Name: ___

Name: ___

TCSS 462/562: (Software Engineering for) Cloud Computing School of Engineering and Technology
Fall 2025						 	 	 University of Washington – Tacoma

Class Activity 3 – Introduction to AWS Lambda Serverless Computing
Thursday October 30th, 2025

For Class Activity 3, complete tutorial 4 through page 14. Stop before section 7B on page 14.
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2025_tutorial_4.pdf

Specifically you’ll want to complete the steps 1 - 7:
1. Download SAAF
2. Build the SAAF Lambda function Hello World template
3. Test Lambda function locally before deployment
4. Deploy the function to AWS Lambda
5. Create an API-Gateway REST URL
6. Install package dependencies and configure your client to call Lambda
7. Test your Lambda function using the API-Gateway and AWS CLI

Stop before step 7B, which is the BONUS section on “AWS Lambda Function URLs”.

Answer the questions below based on your output from step 7:

1. The callservice.sh script performance synchronous (blocking) function calls over the network. First the script invokes your Lambda function using the AWS API-Gateway REST URL using the command-line REST client “curl” used in Tutorial 2 for the weather script. The script then invokes your Lambda function using the AWS CLI. Before the JSON output for each call, you will find timing data:

real	0m5.988s
user	0m0.029s
sys	0m0.011s

“real” means the real elapsed time for the function call. This is the client to server round-trip time, which is the time to call the server and for the result to be returned.
“user” is the time the client performed user mode processing during the call
“sys” is the time the client performed kernel mode processing during the call

Since the function is run on the cloud, not locally, “user” and “sys” are typically low.

a. What is the “real” time for the AWS API-Gateway REST call:	________________________

b. What is the “real” time for the AWS CLI Lambda call:		________________________

c. Which calling method is faster, curl or the AWS CLI ?		________________________
2. Next, inspect the JSON output from the two function calls.

The “newcontainer” attribute is 1 when the function was COLD and AWS Lambda was forced to create a new function instance and runtime environment (a micro VM).

“newcontainer” is 0 when the function is WARM, and a preexisting runtime environment is reused.

a. What is the “newcontainer” value for the curl (API-Gateway) call ?	__________________

b. What is the “newcontainer” value for the AWS CLI call ?		__________________

3. The function’s microVM needs to run a small version Linux and also the AWS Lambda platform which is separate from your code. This means the amount of memory you allocate to you function (under the Configuration tab, and General Configuration in the AWS Lambda GUI) and the memory of the host microVM may not be the same. Using the JSON output check the following:

a. What is the value of “cpuType” for the curl (API-Gateway) call ?	__________________

b. What is the “functionMemory” for the curl (API-Gateway) call ?	__________________

c. What is the “totalMemory” for the curl (API-Gateway) call ?		__________________

d. What is the “freeMemory” for the curl (API-Gateway) call ?		__________________

Here, functionMemory is the function’s memory in MB, and totalMemory and freeMemory are in KB.

e. Based on the difference between totalMemory and freeMemory, does your function code use all available memory ? (yes or no)						__________________

BONUS. Using Linux CPU time accounting metrics, you can account for what the CPU is doing at all times. Practice the use of Linux CPU time accounting to verify the function’s runtime.

The following are Linux CPU metrics. Each reports how many centiseconds the CPU operated in a particular state.

cpuUsrDelta		time in centiseconds CPU spent executing user code
cpuIdleDelta		time in centiseconds CPU spent idle (doing nothing)
cpuIowaitDelta	time in centiseconds CPU spent performing IO
cpuKrnDelta		time in centiseconds CPU spent executing Linux kernel code

Find the values for each of the metrics. Add the metrics together and then multiply by 10 to get milliseconds. Then divide by 2, because the AWS Lambda runtime environment has 2 vCPUs. Time is reported for each of the CPU threads. Compare this time with the “userRuntime” attribute.

BONUS. What is the difference between userRuntime and
the calculated value ?								__________________
2
