The analytical results are plotted in Fig. 5,
which shows the Cumulative Distribution Function (CDF) of
the number of Reads Between two consecutive Writes (RBW)
for each blob.

We observe from Fig. 5 that nearly 20% of RBW data are
spread in single-digit (< 10) percentages, whereas the remaining
80% of RBW values exist anywhere between tens and millions.
This phenomenon conforms to the commonly observed Zipf
distribution in cloud computing environments [30], [31], [32].
Statistically, among the more than twenty million blob access
entries evaluated, the mean value of RBW is 7292, the median

Fig. 6. Overview of HashCache.

value is 10, and the maximum value is more than two million. It
is noteworthy that when servicing these blob accesses, numerous
external requests for the identical blob will be sent to cloud object
storage, thereby wasting computing resource and prolonging
function invocation latency.

In summary, serverless computing scenarios rarely involve
external state updates, entailing that functions commonly and
repeatedly operate on the same state.

III. DESIGN OF HASHCACHE

The aforementioned inspiring observations and analysis re-
veal that there exists a pressing demand behind a novel strategy
to bolster the performance of serverless functions. In this regard,
we propose HashCache to improve the performance of serverless
functions, aiming to avoid duplicate computation, and therefore
reduce invocation latency and optimize resource utilization.

A. Architecture Overview

Now we present the design of our HashCache as sketched in
Fig. 6. The overarching goal of HashCache is (1) to eradicate
duplicate execution by caching computing results yielded by
computational and stateful functions and (2) to shorten execution
latency by caching remote state requested by stateful functions.
HashCache embraces three modules: Action Mapper, Behavior
Monitor and State Bridge. A function invocation request issued
by users is first analyzed by the action mapper to determine if
a cached copy exists. Please note that the computed results of
both computational and stateful functions can be targeted for
caching by the action mapper. The precondition for caching
the output of stateful functions is that the state they depend
on remains unchanged. The state of the stateful functions is
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maintained in the state bridge. If it is a cache hit, the action
mapper directly returns the cached computing result to the
requested function invocation without paying any startup and
execution cost. Otherwise, it will be invoked through a typical
three-step procedure articulated in Section II-A. The behavior
monitor is responsible for communicating with state bridge
around the execution course of a requested function, passing
along the function’s type of operation on the state. If an external
state request is generated during function execution, the state
bridge will intercept and handle the request, followed by a
dependency established between the function and the state for
adaptive synchronization of updates.

B. Behavior Monitor

The fundamental challenge for effectively caching compu-
tational results lies in the diversity of serverless functions. To
tackle this challenge, we enforce the behavior monitor to help
with state bridge (detailed in Section III-D) to identify and clas-
sify serverless functions based on function characteristics. More
prosaically, the behavior monitor checks the network connection
construction activity corresponding to the stateful functions.
After the function execution is complete, the behavior moni-
tor collectively analyzes this gleaned behavioral information,
followed by determining the function type for the completed
function. As previous studies on serverless systems [13], [18],
[22], we implement the behavior monitor based on OpenWhisk
container runtimes. In what follows, we elaborate on a detailed
approach to classifying serverless functions into three different
types.

Computational Functions: We adopt a proactive approach to
discern computational functions. In this method, HashCache
cultivates developers’ ability to define customized annotation
(compute_cache) for computational functions implemented
in applications. The annotation mechanism is not only flexible
but also particularly well-suited for serverless computing envi-
ronments, as evidenced by existing research [22], [33]. When
developers specify a function as computational during its regis-
tration, HashCache will automatically cache the computational
results upon invocation. This approach significantly improves
computational efficiency by reducing the need for duplicate
computations, thus offering distinct advantages in computation-
intensive tasks.

Stateful Functions: As evidenced by recent studies [11], [13],
[34], a stateful function preserves and updates state information
between multiple or across different invocations. Currently, us-
ing TCP/IP protocol to manage shared state with cloud database
(CouchDB, MongoDB) or object storage (AWS S3, Azure Blob
Storage) is the most common way to ensure data reliability.
Taking advantage of this practice, we examine changes in net-
work connections before and after function execution to dig
out whether a function is stateful. Remote state accesses are
identified by checking the /proc/net/tcp file2 in Unix-
like systems, where file provides information about currently
activate TCP connections. Hence, we classify a function as a

2https://www.kernel.org/doc/Documentation/networking/proc_net_tcp.txt.

Fig. 7. Action mapper.

stateful one if the /proc/net/tcp file, which logs active
network connections pertaining to remote state access, shows
a difference when compared before and after the execution of
function requests. Please note that a container environment can
only serve a single function due to the presence of package
dependencies. This one-to-one mapping relationship simplifies
the /proc/net/tcp file, and the behavior monitor facilitates
accurate identification. Due to the read-skewed nature of stateful
function access (see Section II-B3), as with computational func-
tions, we define an annotation flag (state_cache) to turn on
the computing result cache.

Environment-related Functions: As mentioned before, we
provide two annotations, compute_cache and state_
cache, to specify the cache ability of computational and stateful
functions, respectively. Therefore, we exclude the identification
of environment-related functions since we can actively identify
and filter computational and stateful functions, which are the key
areas of interest for HashCache’s performance enhancements.

To sum up, HashCache determines whether to cache the com-
putational results of invocations based on the annotations associ-
ated with the functions. If a function is not annotated, the action
mapper module (detailed in Section III-C) will abstain from
caching its computational results. The behavior monitor module
serves as an automated detection mechanism for determining
whether a function is stateful, a process that is independent of
whether the function is annotated. In addition, state caching (in
the state bridge module that described in Section III-D) will still
occur even if the function lacks annotation.

C. Action Mapper

HashCache utilizes the action mapper to avert duplicate ex-
ecution of the annotated functions that produce identical re-
sults, thereby achieving reduced invocation latency and resource
overhead. We implement the action mapper into OpenWhisk
controller module to handle function invocation requests (see
Fig. 7). In particular, the controller serves as the central manager
for multiple invokers in a cluster. In addition, the OpenWhisk
controller supports a masterslave mode by setting multiple repli-
cations3, allowing the contents of multiple action mappers to be
shared across different controllers. This enhances the scalability
of HashCache. Upon receiving invocation requests, the Open-
Whisk controller module distributes the invocations to different

3https://github.com/apache/openwhisk-deploy-kube/blob/master/docs/
configurationChoices.md#replication-factor
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invokers on various worker nodes based on a load balancing
protocol. The invoker then launches a container and executes
the function invocation. By integrating the action mapper into
the OpenWhisk controller module, it is able to determine and
avoid duplicate computations before the request is assigned to
the invoker.

The action mapper, maintaining function-input-output rela-
tionships in memory, searches for a matched entry in the cached
relationships after intercepting the function invocation request
and its input arguments. If an incoming request hits, the ac-
tion mapper directly returns a corresponding result to serve
the request. Otherwise, the function invocation request will be
handled through the normal three-step procedure stipulated in
Section II-A. In this case, HashCache checks the availability
of cached results after the execution of each function using
HTTP status codes. As a result, HashCache skips the results
of functions that fail to execute, thus ensuring the validity of the
cached results.

It is worth noting that we apply a hashing technique to input
parameters of functions to curtail memory overhead and speed
up the matching process. Furthermore, the LRU strategy is
leveraged to schedule the cached results, and we evaluate the
sensitivity of the cache size in Section IV-D.

Now let us take an example to illustrate the caching process
orchestrated by the action mapper. Let F → (A,B) denotes a
function invocation, where A and B are its input parameters.
For the first request for invoking this function, we associate
the invoked function with its input arguments as a relation-
ship F → Hash(A,B). Next, the action mapper stores this
relationship and starts the execution of the function, waiting
for its computational results to form its corresponding function-
input-output relationship. Once the function execution is com-
pleted, the action mapper first sends the computational result
to the user and; then, function F and hashed input arguments
Hash(A,B) are associated with computational result F (A,B)
by storing a relationship F → Hash(A,B) → F (A,B) in the
action mapper. In doing so, if future requests inquiring about
the same function invocation are issued, the action mapper will
directly serve those requests with the cached computational
results. To maintain correct computational results, HashCache
reclaims the cached function-input-output relationships when
HashCache acquires update requests for the function because
developers may resubmit serverless functions due to version
updates.

In a nutshell, HashCache curbs invocation latency and re-
source utilization by impeding duplicate execution of computa-
tional functions sharing the same results.

D. State Bridge
The state bridge is primarily obliged to maintain remote state

requested by stateful functions, thereby reducing invocation
latency by working with the action mapper and the behavior
monitor. All external communication of stateful functions passes
through the state bridge, which is responsible for connecting
functions, external states, and the serverless platform. When the
behavior monitor identifies a stateful function, it redirects the
external state request to the state bridge, which analyzes and

Fig. 8. State graph.

Fig. 9. Blob cache.

takes over the request. State bridge introduces two submodules
State Graph and Blob Cache (Fig. 9) to facilitate the remote state
maintenance.

1) State Graph: As illustrated on Fig. 8, the state bridge
creates a graph structure for the states operated by functions,
where a state is connected to several actionable functions. For
each state request, the state bridge records the manner in which
the state is accessed (read or write). If the current request is
read, it says that the current state accessed by the function is the
latest version, marking the current function output as a cache
candidate. For instance, the left side of Fig. 8 shows function
A reads its state, and the action mapper stores the relationship
A → Hash(Input) → A(Input). Conversely, the state receiv-
ing a write request implies an update requirement. Since a state
connects multiple functions, we mark all the function outputs
as uncacheable targets and notify the action mapper to reclaim
the corresponding cached data. As shown on the right side of
Fig. 8, function B sends a write operation to the shared state;
therefore the action mapper reclaims the relationship of function
A. After that, the incoming function invocation will go through
a typical three-step procedure articulated in Section II-A. Upon
detecting these operations, the state graph always checks the last
modification time (mtime in Linux) of the target object to prevent
it from being modified by means other than the function, such as
manual uploads by users. Specifically, if the state graph module
detects a mismatch between the mtime value of the state that the
function depends on and the latest value, it implies that the state
stored externally has been modified. In this case, the state graph
will clear the cached relationships in the action mapper, and rely
on the blob cache (detailed in III-D2)to obtain the latest state
the function depends on. This approach guarantees that even
if a function’s resources are updated through means other than
the function itself, the function can still access the latest state
when requested. Note that we only preserve the representative
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symbols (IDs) of states and functions, not the entity contents.
Therefore, for fast access and update, we store this graph data
result in memory.

Overall, the distribution of reads and writes to external state
by serverless computing functions is described in Section II-B3,
confirming that HashCache brings forth acceleration benefits to
heavily read-skewed stateful functions.

2) Blob Cache: Considering that various functions possibly
read and write to the same state, we introduce the blob cache
to shorten the latency of requesting state across functions. In
collaboration with the behavior monitor, the blob cache fulfill its
responsibility through the following three key steps (see Fig. 9).

Step 1. Hashing Request URLs: The behavior monitor redi-
rects the URL of a requested state for hashing to avoid improper
matches caused by character translation (see 1© in Fig. 9). For
example, character ”#” corresponds to the URL encoding value
”%23”. Thus, URL ”https://example.com/file/example-file.obj”
becomes -5332493745412849051 after hashing. Next, the redi-
rected request coupled with its corresponding hash value is
delivered to the blob cache (see 2© in Fig. 9).

Step 2. Looking Up Matched Entries: When the blob cache
obtains a redirected request, it searches the local file system to
see if a requested state exists (see 3© in Fig. 9). If so, blob cache
first reads the mtime of the matched state from the local file
system; then, blob cache requests the remote server where the
requested state resides for its mtime using its URL (see 4© and 5©
in Fig. 9). Next, if the two mtimes echo each other, the redirected
request will be served by the cache copy to be dispatched to the
function.

Step 3. Serving with Up-to-date States: Otherwise, if the
two modification times disagree with each other, the redirected
request is served through the normal process - retrieving the
requested state from a remote server where the state resides (see
4© and 5© in Fig. 9). After gathering the file, HashCache stores

the state on a local file system, overwriting an out-of-date local
copy (see 6© in Fig. 9).

The blob cache is to eliminate the need for multiple functions
that request the same object over the network. For example,
let us consider functions A, B, and C, all of which establish
a relationship with cloud object O in the State Graph. When
function A makes a write request to O, the previously cached
computation results of the three functions in the Action Mapper
need to be invalidated. Now, if function B makes a read request
to O, the Blob Cache retrieves the latest version of object O from
the cloud and stores it locally. If function C also makes a read
request to O at this point, the Blob Cache can directly provide
function C with the locally cached object O, thereby eliminating
the need for network retrieval.

Importantly, within the context of cloud storage objects that
provide modification time (mtime) information, the blob cache
is state-type agnostic, as the cache reads content from TCP
requests of accessing state, and persists it to the local file system.
Therefore, the blob cache supports accessing a wide range of
state types, such as images, binary objects, and files, to name just
a few. However, it’s worth noting the limitations and assumptions
regarding the blob cache. The current implementation is tailored
for cloud storage systems that can provide mtime information for

objects. For databases or other storage systems that do not offer
access to an object’s mtime, the blob cache currently cannot be
used to improve the efficiency of element retrieval.

IV. PERFORMANCE EVALUATION

A. Experimental Methodology

We implement HashCache on top of OpenWhisk [7], an
open-source serverless computing platform, to undertake per-
formance evaluation in terms of invocation latency and resource
utilization. Moreover, in our experiments, we utilized LRU as
the cache replacement policy in the action mapper to manage the
computation results of functions. We set the cache size of LRU
to 5,000 elements, meaning that the cache can store up to 5,000
function results. The sensitivity of the cache size is articulated
in Section IV-D.

Setups and Baselines: We assess our prototype implementa-
tion on a Kubernetes cluster with 80 compute cores. The cluster
consists of five nodes, with each node being a virtual machine
with 16 vCPUs and 16 GB of memory. We compare our Hash-
Cache against two state-of-the-art strategies: OpenWhisk [7] and
FaaSCache [20]. OpenWhisk is a serverless functions platform
powered by Apache, and we pull the OpenWhisk from the
GitHub repository on Aug 30, 2021 for a comparison purpose.4

FaaSCache strives to lower cold start overhead and invocation
latency through a function caching strategy and an in-memory
scheduling tactic. In addition, we have set the idle time for
containers at default (ten minute). This setting was uniformly
applied to HashCache, FaaSCache, and OpenWhisk in all of our
experiments.

Evaluation Metrics: HashCache optimizes invocation latency
and resource utilization. In this study, we define invocation
latency as the processing time of each function invocation – an
interval between the start time when an invocation is received by
a serverless platform and the finish time when the final output is
returned. Resource utilization, on the other hand, represents the
resource costs a serverless computing provider incurs to execute
functions, which is consisted of CPU and memory utilization.
In our experiments, we glean CPU and memory utilization data
at a frequency of one measurement per second by reading the
/proc/stat file and using the free command, respectively.

Application Suites: To comprehensively evaluate HashCache,
we test three application suites: FaaSWorkflow, TrainTicket
[24], and HotelReservation [25]. Table II tabulates the appli-
cation in each suite.

1) FaaSWorkflow: We exploit the FaaS workflow that has
three applications implemented in Python - DForge,
Prediction and SetCompute, among which Pre-
diction comes from ServerlessBench [2], while Set-
Compute and DForge are derived from our own
construction.

2) TrainTicket: We select seven representative Java applica-
tion workflows from the serverless TrainTicket suite [24].
All the seven workflows are directly interactive with the

4The commit ID is cf36299d5ee45aa014ec84326d3a69f5b2df446c.
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TABLE II
APPLICATION SUITES USED IN THE EVALUATION

user and are invoked directly by the user in the TrainTicket
application.

3) HotelReservation: This application suite is originally
come from the DeathStarBench microservices suite [25],
where we develop and migrate microservice components
as the Python serverless functions.

Application Workloads. In the FaaSWorkflow case, synthetic
data based on the normal distribution play a major role due to the
lack of sizable input datasets. Specifically, forDForge, we gen-
erate random matrices of varying dimensions as the input data.
For Prediction, we use an input data set consisting of 100
images, and we randomly select one for each run. Meanwhile,
for the SetCompute workflow, we generate synthetic data by
providing a random set S and a number K. Given the TrainTicket
application suite, we apply TrainTicketAutoQuery [35] as a pro-
totype and adopt real-world dateset [36] to generate large-scale
input data as a high-quality input set. In HotelReservation, we
use real-world data from the web repository [37]. In real-world
environments, a serverless computing application typically con-
sist of a small number of functions. An analysis on logs collected
from the Azure cloud platform shows that approximately 54%
of applications have only one function, 95% of applications
have at most 10 functions, and less than 0.04% of applications
have more than 100 functions [32]. Therefore, we deem the
scale of serverless applications used in the current experimental
environment to be representative. Furthermore, as in previous
studies of serverless systems [23], [38], [39], we model requests’
inter-arrival time using a Poisson distribution. In addition, we
adopt Locust [40] as a load generator, and we set different levels
of load for different applications. Specifically, the requests per
second (RPS) for TrainTicket and HotelReservation are set to
23, while the RPS for FaaSWorkflow is set to 46.

B. Evaluating Invocation Latency

Now, we measure the invocation latency of applications, from
the time when an invocation is received by a serverless platform
to when the output is returned. Using this invocation latency, we
calculate the normalized latency of HashCache and FaaSCache
with respect to the OpenWhisk baseline.

Fig. 10. Normalized average latency of all applications across three
approaches.

Fig. 11. Normalized 99-tail latency of all applications across three approaches.

1) Average Latency: Fig. 10 depicts the normalized average
invocation latency of different applications across the three ap-
proaches. The results demonstrate that HashCache shortens the
average invocation latency in FaaSCache by a window between
14.72% and 97.79%. In addition, HashCache curtails the average
invocation latency of the OpenWhisk’s actions by a remarkable
ratio anywhere between 25.82% and 97.95%.

As a special case, we reckon that the average performance
of HashCache in Reserve application is somewhat worse than
FaaSCache because Reserve function has only one dependent
function – and both functions always pair up to changing state
when executed, which causes state update overhead in State
Bridge, as discussed in Section IV-E for the overhead of the
HashCache component. A similar application in the TrainTicket
suite, PresvTickt, is apparently not affected by the state
update overhead. The reason for this trend is that the application
contains 31 functions, the vast majority of which are functions
whose states are subject to less frequent updates. Therefore, the
overhead incurred by state updates is negated by the optimization
of the HashCache cache function computation results.

2) Tail Latency: Fig. 11 shows the normalized 99-tail in-
vocation latency of HashCache, FaaSCache and OpenWhisk.
Please note that OpenWhisk is tested as a baseline to normalize
all 99-tail latencies. The findings unveil that HashCache takes
the championship in the majority of applications. Compared
with FaaSCache and OpenWhisk handling the functions, for
example, our HashCache achieves a maximum latency reduction
of 91.37% and 95.96% – in the case of CalRef and PrePipe
applications – with an average reduction rate of 36.56% and
43.27%, respectively. In addition, HashCache delivers consid-
erable improvements in the other applications. For instance,
compared to FaaSCache and OpenWhisk, HashCache’s en-
hancement ratios are 4.93% to 79.09% and 23.08% to 74.68%
in the Reco, PayOrd, QueryOrd, CancOrd, GetTickts,
SetComput, and DForge applications.

For the other applications, HashCache maintains the same
tail invocation latency as the other techniques. The reason is
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Fig. 12. Throughput of different investigation applications.

Fig. 13. Latency of fetching states.

twofold: (1) HashCache executes functions normally while rea-
soning whether the functions’ results are cacheable; (2) when the
states on which the functions depend are updated, HashCache
reclaims the corresponding cache data in the action mapper –
and performs step (1).

3) Fetching Latency: Typically, function execution entails an
initial container start-up, incurring a start-up cost, followed by
the function’s computational process, which adds computational
overhead. However, dissecting the container start-up and com-
putational overhead attributed to HashCache is not meaningful.
This is because HashCache enhances function performance by
eliminating duplicate computations. Based on this principle,
duplicate invocations in HashCache neither trigger container
start-ups nor initiate computational processes. Furthermore, for
those function invocations whose output results are uncached
(possibly due to state changes they depend on), the execution
process of HashCache is identical to that of FaaSCache or
OpenWhisk, save for fetching the external state. This fetch
process can be optimized by the state bridge module. In this
part, we compare the fetching states overhead of HashCache
with other strategies.

Fig. 13 depicts the overhead of external state fetching for
different application suites under three strategies. Compared
with FaaSCache and OpenWhisk, HashCache optimized the
time overhead of fetching external states in the TrainTicket
suite by 66.28% and 59.8% respectively. When it comes to
FaaSWorkflow application, the optimizations go up to 75.91%
and 90.49%. In HotelReservation application, all three strategies
delivered similar latency for fetching external states. The reason
is that the function states that the HotelReservation application
relies on are deployed in the local cluster, thus the serverless
functions can obtain the dependent states without requiring
access to third-party external storage. As a result, the state bridge
module of HashCache did not produce significant optimization.

Fig. 14. Quantitative throughput for different applications.

Considering the preceding analysis on latency, the optimization
of the HotelReservation application by HashCache primarily lies
in the caching of computational results.

4) Throughput: Now, we are in the position of evaluating
throughput across different approaches. We define throughput
as the number of requests per second processed by the serverless
platform. Fig. 12 illustrates the throughput of each application
suite for the three approaches. From the figure, we observe that
HashCache can achieve higher throughput during the execution
of applications. Specifically, HashCache boosts the throughput
of the three application suites by up to 3.08× to 4.83× compared
to the other two strategies.

Looking further at the throughput rates, Fig. 14 summarizes
the quantile values of effective throughput for different investi-
gation cases, and the experimental results plotted in the figure
depict the efficiency of HashCache in terms of throughput. On
average across application suites, compared with FaaSCache and
OpenWhisk, HashCache improves the throughput by 3.08× to
4.81×, 1.21× to 1.27× and 1.43× to 1.72× with respect of
TrainTicket, HotelReservation and FaaSWorkflow application
suites.

We also observed fluctuations in the TrainTicket application,
as well as similar results during the pre-execution period of
HotelReservation. This is related to the state change of the main-
tenance function of the State Bridge module. We will discuss this
in more detail in Section IV-C2, within the context of resource
utilization.

C. Evaluating Resource Utilization

Resource utilization is an integral factor affecting serverless
computing services. Serverless computing providers ramp up
service throughput by lowering resource overhead required to
process the same request. For this reason, we gauge the host

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 07,2023 at 07:55:36 UTC from IEEE Xplore.  Restrictions apply. 



3202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 12, DECEMBER 2023

Fig. 15. Resource utilization with different approaches across different investigation cases.

CPU utilization and memory usage of under different appli-
cation suites. We combine the host resource utilization of dis-
tributed systems. Specifically, CPU utilization is the average
of distributed host CPU utilization, whereas memory usage is
aggregated from multiple host memory utilization.

1) Average Utilization: Fig. 15, in which the CPU utilization
and memory usage of HashCache, FaaSCache and OpenWhisk
are plotted as a function of the execution time of the three
application suites, unveils that HashCache outperforms the other
two strategies in light of both CPU utilization and memory
usage. For example, HashCache cuts back the average CPU
utilization and the memory usage of FaaSCache and OpenWhisk
by 7.28%, 6.94%, and 31.62%, 35.51%, respectively. These
dramatic improvements are expected: HashCache leverages the
action mapper module to cache the computing output of func-
tions, thus avoiding the duplicate computation. By working with
the function states maintained in the state bridge, the action
mapper is slated to yield accurate computation results. Thus,
with the cache data maintained in the action mapper, HashCache
eliminates the requirement to launch new containers for exe-
cuting the function invocations. Consequently, the executions
of computational actions are bypassed to curb CPU overhead.
Moreover, staying away from duplicate executions lowers the
need for a platform to maintain the corresponding containers,
which in turn mitigates memory usage on serverless platforms.
And the memory space conserved in HashCache can be utilized
by other actions to boost service throughput as evidenced by the
experimental results in Section IV-B4.

2) Correlation With Throughput: Combining the results
from Figs. 12 and 15, we sense a strong correlation between
resource utilization and throughput metrics. Take TrainTicket
application suite for example, peaks in the performance of Hash-
Cache are observed in Fig. 12(a), which corresponds to troughs
in Fig. 15(a). These troughs are the root cause of the peaks,
as the storage of function computation results on the action
mapper effectively increased throughput. Recall that cached
results in the action mapper are reclaimed only upon the updates
of corresponding function states. For example, the CancOrd
application modifies the order state, and the QueryOrd appli-
cation is in need to launch some new containers to acquire the
latest order information. Therefore, the troughs in Fig. 12(a)
(or peaks in Fig. 15(a)) are introduced by the status updates.
In this scenario, HashCache deploys new containers to execute
the function invocations, thus supplying up-to-date computation
results to users. To summarize, despite the fact that HashCache
originates new containers in extenuating scenarios, the memory

Fig. 16. PDF of TrainTicket.

Fig. 17. PDF of HotelReservation.

Fig. 18. PDF of FaaSWorkflow.

resources consumed by HashCache are on par with those of
FaaSCache – a technique that is adroit at optimizing container
utilization.

3) Resource Utilization Distribution: To unveil the resource
utilization more clearly, we investigate the distribution of the
resource utilization in the cases of HashCache, FaaSCache, and
OpenWhisk. Figs. 16, 17, and 18 show the probability density
function or PDF of the resource utilization of the three systems
executing the different application suites. The results demon-
strate that HashCache exhibits significantly lower resource uti-
lization than those of FaaSCache and OpenWhisk, as evidenced
by its distributed resource utilization at much lower levels.
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Fig. 19. Normalized cold start rate.

CPU Utilization: The PDFs plotted in Figs. 16(a), 17(a), and
18(a) reveal that the action mapper and state bridge modules,
despite introducing additional operations to store computation
results and maintain function status, bring forth impressive
optimization benefits to the overall serverless computing system.
Specifically, the low CPU distribution achieved by HashCache is
attributed to the function calculation results stored by the action
mapper, which effectively averts container startup and duplicate
invocations. Thus, we conclude that these additional overheads
are offset by the gains in the overall performance of the serverless
computing system.

Memory Utilization: By avoiding the duplicate computation,
HashCache is able to drastically mitigate invocation latency at a
negligible cost of CPU overhead. Figs. 16(b), 17(b), and 18(b)
illustrate the PDFs of the memory utilization across wide ranged
application suites. We observe from the results that FaaSCache
and OpenWhisk yield higher memory usage than HashCache.
On average across application suites, compared with FaaSCache
and OpenWhisk, HashCache improves the memory utilization
by 1.57× and 1.58×.

In brief, powered by modules the action mapper and state
bridge, HashCache cuts back invocation latency without intro-
ducing additional overheads. HashCache also fends off container
start-ups and alleviates high memory usage of serverless plat-
forms by dodging duplicate function executions.

4) Cold Starts: The primary objective of HashCache is to
mitigate duplicate computations by caching the computing re-
sults of serverless functions. Avoiding duplicate computations
eliminates the necessity for functions to initiate new container
and execute computational tasks. As a result, serverless comput-
ing platforms can effectively avoid cold starts due to this feature
of HashCache.

Now we evaluate the cold start introduced by the three ap-
proaches. A cold start rate is defined by dividing the num-
ber of cold starts and the number of function invocations. To
achieve fair comparisons, we conduct the same workload on
three different strategies and normalize the experimental re-
sults of different strategies to the level of OpenWhisk. Fig. 19
shows the normalized cold start rates generated by the three
policies when executing the different application suites. As a
tactic to eliminate duplicate execution, HashCache proactively
averts cold starts: (i) HashCache significantly reducing the need
for container cold starts by caching computational results, and
(ii) HashCache initiates a container only when the function’s
dependency state changes, and the real-world function state read
skew (see Section II-B) helps reduce the probability of starting
the container unnecessarily.

TABLE III
AVERAGE CACHE HIT RATE IN HASHCACHE

Fig. 20. Memory overhead of Action Mapper with different cache coverage.

Although caching computation results incurs a certain mem-
ory overhead as detailed in Section IV-E, the overhead is justified
by dodging duplicate computing costs.

5) Cache Hits: Table III summarizes the average cache hit
rate of the evaluation application suites. HashCache utilizes LRU
to schedule the cached outputs. Table III shows that HashCache
has a high hit rate for all three different application suites, which
also confirms that serverless functions produce a large amount
of duplicate computation during execution.

D. Impacts of Hyperparameters

In this section, we delve into the impact of the cache coverage
of LRU on HashCache. To measure the overhead more accu-
rately in extreme cases, we synthesize the bulk input parameters
that obey a normal distribution.

Fig. 20 depicts the impact on the action mapper of running
10,000 invocations with various cache coverage – from 0% to
100% – for a computational function with a total input and output
size of 500 MB. Since we are concerned with the memory over-
head of our Action Mapper module, we use a sub-millisecond
function to overlap the effects of function execution. Let the
size of the total parameters be 100 MB, and a coverage of 20%
means that the cache size of LRU is 20 MB. Since the memory
usage of Action Mapper is directly related to the amount of data
cached, we believe that the experiment can be extended to a
large-scale serverless computing framework. In this experiment,
we analyze the memory overhead introduced by the action
mapper orchestrated by the HashCache scheme.

The 0% coverage scenario becomes the best case as there is no
extra memory for caching computing results. Additionally, the
probability of a cold start is extremely low because we have
thousands of invocations for a single function. Furthermore,
without the overhead of in-memory access to cached results and
the time overhead of container cold starts, this case leads to
the fastest completion time compared to other LRU coverage
scenarios. When it comes to other coverages, intriguingly, we
observe that the memory strain on HashCache decreases as the
cache coverage rises. This pattern is caused by the fact that our
HashCache avoids duplicate computation. Specifically, Open-
Whisk creates corresponding class instances to manage started
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Fig. 21. Invocation controller overhead.

Fig. 22. Memory utilization.

containers (e.g., container objects). Our HashCache wards off
starting containers by the virtue of cached computation results:
upon receiving duplicate invocations, launching extra contain-
ers becomes unnecessary. Furthermore, with OpenWhisk pro-
gramming language level garbage collection, previously created
class instances (while the HashCache is not already serving its
purpose) are released. Thus, as the coverage rises, the number
of surplus containers dodged by HashCache goes up – and the
memory usage for maintaining class instances drops.

E. Overheads of HashCache Components

The behavior monitor module distinguishes stateful functions
by comparing the changes in the /proc/net/tcp file before
and after function execution. Since a container in the server-
less computing platform serves only invocations for the same
function, the number of entries in the /proc/net/tcp file is
significantly reduced. Consequently, the monitoring overhead of
comparing file changes can be considered negligible. Therefore,
the major runtime overheads in HashCache are imposed by the
action mapper and state bridge modules. Let us analyze such
overhead in this subsection.

1) Action Mapper: The action mapper utilizes host OS mem-
ory to cache computing results managed by the LRU strategy. In
this experiment, we quantify the LRU impact on the action map-
per that performs 15,000 invocations for twenty computational
functions with a total input and output size of 2 GB. Figs. 21 and
22 show the caching overhead and resource benefits – memory
savings – of the action mapper.

Memory Overhead of Action Mapper: We implement the
action mapper module in OpenWhisk’s invocation controller
module, which is used to schedule function invocations into con-
tainers. Therefore, comparing the memory resource utilization
generated by the invocation controller gives a sound estimate of
the memory overhead used by the action mapper to cache the
results of function calculations. Fig. 21 illustrates the memory
overhead while running the action mapper module. The total
memory usage of the HashCache is on average 448.08 MB

Fig. 23. Blob Cache memory overhead.

and 290.48 MB more than that of FaaSCache and OpenWhisk,
respectively. These extra memory usages offer immense benefits
to serverless systems.

Memory Saved by Action Mapper: Fig. 22 depicts the host
memory usage of the three approaches during the invoca-
tion execution. The average memory utilization of HashCache,
FaaSCache and OpenWhisk are 973.11 MB, 1985.79 MB and
1936.36 MB, respectively. Although the caching mechanism
introduces additional memory overhead, the memory overhead
is well offset by the performance gains from reducing the number
of duplicate executions.

2) State Bridge: The state bridge maintains (i) the function-
state relationship in memory; (ii) the latest states (blobs) in the
local file system, indexing the states by hashing the requested
URL. For instance, state bridge caches demand image objects of
different sizes of an image fetching function (image function)
in a local file system as a way of accelerating the invocation
process. Fig. 23 illustrates the memory overhead of the image
function of the state bridge service on five consecutive requests
for each of the 10 file sizes – 1 KB, 16 KB, 32 KB, 128 KB,
256 KB, 512 KB, 1024 KB, 2048 KB, 3072 KB and 4096 KB.
The total size of the required files is 55 MB. The findings confirm
that less than 110 MB is required to run all the 50 invocations.
The state bridge itself consumes up 60 MB of memory – and the
resources required to forward files takes up 50 MB.

V. RELATED WORK

Fine-grained function computations impose a performance
barrier on serverless computing, where a growing number of
schemes were proposed to tackle this problem by curtailing con-
tainer startup overhead [17], [41]. Such an optimization, how-
ever, only alleviates the impact of cold starts, with the affliction
remaining in serverless computing. Very recently, researchers
adopted VM-based sandbox approaches that provide a strong
isolation among functions to mitigate the cold start problem [10],
[42], [43]. Though the strong isolation offer stable operations
among functions, this solution causes additional start-up costs.

Interestingly, special attention was paid to leveraging caching
strategies to cope with the cold start issue. For example,
Du et al. proposed the Init-less approach that aims to boost
startup of diverse serverless applications [18]. Init-less caches
most metadata amid function initialization to reduce the
amount of data initialized when the same function is in-
voked. Ana Klimovic et al. designed Pocket to enable elas-
tic and distributed data storage when exchanging intermedi-
ate data during function invocations [44]. Wang et al. built
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a caching system, referred to as InfiniCache, to facilitate an
in-memory object caching service [45]. Francisco et al. present
Faa$T - an in-memory caching layer to cache remote I/O
requests into local cluster [29]. Mvondo et al. cached in-
termediate data among functions by recycling wasted mem-
ory resource overestimated by FaaS users [19]. Ustiugov
et al. devised a FaaS orchestrator called REAP, which makes
use of a page fault inspection technique and a prefetching
mechanism to speed up function invocations [46]. Shillaker et al.
implemented a serverless runtime - Faasm - to extend traditional
WebAssembly modules, expecting to execute functions across
distributed clusters [34]. Alexander et al. developed FaaSCache
keeping function instances alive as analogous to caching objects,
aiming to accelerate function invocations in serverless plat-
forms [20]. On the other hand, HashCache accelerates serverless
computing platforms by caching the output results of com-
putational and stateful functions based on duplicate function
executions and infrequent updates to external states. Compared
to FaaSCache, HashCache significantly reduces duplicate com-
putations while ensuring the correctness of function results,
thereby reducing the number of containers required for executing
functions. In short, HashCache reduces invocation latency and
improves memory utilization by caching the computed results
of functions.

The other existing solutions are mainly focused on lightweight
virtualization technologies to lower container startup overhead
– or to alleviate the cold start problem in FaaS platforms.
Unlike the aforementioned approaches, our HashCache trims
the overhead of function invocation at the fine granular-level: we
cache the output of computational and stateful functions with an
ambition to cut back the invocation latency between users and
the FaaS platforms. HashCache maintains the external states
of stateful functions, thereby bolstering caching performance –
and facilitating fast access to remote objects. Furthermore, the
FaaS platforms, equipped with HashCache, rule out duplicate
function execution accompanied by low resource utilization.

VI. CONCLUSION

In this study, we proposed HashCache - a holistic caching
system - to fend off duplicate execution in the arena of serverless
computing. HashCache integrally orchestrates two key exten-
sions – the action mapper and state bridge modules, which are
conducive to caching data reused by serverless functions. The
main responsibility of the action mapper is to cache computing
results of computational and stateful functions, thus averting
duplicate function execution to speed up performance. The state
bridge, on the other hand, maintains the remote states requested
by stateful, assisting the action mapper to cache results leading to
shortened invocation latency. The experimental results confirm
that HashCache is slated to eradicate cold starts, to curtail
invocation latency, and to lower resource overhead on serverless
platforms.

We implemented HashCache on top of OpenWhisk to validate
the effectiveness of HashCache. We conducted the extensive
experiments to compare the performance of our HashCache
against the state-of-the-art solutions FaaSCache and OpenWhisk

in terms of invocation latency and resource utilization. The
experimental results unveil that HashCache, which governs a
wide range of serverless workloads, immensely cuts back the
invocation latency and optimizes the resource utilization of the
leading-edge systems by 14.72%–95.16% and 6.94%–35.51%,
respectively.
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