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ABSTRACT

Graph Neural Networks (GNNs) have been increasingly adopted for
graph analysis in web applications such as social networks. Yet, effi-
cient GNN serving remains a critical challenge due to high workload
fluctuations and intricate GNN operations. Serverless computing,
thanks to its flexibility and agility, offers on-demand serving of
GNN inference requests. Alas, the request-centric serverless model
is still too coarse-grained to avoid resource waste.

Observing the significant data locality in computation graphs
of requests, we propose AGrapher, a serverless system for GNN
serving that achieves resource efficiency through graph sharing
and fine-grained resource allocation. AGrapher features the follow-
ing designs: (1) adaptive timeout for request buffering to balance
resource efficiency and inference latency, (2) graph-centric sched-
uling to minimize computation and memory redundancy, and (3)
resource-centric function management with fine-grained resource
allocation catered to the resource sensitivities of GNN operations
and function orchestration optimized to hide communication la-
tency. We implement a prototype of AGrapher based on the repre-
sentative open-source serverless platform Knative and evaluate it
with real-world traces from various web applications. Our results
show that AGrapher can achieve an average savings of 61.5% in
memory resource and 47.2% in computing resource compared with
the state of the arts while ensuring GNN inference latency.
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1 INTRODUCTION

Graphs, as a fundamental data structure, are prevalent in various
domains including social networks [31, 52], financial networks [5,
41], and transportation networks [15, 34]. The rise of deep learning
has empowered graph neural networks (GNNs) to be a powerful tool
to extract features from graph structures [45, 46, 56]. Today, GNNs
have been widely used in online web services, e.g., social network
analysis [9, 23], short-video recommendation [26, 53], shopping
recommendation [40, 50], and financial fraud detection [28, 41].

However, efficient serving of GNNs—running GNNs5s for time-
sensitive inference tasks—remains a critical challenge, for the fol-
lowing reasons: (1) GNN inference is resource-hungry due to the
large graph size and complex operations, while applications im-
pose stringent service-level objectives (SLOs) on GNN inference
latency [54]. (2) The arrival of GNN inference requests in web
services is typically bursty and hard to predict [51]. (3) GNN execu-
tion intricately interleaves graph and tensor operations that show
diverging resource sensitivities [38]. The resource inefficiency of
GNN deployment leads to high operational costs for web services.

To deal with workload fluctuations, web services typically adopt
autoscaling techniques to adjust the provisioned resources vertically
and horizontally. Specifically, the system monitors a metric such
as the CPU or memory utilization and applies a threshold-based
scaling policy [4, 13]. Upon workload increases and the utilization
exceeds the threshold, a more powerful service instance (e.g., with
more CPU cores or memory) is launched to replace the current one
in the case of vertical scaling, or more service instances are added


https://doi.org/10.1145/3589334.3645383
https://doi.org/10.1145/3589334.3645383
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645383&domain=pdf&date_stamp=2024-05-13

WWW °24, May 13-17, 2024, Singapore, Singapore

to serve requests in the case of horizontal scaling. The opposite will
be applied when the workload decreases and the utilization drops
below the threshold. While such autoscaling techniques can absorb
workload variations at large time scales, the long delay in changing
the provisioned resources (e.g., launching new virtual machines)
limits their capability of handling short-term request spikes.

Serverless computing (and its popular implementation function
as a service) offers new opportunities for efficient provisioning of
web services thanks to its agile event-driven model [16]. However,
a direct request-centric serverless deployment of GNN inference,
i.e,, invoking a separate function to process each arriving request,
as done in financial fraud detection systems on AWS Lambda [6],
may not provide us with the promised efficiency gain. There are
two major reasons: (1) The fixed resource allocation for a function
invocation per request ignores the diverging resource sensitivities
of operations in different GNN execution stages, leading to low
overall resource utilization. (2) Per-request function innovation
leads to repeated computation and redundant memory usage across
requests that potentially share parts of their computation graphs.

In this paper, we present AGrapher, a scalable, resource-efficient
serverless system for GNN inference. Our key observation is that
GNN inference requests arriving in a given period show high spatial
data locality, i.e., their computation graphs overlap significantly.
Following this observation, AGrapher features the following designs
to achieve high resource efficiency. First, AGrapher buffers requests
and processes them in batches to exploit the data locality and re-
duce computation and memory redundancy. As request buffering
introduces extra delay, to strike a good balance between resource
efficiency and latency, AGrapher incorporates adaptive timeout con-
figuration to decide when the batch of requests in a buffer must be
dispatched to avoid latency SLO violation. Second, AGrapher adopts
graph-centric scheduling to perform GNN inference computation.
Specifically, we use multiple queues and distribute arriving requests
to these queues, aiming to maximize the spatial data locality of re-
quests in the same queue. To execute the aggregate computation
of batched requests, we merge the computation graphs of all these
requests and partition the merged graph accounting for locality
so that resources allocated for a partition can be released imme-
diately once the local computation is completed, leveraging the
agility of serverless functions. Finally, AGrapher employs resource-
centric function management which allocates resources to functions
catering to the resource sensitivities of the GNN operations per-
formed by each function and orchestrates functions into a pipeline
to reduce inter-function communication time overhead.

In short, this paper makes the following contributions. After con-
ducting a thorough empirical analysis of GNN workload variations,
data locality, and resource sensitivities of GNN operations (§2), we
e present a resource-efficient serverless system for GNN inference

(§3) featuring an adaptive timeout mechanism for request buffer-

ing to balance resource efficiency and end-to-end latency.

e propose a graph-centric request scheduler that exploits data lo-
cality to minimize computation and memory redundancy and
maximize resource elasticity.

introduce a resource-centric function manager that caters the
resource allocation to the specific resource sensitivities of GNN
operations and orchestrates functions in pipelines to reduce inter-
function communication latency.

2827

Haichuan Hu, Fangming Liu, Qiangyu Pei, Yongjie Yuan, Zichen Xu, and Lin Wang

@ Target Vertex ,
Q© 1-Hop Neighbors o4O Embedding
@ 2-Hop Neighbors Aggregated Embedding
J @ Send Request ~
=
Users @ Fetch N-Hop
Computation
=
. y
o

Graph Database Front-End Node

Figure 1: Typical GNN inference workflow.
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implement AGrapher on the serverless platform Knative. Our
evaluation with real-world traces shows that AGrapher achieves
an average savings of 61.5% in memory resource and 47.2% in
computing resource when compared to the state of the arts (§4).

§5 discusses related work and §6 concludes the paper.
2 BACKGROUND AND MOTIVATION

This section describes the fundamentals of GNN and the infer-
ence workflow in current systems, empirically studies the workload
fluctuations of GNN inference, motivates a graph-centric serverless
approach for GNN inference, and discusses the challenges in build-
ing an efficient graph-centric serverless system for GNN inference.

2.1 Fundamentals of GNN Inference

GNN basics. Denote the input graph as G = (V, E), where V is the
set of vertices representing specific entities and E is the set of edges
representing relationships between entities. Each vertex v € V has
a feature representation h, € Rd, where d is the feature dimen-
sion. A GNN contains multiple layers, each comprising Aggregate
and Update operations. In each layer, every vertex v aggregates
information from its neighboring vertices with

1+1 1 1
W= 0 (Bl u e N@)Y), (1)
where hﬁ,“ is the representation of vertex v in layer [ + 1, N'(v) is
the set of neighbors of vertex v, hL is the representation of neigh-
boring vertex u in layer [, and @' is the aggregation function. The
representation of each vertex v is updated after each layer I with

RA = YL (R R, ®)

where the update function 1! typically includes neural network
layers used to integrate information from the current layer and the
previous layer, resulting in a new representation for the vertex.
GNN inference workflow. GNN inference has been employed by
various time-sensitive online services, such as GraphLearn [1] and
PlatoGL [26]. Figure 1 shows a typical GNN inference workflow.
First, the request content is extracted as vertices and edges. Next,
the platform sets the vertex to predict as the target vertex and
extracts an n-hop computation graph. Then, the feature vectors are
extracted following the vertices/edges in this graph. Finally, this
graph and feature vectors are used as inputs for inference.
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2.2 Resource Inefficiency in Current Systems

Current GNN inference systems fall into two types: traditional
elastic cloud systems and request-centric serverless systems. The
former has pre-configured resources and applies autoscaling in
coarse grains based on monitoring metrics, as explained before.
Examples of this type include Alibaba’s GraphLearn [1] and Ten-
cent’s PlatoGL [26]. Request-centric serverless systems handle each
request by triggering a function invocation, allowing on-demand
processing based on the specific computation graph of the request.
AWS’s financial fraud detection system operates in this way [6]. Un-
fortunately, both types of systems suffer from resource inefficiency
for one or both of the following two reasons.

Multi-scale workload fluctuations in GNN inference. Using
widely recognized datasets of user request arrival traces from Twit-
ter [2] and datasets of requests on social network graphs from
Twitter [8], we show that the GNN inference workload fluctuates at
three levels: request, graph, and layer. Request-level fluctuations are
represented by burstiness in the user request intensity, measured
by requests per second (RPS), as shown in Figure 2a. Graph-level
fluctuations concern the size of the extracted computation graph
of each request. We use a typical setup of a 3-hop computation
graph from the target vertex for real-time inference and compare
the graph size difference between any two consecutively arriving
requests. Figure 2b shows the difference can be as large as 98.6x.
Layer-level fluctuations are represented by the difference in the
number of vertices at each GNN layer, demanding varying resources
to perform computation. Figure 2c shows that this difference can
reach 4X between Layers 1 and 2 and 9% between Layers 1 and 3.
Varying resource sensitivity of GNN operations. Each GNN
layer is composed of two main operations alternatively executed:
Aggregate and Update. Figure 15 (in Appendix A) shows the the
structure of three classic GNN layers, namely GCN [18], Graph-
SAGE [11], and GIN [48]. Taking a 3-layer GCN model as an ex-
ample, we investigate the demands and sensitivities of Aggregate
and Update to different resource types. Figure 3a shows that Aggre-
gate, a graph-based operation, is memory-bound, whereas Update,
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a tensor-based operation, is CPU-bound. Figure 3b shows that with
the increase of CPU cores, Aggregate shows a continuous latency
reduction (up to 4.5X) while the latency for Update quickly plateaus
with a maximum reduction of 2.2X. This implies that Aggregate is
more sensitive to CPU resource than Update.

Existing systems consider request-level workload fluctuations at
best, but none of them consider multi-scale workload fluctuations
and varying resource sensitivities of GNN operations.

2.3 New Opportunities

0 Coupling 343

The above analysis motivates us to switch from the request-centric
serverless design to a graph-centric one. This design choice offers
the following new opportunities.

Exploiting data locality for graph sharing. Based on the Twitter
trace [2, 8], we observe a significant overlap between the compu-
tation graphs of requests arriving within a period. Figure 4 shows
that the overlap rate can reach 44.2% for epochs of 150 ms, leading
to considerable redundant computation and memory usage, which
can be avoided by batching requests and sharing intermediate re-
sults across requests [46]. We show in Figure 4 that a graph-centric
serverless approach could save, on average, 55.3% and 46.5% mem-
ory resource compared with the traditional and request-centric
serverless approaches, respectively. Figure 5 shows the resource
consumption of two consecutive requests under different execution
modes. It shows that batching requests and eliminating redundancy
reduces 21.3% of memory usage and 22.7% of CPU usage.
Decoupling GNN operations for fine-grained resource alloca-
tion. The sensitivity of Aggregate and Update to resources differs,
suggesting a resource-centric approach to function management.
Specifically, we can manage functions in resource groups, decou-
pling memory-sensitive Aggregate and compute-sensitive Update
and customizing fine-grained resource allocation for each of them.
Figure 6 shows that with this approach up to 52% memory reduction
and 25% CPU reduction can be achieved (see the “3+3” mode). On
the other hand, we pay the cost of slight latency increases, primarily
caused by the inter-function communication overhead.
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Figure 7: A system overview of AGrapher.

2.4 Design Challenges

The graph-centric serverless approach with fine-grained resource
allocation offers tremendous benefits, but also raises challenges.
C1: How to batch requests to exploit data locality? Request
batching is a de-facto optimization in inference serving systems for
improving resource efficiency. However, due to the heterogeneity
of request graphs and irregular memory access in the Aggregate
operation in GNN inference (see Figure 2b), batch processing can
be inefficient if not treated carefully. As we have shown signifi-
cant resource efficiency improvement can be achieved by reusing
intermediate results among batched requests. The challenge is on
quickly grouping requests to maximize the chance of reuse.

C2: How to efficiently execute batched requests? When batch-
ing requests, the computation graphs of these requests are merged
into a big graph, e.g., with millions of vertices. The memory needed
to host the merged graph can easily exceed the memory limit of
serverless functions, leading to scalability concerns. A quick idea is
to break down the merged graph into pieces and allocate a function
for each piece. The challenge is on partitioning the merged graph
at a suitable granularity to ensure scalability and take advantage of
the agility of serverless functions to achieve resource efficiency.
C3: How to conceal inter-function communication overhead?
Decoupling GNN operations and enabling fine-grained resource al-
location offers efficiency gains, but at the cost of extra inter-function
communication overhead. One typical approach is to construct a
pipeline to overlap function execution with communication. The
challenge is to fine-tune this pipeline so that all the functions in
the pipeline achieve load balancing to maximize overhead hiding.

3 SYSTEM DESIGN

We present AGrapher and its design in this section.

3.1 System Overview

To address the shortcomings of the request-centric serverless ser-
vice model discussed in Section 2.2, we develop a resource-efficient
serverless GNN inference system with a graph scheduling and re-
source management engine. The main idea behind the engine lies in
two aspects: (1) graph-centric scheduling which leverages the graph
sharing of consecutively arriving requests to reduce computation
and memory redundancy, and (2) resource-centric function manage-
ment which involves fine-grained resource allocation for functions
in the form of compute function groups and memory function
groups, catering to the compute-sensitive and memory-sensitive
operations, respectively, thereby maximizing resource efficiency.
AGrapher aims to optimize the resource efficiency during GNN
serving while ensuring the latency SLOs of GNN requests.
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Figure 7 illustrates the system overview of AGrapher. At the be-
ginning of the GNN serving, @ a continuous stream of user requests
arrives at the serverless platform. Then, @ the Parser analyzes the
content of the user requests, and the target IDs are dispatched to the
Configurator and the Router. Next, @ the Configurator queries the
vertex IDs of the computation graph from the graph database and
generates the data indices to send to the Router. According to the
data indices, @ the Router routes incoming requests to the buffer
with the highest degree of graph sharing. While the requests are
waiting, ® the Configurator collects the buffer states and queries
the built-in SLO and the service history to ® periodically adjust
the timeouts. As the requests are added to the Multi-Buffers, @ the
Graph Scheduler, with a global perspective, re-schedules the re-
quests to enhance the data locality, and extracts the computation
graphs, performing dynamic graph partitioning on each buffer.
When a buffer times out or is full, ® the batched requests are sent
to the newly created Orchestrator. The Orchestrator, based on the
graph partitions, @ scales and maps the workloads to the compute
functions and memory functions. @ The compute functions load
the neural network, while the memory functions load the graph
partitions and features. Finally, the functions perform collaborative
inference as per the orchestrated process.

3.2 Parser and Router

Target IDs. The Parser analyzes user requests to retrieve graph
structure IDs for inference. Graph analysis tasks can be categorized
into three types: vertex/edge/graph-level prediction. In this paper,
vertex-level prediction task is taken as an example, where the ID of
the vertex to be inferred is the target ID.
Routing strategy. The Router is responsible for routing each re-
quest to the buffer that has the highest graph-sharing degree for
that request to enhance data locality. Each request corresponds to
an n-hop computation graph G(V, E) based on its target ID. The
data index Uy, for a request r; is the vertex set V of it computation
graph, denoted as as Uy, = V;,. The data index for a buffer b; is the
union of data indices for all requests it contains:
Ub,» = Uy, U U, U...UUrj,rj € b;. (3)
The routing strategy directs requests to the buffer with the highest
graph sharing degree, determined by intersecting the buffers’ data
index with the request’s data index:

52'1 = [Up, N UR| /U] U,

4

#0,bj = argmélxsg,

where S;’ is the graph sharing degree of request r; with respect to

buffer b; lin Multi-Buffers B, and b; is the buffer with the highest
graph sharing degree for the request r;.



AGrapher: A Resource-Efficient Serverless System for GNN Serving through Graph Sharing

Local Perspective VS. Global Perspective

o= o oD 9000
New Request Buffer 1 =02 Alp=-03 @‘ c "‘2:0'0—|
Graph sharing degree t‘ Re-Scheduling .
f h bi
of eac ;;; ination @@ =01 @ @‘ = -0.05 @
© 40% © Buffer 2 #w=-02| |B|m=02 @0 % |D m:ﬂ.A@@@*
50% o [ Locally optimal Globally optimal myq
@‘_’@ Buffern - Mg = th+ th with SLO guarantee

(a) New Request Arrives (b) Re-Scheduling Schemes

Figure 8: The global perspective optimization process.

3.3 Multi-Buffers and Configurator

Multi-Buffers. We observe a significant overlap among the compu-
tation graphs corresponding to user requests arriving continuously
over a period as discussed in Section 2.2. Therefore, we design
the Multi-Buffers which provides requests with an opportunity for
graph sharing with other requests which have same subgraphs,
by allowing requests to wait in the buffer for a certain period.
The Multi-Buffers, denoted as B, consists of multiple individual
buffers. The batched requests are sent to the functions for infer-
ence when the buffer times out or is full. Each buffer possesses
a 4-tuple (R, S, Q,K) to characterize the state of the buffer at the
current moment, where R denotes the requests per second for the
buffer, S € [0, 1] represents the average graph sharing degree of
all requests in the buffer, Q € [0, 1] indicates the ratio between
the remaining time and the configured timeout of the buffer, and
K € [0, 1] represents the ratio between the buffer’s configured time-
out and the maximum allowable timeout setting. The buffer timeout
is a crucial determinant of system performance. Optimal timeout
configuration ensures efficient graph sharing to achieve high re-
source efficiency without compromising request violations. In the
evolving inference service landscape, configuring buffer timeouts
judiciously is essential. The batch size is also dynamically adjusted,
determined by the resource limits of the functions and SLO slack.
Adaptive timeout configuration. The Configurator adapts buffer
timeouts dynamically, using the decision tree algorithm [49] to
swiftly balance the benefits of graph sharing and inference timeli-
ness, ultimately achieving a comprehensive performance. We em-
ploy real-world traces mentioned in Section 4 and utilize the built-in
SLO to conduct authentic service runs, thereby gaining service his-
tory. First, we determine the initial timeout Ty and the maximum
timeout T4y for the buffer Based on the SLO:

To =y X SLO, Tyax =8 XSLO, 0 <y <8 < 1. (5)

When the buffer reaches a threshold of new requests or a specific
time interval elapses, its state shifts, prompting a decision from the
decision set X = {0} U {1 X z,...,i X 7}. Two types of decisions
exist: x; = 0 preserves the current timeout, and x; = i X 7 extends
it, with 7 as the unit time interval. To quantify the impact of each
decision, we propose a metric that measures the trade-off between
graph-sharing benefits and inference timeliness:

My, =aX Sy, —BX Dy, ae[0,1],p€[0,1], 6)

where pp,, represents the total performance gain of the buffer b;, Sp,
signifies average graph sharing degree of buffer b;, Dy, represents
the average delay ratio in buffer b; due to waiting (i.e., average time
each request is delayed relative to the timeout), and « and f are fixed
coefficients set by the developers. We record the buffer’s state and
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Figure 9: Demonstration of the dynamic graph scheduling.

the decision with the maximum performance gain when a decision
is made, utilizing this as historical experience. We employ a decision
tree regression model to fit the buffer state as independent variables
and the corresponding decisions as the dependent variable:

Model = DecisionTreeRegressor.fit((R,S, Q,K), X). 7)

The generated Configurator brings us some decision-making heuris-
tics: 1) When benefits remain stable, the Configurator tends to favor
x; = 0, conservatively maintaining the current timeout. 2) If the
buffer consistently receives requests that notably improve the av-
erage graph sharing degree, the Configurator typically chooses
x; = i X 7, greedily extending the timeout, the degree of which
depends on the magnitude of the benefit increase.

3.4 Graph Scheduler

The Graph Scheduler is responsible for scheduling of the compu-
tation graphs corresponding to the requests, which involves three
specific parts: 1) Globally schedule requests between the buffers
to achieve the optimal graph sharing; 2) Preprocess graphs to re-
duce computation and memory redundancy through graph sharing;
3) Dynamically partition the computation graphs to improve re-
source efficiency and provide scalability for inference.

Global perspective optimization. New requests are routed to
the buffer with the highest graph sharing degree according to the
strategy. However, this can cause graph sharing results to converge
towards local rather than global optima, as illustrated in Figure 8.
Hence, we introduce a global perspective optimization algorithm
to dynamically re-schedule remaining requests for graph sharing,
aiming for the global optimum, as demonstrated in Algorithm 1
in Appendix B. Whenever a new request enters the Multi-Buffers,
the Graph Scheduler places this request in the appropriate buffer
based on the routing strategy and evaluates the current buffer’s
performance gain (Line 1-Line 3). The Graph Scheduler identifies
requests in other buffers eligible for graph sharing with the new
arrival and computes their respective graph sharing degrees (Line 4-
Line 7). Next, the Graph Scheduler calculates the performance gain
if requests are moved in or out of the buffer (Line 8-Line 12). If the
performance gain improves after the scheduling, the Graph Sched-
uler adopts this decision by transferring the requests into the buffer
of the new request and removing them from their original buffer
(Line 13-Line 16). After global perspective optimization, subsequent
inference can fully benefit from graph sharing.

Graph sharing. The Graph Scheduler uses a hierarchically aggre-
gated computation graph (HAG), building upon prior research [14],
to merge redundant vertices and facilitate intermediate result shar-
ing, reducing computational and memory redundancy in batch
processing. The process of graph sharing primarily involves three
steps: 1) Expand the computation graph of the target vertex into
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Figure 10: Demonstration of the collaborative inference.

a computation tree; 2) Traversal the computation tree to merge
vertices at the same depth between different computation trees; 3)
Conduct the aggregation operation on the merged vertices only
once, and the intermediate results from the aggregation operation
can be reused in subsequent steps, as illustrated in Figure 5a.
Dynamic graph scheduling. When requests move between buffers,
their associated computation graph are transferred as well, with
dynamic incremental graph partitioning optimizing inference for
subsequent tasks. The dynamic graph scheduling serves two main
objectives, as shown in Figure 9: 1) Not all graph vertices participate
in the computation at every layer, as illustrated in Figure 2c. The
Graph Scheduler partitions the graph for each GNN layer, utilizing
serverless functions efficiently created and destroyed as needed.
2) Serverless functions have resource limitations and cannot load
all graphs stored in buffers. Dynamic graph scheduling provides
scalability for inference, addressing this constraint. Algorithm 2 in
Appendix B describes the specific dynamic graph partitioning pro-
cess. First, combine the graphs in the buffer with the arrived request
graph to generate the HAG, which is the data structure resulting
from shared graph scheduling (Line 1). Next, begin traversing from
the task vertex to its predecessor vertices (note that even in the case
of an undirected graph, it is represented as a directed graph), i.e., the
vertices required for its aggregation, which are formed as a partition
(Line 2-Line 9). The predecessor vertices visited in the previous iter-
ation are treated as new task vertices for the subsequent traversal,
and this process continues until the set of task vertices becomes
empty, at which point the algorithm concludes (Line 10-Line 12).
Finally, we obtain a two-dimensional list of graph partitions, where
each row represents the input for each GNN layer, and the gran-
ularity of these graph partitions is fine, providing scalability for
subsequent inference.

3.5 Orchestrator

The Orchestrator coordinates a set of serverless functions to per-
form GNN inference on batched requests, as shown in Figure 10,
following resource-centric management that maximizes resource
efficiency without violating SLOs, which comprises three stages:
1) The Orchestrator maps memory-sensitive graph workloads and
compute-sensitive tensor workloads to memory functions and com-
pute functions, respectively; 2) The Orchestrator employs a pipeline
collaborative inference mechanism to distribute communication
overhead among functions; 3) Based on the workloads and the
remaining time, the Orchestrator scales memory functions and com-
pute functions, customizing their resource allocation.

Workload mapping. The Orchestrator divides the GNN workload
into graph workloads and tensor workloads and manages serverless
functions with resource groups. The memory function group exclu-
sively handles graph workloads, i.e., memory-sensitive Aggregate
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operations, while the compute function group exclusively loads
tensor workloads and handles computation-sensitive Update opera-
tions. To optimize resource usage, the Orchestrator maps GNN input
graph partitions to memory functions, aiming to assign the same
layer partitions to a single memory function. Exceeding memory
limits for partitions from the same GNN layer prompts mapping
excess partitions to new memory function instances. Tensor work-
loads, needing less memory, load neural networks for each GNN
layer into a single compute function instance. Vertices finishing
tasks early can exit batch processing and return results.
Collaboration between functions. The Orchestrator organizes
collaborative inference between functions in a pipeline fashion,
allowing the communication overhead between functions to be
distributed within their respective computations, as illustrated in
Figure 10. The entire pipeline process begins with the memory
function inferring the first layer of GNN, and thus, the granularity
of concurrent tasks in the pipeline is determined by the number of
graph partitions and vertices processed in parallel at each step by
the first layer memory function. The concurrent granularity needs
to be considered when allocating resources for functions.
Function scaling. The Orchestrator customizes resources for mem-
ory functions and compute functions based on workload size and
concurrent granularity, saving resources while ensuring SLO com-
pliance. Specifically, the allocated memory resource amount for
memory function F/" and compute function F{ are M[" and M;:

®)

where M, represents the runtime memory size, Mg, represents the
memory size of loaded graphs, M, represents the memory size
of loaded embeddings, and M,, represents the memory size of
the neural network. the Orchestrator allocates the CPU cores to
functions based the bayesian optimization [37]:

M™ = My + Mg, +Mh,-=MiC = M, + Myp,

BayesianOptimization(ﬁ,)?, L, TI) NYG )
Minimize:Cost=wZFm><Tlm+772Fc><7}C (10)
Constraints : Z "+ Z T} < Tack (11)

where F represents the function vector, X represents the function
workload size vector, T indicates the concurrent granularity vector,
7_"} represents the inference time vector under different cores and
task size, ¢ represents the core number vector, and w and 1 indicate
the cost per unit of memory usage and cpu usage respectively,
which can be found in AWS Fargate Pricing [36]. ;" and T indicate
the inference time of memory and compute functions, and Ty 0
indicate the SLO slack.

4 EVALUATION
In this section, we prototype AGrapher and evaluate it with real-
world traces from various web applications.

4.1 Experimental Setup

AGrapher prototype. We prototype AGrapher based on the open-
source serverless platform Knative [19] with 3k LOC in Python
and Go. Specifically, we implement the Parser, Configurator, Router,
Multi-Buffers, Graph Scheduler, and Orchestrator in a VM instance as
middleware between the request source and the Knative platform,
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Table 1: Graph Datasets from Real-World Applications

Graph Datasets \Y [E| Dim. N-hop SLO(s)
Bitcoin OTC [18] 5,881 35,592 1,024 3 0.3
KuaiRec [10] 4,738 4,676,570 58 2 0.6
Higgs Twitter [11] 456,626 14,855,842 1,024 3 1.0

and we deploy function instances through Knative Serving Service.
We build an in-memory database service for fast graph queries.
Baselines. We compare AGrapher with the state-of-the-art GNN
serving systems, including GraphLearn [1], representing the tra-
ditional cloud service architecture, and a financial fraud detection
system based on AWS Lambda [6], donated as AWSGNN, represent-
ing the request-centric serverless architecture. GraphLearn relies
on monitoring memory occupancy threshold metrics to scale in-
stances up or down, as most traditional elastic cloud services do [4].
AWSGNN dynamically allocates functions for each request based
on its computation graph size.

Web application traces. We utilize real-world traces from Twit-
ter [2] to generate the inter-arrival time of user requests, which
is widely used for evaluating inference systems. We use three
graph datasets from real-world applications to generate request
contents, including KuaiRec [10] from the video-sharing mobile app
Kuaishou [20], Bitcoin OTC [22] form Bitcoin transaction network,
and Higgs Twitter [8] from Twitter network, which are widely
applied in evaluating the GNN model designed for short-video
recommendation [29], financial fraud detection [21] and social net-
work analysis [35], respectively. The SLOs are set based on the
requirements of the application scenario, as described in the previ-
ous work [54]. The details of graph datasets are shown in Table 1.
GNN workloads. We select three common GNN models with three
layers using the Deep Graph Library (DGL) [42] API, including
GCN [18], GraphSAGE [11], and GIN [48]. The structures of GNN
layers are shown in Figure 15 in Appendix A. The three-layer model
is used to evaluate both the BitCoin and Higgs Twitter traces, while
the two-layer model is used to evaluate the KuaiRec trace.
Testbed. We implement AGrapher on a cluster with 10 kc1.8xlarge.2
machines, each of which includes 32 CPU cores at 2.3GHz and
64 GB RAM (Ubuntu 18.04). We collect real service data on physical
machines, such as inference latency under various configurations.
To expedite the experimental process, we transform the prototype
implementation into a simulation mode as in [25].

4.2 Performance Comparison

We compare AGrapher with the state-of-the-art GNN serving sys-
tems, GraphLearn and AWSGNN, in terms of memory and com-
puting resource efficiency, as well as end-to-end (E2E) latency and
SLO violation rate. Figure 11 indicates that, compared to the state-
of-the-art, AGrapher can achieve an average of 61.5% in memory
resource and 47.2% in computing resource savings. Across three
web application traces, including Bitcoin OTC, KuaiRec, and Higgs
Twitter, the average graph sharing degrees of each buffer are 54.6%,
97.5%, and 58.6% respectively. The average graph sharing degree
across KuaiRec is close to 1 because of its graph density of 99.6%,
where each computation graph approximates the whole graph.

Memory resource efficiency. In different GNN workloads and
across various traces, AGrapher reduces memory resource usage by
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Figure 11: Resource efficiency between AGrapher and the
state of the arts under different traces and GNN workloads.
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Figure 12: E2E latency between AGrapher and the state of the
arts. The red solid lines represent the SLOs.

58.9% to 72.5% compared to GraphLearn and 42.9% to 67.9% com-
pared to AWSGNN (on average 61.5%). GraphLearn, representing
traditional cloud-based systems, over-allocates resources before ser-
vice initiation and continuously monitors for request fluctuations
and system availability. However, its coarse instance resource scal-
ing granularity leads to significant memory wastage. On the other
hand, AWSGNN, representing request-centric serverless systems,
effectively manages request intensity fluctuations but lacks spatial
data locality utilization due to serving individual requests with indi-
vidual functions, resulting in memory redundancy during GNN in-
ference. AGrapher adopts a graph-centric task scheduling approach,
efficiently reducing memory redundancy by batching requests with
common subgraphs. Besides, AGrapher employs a resource-centric
approach, segregating graph workloads from tensor workloads to
avoid memory overhead during tensor computations.
Computing resource efficiency. Under various GNN workloads
and across different traces, AGrapher demonstrates a reduction in
computing resource usage, achieving savings ranging from 49.3%
to 57.2% compared to GraphLearn, and 27.8% to 56.9% compared to
AWSGNN (on average 47.2%). As shown in Figure 3, GNN opera-
tions vary widely in resource sensitivities. Both GraphLearn and
AWSGNN employ coarse-grained resource allocation for the entire
GNN, resulting in suboptimal computing resource utilization. In
contrast, AGrapher reduces computation redundancy through graph
sharing and offers a resource-centric function management mecha-
nism. By decoupling Aggregate and Update operations, AGrapher
enables fine-grained resource allocation and orchestrates a refined
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Figure 13: Results of the adaptive timeout configuration.

pipeline for customized functions to ensure load balancing, sub-
stantially enhancing computing resource efficiency.

E2E latency and SLO violation rate. Figure 12 depicts the cumu-
lative distribution function (CDF) plot of the E2E latency for each
system. Across the three traces, the average SLO violation rates of
each system are 1.55%, 0.15%, and 0.09% respectively. GraphLearn’s
strategy of over-provisioning resources ensures lower average E2E
latency but its coarse-grained and homogeneous resource alloca-
tion policy struggles with GNN request fluctuations, resulting in
a relatively high violation rate. AWSGNN sacrifices some infer-
ence performance to save resources, yet it cannot fully utilize SLO
slack. AGrapher maximizes resource efficiency by analyzing GNN
workloads and fully leveraging SLO slack.

4.3 Module Analysis

Adaptive timeout module. To validate the adaptive timeout mod-
ule’s performance, we set a fixed lower bound of 10ms and an upper
bound of 100ms, allowing AGrapher to dynamically adjust within
this range. We conduct tests on the largest-scale graph datasets
Higgs Twitter, as shown in Figure 13. The adaptive timeout mod-
ule saves an average of 18.1% of memory and 17.4% of computing
resources compared to the 10ms configuration, and achieves an
average 21.6% reduction in computing resource usage compared to
the 100ms configuration. The 10ms configuration overlooks data
locality, hampering resource efficiency, while the 100ms timeout, de-
spite optimizing memory resource efficiency through graph sharing,
demands significant computing resources to meet SLO goals. The
AGrapher dynamically adjusts the timeout, balancing the benefits
of graph sharing and the risk of violating SLOs.

Resource allocation module. We compare the resource alloca-
tion module’s performance, utilizing bayesian optimization (BODC),
against coupling and decoupling (DC) solutions in KuaiRec. Fig-
ure 14 shows that BODC saves an average of 34.5% memory and
21.7% computing resources compared to coupling, and 19.9% mem-
ory and 16.6% computing resources compared to DC. Coupling
results in wastage in computing resources during Aggregate op-
erations and memory resources during Update operations. Under
the DC approach, although separating graph and tensor workloads
saves some resources, there is a mismatch in execution speed be-
tween memory and compute functions. By analyzing historical
data, AGrapher utilizes bayesian optimization to determine the op-
timal resource allocation ratio for memory and compute functions,
maximizing resource efficiency.

5 RELATED WORK

GNN inference. In the traditional distributed environment, recent
works focus on optimizing graph partitioning and resource map-
ping for acceleration [3, 17, 43, 55]. Wang et al. [43] propose an
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Figure 14: Results of the resource allocation module.

adaptive and efficient system for GNN acceleration on GPUs, which
preprocesses the model and input graph to achieve reasonable graph
partitioning and resource mapping. In the cloud environment, in
order to solve the problem of graph data distributed in different
geographies, Zeng et al. [51] propose to conduct the GNN real-time
inference by adopting the fog computing paradigm to reduce the
communication overhead of the data collection before inference.
The above works focus on inference of static GNN models, which
pre-allocate computing node resources and provide services by
continuous monitoring. This scheme is difficult to dynamically and
adaptively allocate resources according to the fluctuation of user
requests, resulting in waste of resources.

Serverless graph system. Due to the elastic scalability and flexibil-
ity of serverless computing [16, 27, 44], some web applications have
been serverlessized, such as DNN inference or training [24, 33, 47],
and IoT services [7, 32]. In particular, some scholars propose to mi-
grate the graph processing system to the FaaS platform [12, 38, 39].
Toader et al. [39] implement the classic graph processing model
Pregel [30] on the Faa$ platform in a simple engineering manner.
However, due to frequent data communication, the system per-
forms poorly in performing large-scale graph algorithms. Thorpe
et al. [38] make the GNN training process semi-serverless, intro-
ducing serverless threads to handle computation-sensitive tensor
operations, while graph operations that are sensitive to memory
resources are still executed on the CPU server. At present, there is
a gap in the work of serverless-based GNN serving.

6 CONCLUSION

In this paper, we identify the resource inefficiency problem in
current GNN serving systems. Through studying the web appli-
cation traces, we observe the spatial data locality in computation
graphs of requests. We propose a scalable, resource-efficient server-
less system named AGrapher for GNN serving. AGrapher supports
a graph-centric task scheduling strategy to reduce the computation
and memory redundancy and facilitates a resource-centric function
management mechanism which allocates resources to functions
catering to the resource sensitivities of GNN fine-grained opera-
tions. Compared to the state of the arts, our AGrapher prototype
can save an average of 61.5% in memory resource and 47.2% in com-
puting resource with real-world traces while meeting the SLOs.
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Algorithm 2: Dynamic Graph Scheduling Algorithm

Input :Graph of the buffer Gy, (V}, Ep);
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A GNN LAYER STRUCTURES Target vertices IDs W = [wo, ..., w;] ;
Figure 15 shows the the structure of three classic GNN layers, Output : Graph Partitions for each GNN layer
namely GCN [18], GraphSAGE [11], and GIN [48]. Each GNN layer P =[[poo.---.poil .- [pnos - .. pnill
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3 while W # @ do

GCN Layer GraphSAGE Layer GIN Layer 4 pn =11
A 2 5 foreach w; in W do
Aggregate
(Aggregate) (Aggregate) goreg 6 traversePredecessors(wj, H(Vy,, E))— pni;
7 append(pni)— pn;

s | append(pn)— p;
9 proUpniU...Uppi = W;

v v v
( Update J ( Update J( Update J
v | —
10 n+1—on;

Figure 15: Classic GNN Layers. 11 return P;
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