TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Chapter 3 - Processes

Wes J. Lloyd

School of Engineering
and Technology
University of Washington - Tacoma

February 4, 2020

OBJECTIVES

= Assignment O - questions
mAssignment 1 - questions

= Feedback from 1/30
®mChapter 3.1: Threads - cont’'d
= Chapter 3.2: Virtualization

= Chapter 3.3: Clients

= Chapter 3.4: Servers

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (R e Sehoalor T TRy T

MIDTERM SCHEDULING SURVEY

= TCSS 558B
= Tuesday February 11 - 6 respondents (32%)

= Tuesday February 18 - 12 respondents (63%) ‘/

= No Preference - 2 respondents (11%)
= Midterm Plan:

Practice midterm - 2" half of Lecture 11 on Feb 11t
February 13t - Will cover new material not on midterm
Midterm Exam - Tuesday February 18"

Exams returned no later than Tuesday February 25th

= Content coverage - through 15t half of Lecture 11 on Feb 11t

= Thursday February 13 - 7 respondents (37%) (internship fair @UW Seattle)

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

Technology, y Tacoma

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (9 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.11 (down from 7.09)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.22 (up from 4.91)

TCS5558: Applied Distributed Computing [Winter 2020]

‘ February 4, 2020 School of

Tacoma

FEEDBACK FROM 1/30

= What is the purpose of the many-to-one and one-to-one
threading models? (question edited to correct terms)

= Thank you for question
= Have revised slides L8 for clarity

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

Technology, y Tacoma

Slides by Wes J. Lloyd

Scale
(running processes)

Workload diversity
(process types)

CH. 3: PROCESSES
CH. 3.1: THREADS

L9.1

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MANY-TO-ONE

THREADING MODEL

= Many-to-one threading model:
= Multiple user-level threads per process

= Program appears as single process to the system

= User manages scheduling of threads, not 0S

= What are some advantages of many-to-one threading?

— user hrea

< k) +—kemel tread

= All threads mapped to single schedulable process in the 0S

= Thread operations (create, delete, locks) run in user mode
= Any blocking system call by one thread blocks entire process

= One kernel thread per process: process restricted to 1 CPU

= Key take-away: thread management handled by user processes

= What are some disadvantages?
TCSS558: Applied Distributed Computing [Winter 2020]
(e 2 e o Ty s s o Tty f T

February 4, 2020

MANY-TO-ONE

THREADING MODEL

= Many-to-one threading model:
= Multiple user-level threads per process

used many-to-one Aocaon
threading model

This threading model is
now seldomly used kel

‘Scheduable
- entiy (0.,
Wby

== Threas_O= WP

= What are some disadvantages?

() —sareros
Initial implementation of Java threads (~ 1995?)

' user threa

TCSS558: Applied Distributed Computing [Winter 2020]
(R e e A BT e e o R P T

ONE-TO-ONE
THREADING MODEL 0

= One user thread to one kernel thread
= User process can use many kernel threads
" Also called kernel-level threads

= All threads scheduled individually by the 0S
= Enables running single process across multiple CPUs

= Now commonly used... (used in Linux)

= What are some advantages of one-to-one threading?

= Threads operations managed by the OS (create, delete, lock)
= Thread ops run in kernel mode using separate kernel threads

= Kernel API calls farmed out to preinitialized kernel level theads
= Requires system calls and context switch from user to kernel thread

<«— user thread

<«— kemel threa

= What are some disadvantages?
TCSS558: Applied Distributed Computing [Winter 2020]
(e 20 e oolol Enpineer s endlTechnoloayiU e sy f Tacoms

APPLICATION EXAMPLES

Alternative: Collectlon of concurrent processes
Google chrome: tabs backed by processes

via interprocess communication (IPC)

Each process maintains its own private memory

shared memory, what |s the tradeoff(s) ?2?

= Replication instead of synchronization - must synchronize multiple

copies of the data

Do distributed objects share memory?

Apache http server: Apache Multi-Processing-Module (MPM prefork)

Multiprocess programming avoids synchronization of concurrent
access to shared data, by providing coordination and data sharing

While this approach avolds synchronlzing concurrent access to

TCSS558: Applied Distributed Computing [Winter 2020]

(R 1o ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

MULTITHREADED CLIENTS

= Web browser
user in parallel

loading in parallel

= testFIbPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:
= Several connections can be opened simultaneously

loading data in parallel

= Uses threads to load and render portions of a web page to the

= A client could have dozens of concurrent connections all

= Client: dozens of concurrent connections to the webserver all

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

10

MULTIPLE THREADS

® |n Linux, threads also receive a process ID (PID)
= To display threads of a process in Linux:

= |dentify parent process explicitly:
= top -H -p <pid>
= htop -p <pid>

= ps -iT <pid>

= Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2020]

(R A Sehoollof echnoloayUniversityof Tacoma

11

Slides by Wes J. Lloyd

12

L9.2

TCSS 558: Applied Distributed Computing February 4, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

PROCESS METRICS

LOAD AVERAGE

dsr: disk sector reads = Reported by: top, htop, w, uptime, and /proc/loadavg

- dsreads: disk sector reads completed = Updated every 5 seconds
- drm: merged adjacent disk reads = Average number of processes using or waiting for the CPU
- readtime: time spent reading from . A
CPU disk = Three numbers show exponentially decaying usage
-cpuUsr: CPU time in user mode - dsw: disk sector writes for 1 minute, 5 minutes, and 15 minutes
-cpulrn: CPU time in kernel mode - dswrit isk sector writes completed = One minute average: exponentially decaying average
- cpuldle: . CPU u.ile tlme” wm merg?d adjacent d_'§k w"te_s = Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)
- cpuloWait: CPU time waiting for I/0 me: time spent writing to disk
- cpulntSrvc:CPU time serving interrupts
- cpuSftintSrve: CPU time serving soft interrupts Network = 1.0 = 1-CPU core fully loaded
- cpuNice: CPU time executing prioritized - nbs: network bytes sent' = 2.0 = 2-CPU cores
processes - nbr: network bytes received
- cpuSteal: CPU ticks lost to virtualized guests = 3.0 =3-CPUcores . ..
- contextsw: # of context switches
-loadavg: (avg # proc / 60 secs)

TCSS558: Applied Distributed Computing [Winter 2020]

e A BT e e o R P T ‘ o ‘

‘ February 4, 2020

14

g *
) micore ®3core 2core 4
= TLP Metric: Is multithreadlng effectively explolted? o
= |s the bottleneck the CODE or the system? o
o
= TLP measures degree of N 130
parallelism realized by running lel 1-Ci =i o L "2 B3 ma
. = e o
system, by calculating average TLP = 1—¢ » u‘ Ny
utilization: 0 o =
100 <1 (=3
= Ci - fraction of time where exactly i threads are executed RRALGME T R IR e S memm e % b
= C, - idle time of the system @ TLP for differen application categories () Average CPU time breakdown
= N - maximum threads that can execute at any one time . =z core *Icore ~Zcore
18
= Web browsers found to have TLP from 1.5 to 2.5 From: Gao et al., A Study of Thread Level 817
= Clients for web browsing can utilize from 2 to 3 CPU cores Parallelism on Mobile Devices, 2014 IEEE @
. International Symposium on Performance 14
= Any more cores are redundant, and potentially wasteful Analysis of S and e 1
y Y A NP P .
= Measure TLP to understand how many CPUs to provision)
Fig. 2: TLP under different frequencies (BBench)
TCSS558: Applied Distributed Cor iting [Winter 2020] TCSS558: Applied Distributed Ce iting [Winter 2020]
[e o T e e gion- Tcoms | os] [a0 gon:coma | |

15 16

MULTITHREADED SERVERS SINGLE THREAD SERVERS

= Common & essential for TCP/IP servers and distributed systems
= Example: Apache tomcat webserver: threads

= Even on single-core machines greatly improves performance

= Take advantage of idle/blocking time

= Thread management approaches:

= Single thread server
= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available

= Generate new thread for every request = Concurrent users all share a single thread
= Thread pool - pre-initialize set of threads to service requests = Must wait until it is available
Request dispatched
Dispatcher thosnd toa worker thread Server = No data corruption or synchronization challenges

= No debugging of race conditions, deadlocks

p—
=g
Worker thread =Slow, not scalable

oL

Operating system

TCS5558: Applied Distributed Computing [Winter 2020]
February 4, 2020 ‘ SRl e TechnologyiUnversty " T 1917

17 18

Request coming in
rom the network

TCSS558: Applied Distributed Computing [Winter 2020]

Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma ‘ o8 ‘

February 4, 2020

Slides by Wes J. Lloyd L9.3

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

FINITE STATE MACHINE SERVERS

= Finite state machine
= Server has just single thread for executing client requests
= DIFFERENCE: I/0 performed asynchronously
(i.e. non-BLOCKing)
Presumably farmed out to kernel threads
=Server handles other request while waiting for 1/0
= Interrupt fires when I/0 completes
=Single thread “jumps” back into context to finish request

=Server design avoids synchronization and concurrency
issues

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

19

VIRTUALIZATION

INSTRUCTION LEVELS
REQUIRING VIRTUALIZATION

= Hardware: CPU Application

Library functions

= Privileged instructions
KERNEL MODE

= General instructions

System calls

Privileged General

Operating system
USER MODE

= Operating system: system calls

= Library: programming APls: e.g. C/C++,C#, Java libraries

= Applicatlon: user program code

= Goal of virtuallzation:
mimic these interfaces to provide a virtual computer

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

23
chnology, y Tacoma ‘ ‘

February 4, 2020

SERVER DESIGN COMPARISON

= A blocking system call implies that a thread servicing a
request synchronously performs I/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Consider the implications of these designs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking 1/0
Single-thread No parallelism, blocking I/0
Finite-state machine Parallelism, non-blocking I/0

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i Tacoma

‘ February 4, 2020 ‘ 19.20 ‘

20

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes

= 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laa$S)

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (R 1o Schoolof EchnoloayiUniversiyer Tecoma

22

TYPES OF VIRTUALIZATION

Application/Libraries

" Process virtual machine : r

= Interpret instructions: (interpreters) Runtime system
(JavaVM) byte code > HW instructions y—
perating system
= Emulate instructions: (emulators) I ass
(Wine) windows code > Linux code Hardware

= NATIVE (bare-metal) virtual machine monitor (VMM),
= Hypervisor (XEN): small OS with its own kernel
= Provides an interface for multiple guest OSes Opskating systen

= Facilitates sharing/scheduling of ‘\,“ua,mamli,,‘e,m,nm ‘
CPU, device I/0 among many guests T IT T

= Guest OSes require special kernel to interface w/ VMM | "

= Supports Paravlrtuallzation for performance boost to run code
directly on the CPU

= Type 1 hypervisor

Application/Libraries

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University of Washi Tacoma

‘ February 4, 2020 ‘ 1924 ‘

23

Slides by Wes J. Lloyd

24

L9.4

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 4, 2020

TYPES OF VIRTUALIZATION - 2

= HOSTED virtual machine monltor (VMM) Sotoalont biet
= Runs atop of hosted operating system Operating system
= Uses host OS facilities for CPU scheduling, I/0 'v e
firtual machine monitor
= Full virtualization
= Type 2 hypervisor persing tysiem |
= Virtualbox Hardware

= Textbook: note 3.5-good explanation of full vs. paravirtualization

= GOAL: run all user mode instructions directly on the CPU

= x86 instruction set has ~17 privileged user mode instructions

= Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

= Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 2 T o T s s o T T T T

25

EVOLUTION OF AWS VIRTUALIZATION

From http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2047.htm!
AWS EC2 Virtualization Types

Vs: Importance
Mos! > Least
Virtuallzation ieciraial beitoa
In software Near-metal performance a %) "q% NG
Optinized priormance) ‘;"a e ’%:"’%%
ONAN
P: Poor performance A %‘bﬁ%‘:&& Yo
2

Paravirtual FIE S Wi

i Fully Emulated
VH: od 2| w Xen PV 3.0 PV drivers
Vir 3| Xen HVM 30 PV drivers

4 wm Xen HVM 4.0.1 PVHVM drivers.
In Hardware 5| w Xen AWS 2013 PVHVM + SR-IOV(net)

6 wm Xen AWS 2017 PVHVM + SR-IOV(net, stor.)
H: 7| M | AWSNwo 2017

Ne
Hardware lew |8 | HW | AWS Bare Metal 2017 H H H H H H
Bare Metal [wlw[w[w[n[n]

VM: Virtual Machine. HW: Hardware.
V: Vil in software. VH: Vir. in hardware. P: Paravir. Not all combinations shown.

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri chnology, University i Tacoma

‘ February 4, 2020 ‘ 1927

27

AWS VIRTUALIZATION - 3

= XEN HVM 4.0.1
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage, interrupts, timers
= XEN AWS 2013 (diverges from opensource XEN)
= Provides hardware virtualization for CPU, memory, network
= Paravirtual: storage, interrupts, timers
= Called Single root I/0 Virtualization (SR-I0V)
= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs
= Improves VM network performance
= 314 & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbps
= XEN AWS 2017
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, Interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= Instance storage hardware virtualization (x1.32xlarge, i3 family)

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri iversit i

1929
Technology, y Tacoma

‘ February 4, 2020

29

Slides by Wes J. Lloyd

BARE METAL VS. HOSTED HYPERVISOR

VM

=
VM vM

_ [i ‘
‘ Hardware | | Hardware ‘
Type 1 Hypervisor Type 2 Hypervisor

(Bare-Metal Architecture) (Hosted Architecture)

TCSS558: Applied Distributed Computing [Winter 2020]

‘ (R e e A BT e e o R P T

26

AWS VIRTUALIZATION - 2

= Full Virtuallzation - Fully Emulated
= Never used on EC2, before CPU extensions for virtualization
= Can boot any unmodified 0S
= Support via slow emulation, performance 2x-10x slower

= Paravirtuallzation: Xen PV 3.0

= Software: Interrupts, timers

= Paravirtual: CPU, Network /0, Local+Network Storage

= Requires special OS kernels, interfaces with hypervisor for I/0

= Performance 1.1x - 1.5x slower than “bare metal”

= Instance store instances: 15T & 2"d generation- m1.large, m2.xlarge
= Xen HVM 3.0

= Hardware virtualization: CPU, memory (CPU VT-x required)

= Paravirtual: network, storage

= Software: interrupts, timers

= EBS backed instances

= mi, cl instances

‘ February 4, 2020 TCS5558: Applied Distributed Computing [Winter 2020]

ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma ‘ Lo ‘

28

AWS VIRTUALIZATION - 4

= AWS Nitro 2017
= Provides hardware virtualization for CPU, memory, network, local
disk, remote disk, Interrupts, timers
= All aspects of virtualization enhanced with HW-level support
= November 2017
= Goal: provide performance indistinguishable from “bare metal”

= 5t generation instances - ¢5 instances (also c5d, c5n, m5, r5)
= Based on KVM hypervisor
= Overhead around ~1%

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (R A Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

30

L9.5

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CH. 3.3: CLIENTS

February 4, 2020

TYPES OF CLIENTS

= Thick clients
=Web browsers
= Client-side scripting
= Mobile apps
= Multi-tier MVC apps

= Thin clients
= Remote desktops/GUIs (very thin)

TCS5558: Applied Distributed Computing [Winter 2020]

February 4, 2020 School of Technology, Tacoma

31

CLIENTS

= Application specific protocol

= Thick clients

= Clients maintain local data

TTert machine erver maching]
Application Application
Application-
A specific
Migdleware | protocol Middleware
Local 0S

= Middleware (APls) Local 08

= Clients synchronize data with remote nodes J—
= Example: shared calendar application

= Application independent

Client machine

L

Server machine|

= Thin clients
= Client acts as a remote terminal

Appiication-

[pptnl

Middleware

protocol

Middleware

= Provides interface to user (GUI / Ul)

= Server houses entire application stack

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

Technology, y Tacoma

32

X WINDOWS

= Layered architecture to transport Ul over network
= Remote desktop functionality for Linux/Unix systems
= X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine = Linux GUI

= Client and server communication transported over the
network - remote Linux GUI

TCS5558: Applied Distributed Computing [Winter 2020]

February 4, 2020 School of Technology, Tacoma

33

X WINDOWS - 2

@ 21

= Window manager:

= Application running
atop of X-windows

which provides flair
= Many variants
= Without X windows is
quite bland

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri iversi i

‘ February 4, 2020 Hechnology]

v

35

Slides by Wes J. Lloyd

34

= Layered architecture

= X-kernel: low level Desktop Environment - Application and
. File Management
interface/APIs for GHDM/KD% panels, desktop icon managers

controlling screen,

capturing keyboard
and mouse events

(X window Server)

= Provided on Linux
as Xlib

= Provides network
enabled GUI

= Layering allows for
use for custom
window managers

February 4, 2020 TCSS558:

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Session Manager
gnome-session, ksmserver

Display Manager - Local X Server Startup
and User Authentication
gdm, kdm, xdm

Toolkits
GTK, Qt, Moif, Xaw

XWindow Server - Display Hardware Management

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

19.36

36

L9.6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 4, 2020

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu EC2 Instance VM:
sudo apt-get update

ubuntu 16.04
sudo apt-get install ubuntu-desktop

sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

on ubuntu 18.04
sudo apt install xfced4 xfced-goodies

sudo apt-get install tightvncserver # both

Start VNC server to create initial config file
vncserver :1

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 2 T o T s s o T T T T

37

EXAMPLE: VNC SERVER - UBUNTU 18.04

= On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 20 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome

39

EXAMPLE: VNC CLIENT

= On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1 ubuntu 52.111.202.44

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 2 Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms

41

Slides by Wes J. Lloyd

EXAMPLE: VNC SERVER - UBUNTU 16.04

= On the VM: edit config file: nano ~/.vnc/xstartup

= Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2020]

‘ (R e e A BT e e o R P T

38

EXAMPLE: VNC SERVER - 3

= On the VM: reload config by restarting server
® vncserver -kill :1
® vncserver :1

= Open port 22 & 5901 in EC2 security group:

Edit inbound rules x
Tpe Protocol (i Port Range (i source (i

= . frce 2 Awwee v 00000 o
Custom TCP Rue + TP e Anpwhere v 00,000 3

TCSS558: Applied Distributed Computing [Winter 2020]

‘ (R 1o ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

| o]

40

EXAMPLE: VNC CLIENT - 2

= On the client (e.g. laptop):

= Use a VNC Client to connect

= Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others

= Remmina login:

= Chose “VNC” protocol

" rosinie focaosteRot
Rrew B .

§ UnC ~ |[localhost:5901 Connect!

jName~ Group Server

TCS$558: Applied Distributed Computing [Winter 2020]

‘ (R A Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

42

L9.7

TCSS 558: Applied Distributed Computing February 4, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

REMOTE COMPUTER IN THE CLOUD ALTERNATIVE: XRDP

= EC2 instance e =g ke = Open source implementation of Microsoft RDP (remote
with a GUI. . .!"! St e desktop protocol)

= Open source version supports fully functional RDP-compatible
remote desktop experience

= Original implementation relied on vncserver, but no longer...

= #Ubuntu installation:
= sudo apt-get install xrdp
= sudo service xrdp start

= Point RDP client to PUBLIC IP: 3389
= Open port 3389 in security group
= Must create user to log in

‘ February 4, 2020 TCS5558: Applied Distributed Computing [Winter 2020] ‘

TCSS558: Applied Distributed Computing [Winter 2020]
T o T s s o T T T T 043 ‘ ‘ (R e Loda

School of Engineering and Technology, University of Washington - Tacoma

43 44

RDP VS. VNC THIN CLIENTS

= VNC sends picture of desktop across network
= Minimal optimizations are employed
= Send only parts of screen which have changed
= Limit colors, resolution

= Thin clients
= X windows protocol
= A variety of other remote desktop protocols exist:

= VNC requires more data transfer Remote desktcp orotocols include the followng:

O R sEneh isimEons om [(o i sereem (o chent « Apple Remote Desktop Protocol (ARD) - Original protocol for Apple Remots Deskiop on macOS mectines.
T « Appliance Link Protocol (ALP) - a Sun Microsystems specific prorocol feattring audio (play znd record), reiate printing, remote USB, acoeerated viceo
« HP Remote Graphics Software (RGS) ~ a propristary protocol designed by Hewlett-Packard specfically for high end workstaiion remoting and collzboration,
= Transferring instructions requires much less network bandwidth « Independent Computing Arcritecturs (ICA) ~ a propristary protocol designed by Citrx Systems
. N " . « NX technology (NaMachire \X) - Cross platform protocol featuring audio, vido, remote frintirg, remote USE, H254-enabled.
= Client computer "understands" image it has created * PC-over-IP (PCoIP) - a pioprietary protocal used by Vhware (iicensed from Teradici)?
= Client performs simple operations locally « Remore Deskiop Protocol (RDP) — a Windows-specifc prctocol featuring audio and remote prirting
= Move windows without sending mouse input to host computer « Remore Frame Buffer Frotocol (RFB) - A framebufter level cross-platform prorocol that UNC is based on,
« SPICE (Simple Protocol for Indeperdent Computing Environments) — remote-display system builtfor vrtual environmenis by Qurrranet, now Red Hat
« Splashtop - a high performancs remote deskiop protocol developed by Splashtap, fuly optimized for hardware (+.264) including Intel / AVD chipsets, NVIDIA

= Client renders image based on instructions and displays it

= No need to wait for host computer to render moved window

School of Engineering and Technology, University of Washington - Tacoma

= No need to wait for response from server of media codecs, Splashtop can defvr g fame rates vith low atency, and also low power consumption
 Client just calculates and draws results locally « X indow System (XL1) - a wellesiablished cross-plaon prtccal mainly used ordisplaying locel plications; XL s neticrk ransparent
TCSS558: Applied Distributed Computing [Winter 2020] TCSS558: Applied Distributed Computing [Winter 2020]
‘ (e 20 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome 1045 (R 1o L6

45 46

THIN CLIENTS - 2 THIN CLIENTS - 3

= Applications should separate application logic from Ul = Virtual network computing (VNC)
= When application logic and Ul interaction are tightly coupled = Send display over the network at the pixel level
many requests get sent to X kernel (instead of X lib events)
= Client must wait for response = Reduce pixel encodings to save bandwidth - fewer colors
= Synchronous behavior and app-to-Ul coupling adverselt affects = Pixel-based approaches loose application semantics

performance of WAN / Internet = Can transport any GUI this way

= Protocol optimizations: reduce bandwidth by shrinking size of = THINC- hybrid approach
X protocol messages

= Send only differences between messages with same identifier
= Optimizations enable connections with 9600 kbps

= Send video device driver commands over network
= More powerful than pixel based operations
= Less powerful compared to protocols such as X

‘ February 4, 2020 TCS5558: Applied Distributed Computing [Winter 2020]

TCSS558: Applied Distributed Computing [Winter 2020]
Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms ‘ Lo47 ‘ ‘ (R A

School of Engineering and Technology, University of Washington - Tacoma

| e]

47 48

Slides by Wes J. Lloyd L9.8

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 4, 2020

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Plxel-level Graphles Ilb
VNC ['] X11/ RDP
< i >

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i Tacoma

‘ February 4, 2020 ‘ 1949 ‘

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib

VNC P n XE.1/ RDP
< U >

e Generic - no app context e Application context

e Graphics data is available

o Higher network bandwidth e Ul data/operations

e Fewer colors e Lower network bandwidth

o Utilize graphics compression o More colors

e More network traffic e Client more processing

e Server more processing

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i Tacoma

‘ February 4, 2020 ‘ 19.50 ‘

49

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine erver 1 erver Server 3
Client Server Server Server
appl appl appl appl
Y
N . A A

lient sidé handles
request replication

Replicated request

February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

Technology, y Tacoma

51

H. 3

4: SERVERS

53

Slides by Wes J. Lloyd

50

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency
= Harness convenient naming system to allow client to infer new
locations
= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency
= Client aggregates responses from multiple servers
= Failure transparency

= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCS5558: Applied Distributed Computing [Winter 2020]

School of Technology, University of Tacoma ‘ s ‘

‘ February 4, 2020

52

SERVERS

= Cloud & Distributed Systems - rely on LInux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |T is moving to the cloud. And, what powers the cloud?

*Linux
= Uptime Institute survey - 1,000 IT executives (2016)
= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on Linux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (R A Sehodl of Engineerng and Technolosy University o Washi Tacoma

54

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 4, 2020

SERVERS - 2

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Server types
= |teratlve: immediately handle client requests

= Concurrent: Pass client request to separate thread

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Alternative: fork a new process for each incoming request
= Hybrid: mix the use of multiple processes with thread pools

TC55558: Applied Distributed Computing [Winter 2020] Loss
School of Engineering and Technology, University of Washington - Tacoma

‘ February 4, 2020

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

=When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

TCS5558: Applied Distributed Computing [Winter 2020] Lose
School of Engineering and Technology, University of Washington - Tacoma

‘ February 4, 2020

55

CoMMON PORTS packetlife.net
TCP/UDP Port Numbers
7 Echo 554 RTSP 2745 6891-6901
19 Chargen 546-547 DHCPV6 2967 Symantec AV 6970 Quicktime
20-21 FTP 560 rmonitor 3050 Interbase DB 7212 Ghostsurf
22 563 3074 EOKEVENIIN 7648-7649
23 Telnet 587 SMTP 3124 HTTP Proxy 8000 Internet Radio
25 SMTP 591 FileMaker 3127 S 8080 HTTP Proxy
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy 8086-8087 Kaspersky AV
43 wHois 631 Internet Printing 3222 GLep 8118 Privoxy
49 TacACS 636 3260 iSCsi Target 8200 VMware Server
53 DNS 639 MSDP (PIM) 3306 MySQL 8500 Adobe ColdFusion
67-68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server 8767 EamGEERI
69 TFTP 691 MS Exchange 3689 iTunes 8866 [EEGEEINN
70 Gopher 860 iSCS! 3690 Subversion 9100 HP JetDirect
79 Finger 873 rsync 3724 9101-9103 Bacula
80 HTTP 902 VMware Server 37843785 Ventrilo o110 FRENII
88 Kerberos 989-990 [FEIGVERSSENIN 4333 msQL 9800 WebDAV
102 Ms Exchange 993 iMAPA over SSL aaaa os0s FEESEHN
110 PoP3 995 4664 Google Desktop 9985 [EGUSHBSHN
113 ident 1025 Microsoft RPC 4672 9999 Urchin
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin 10000 Webmin
123 NTP 1080 SOCKS Proxy 5000 UPnP 10000 Backupéxec
135 Microsoft RPC 1080 5001 Slingbox 10113-10116 NetiQ
137-139 NetBios 1194 OpenvPN 5001 iperf 11371 OpenPGP
143 ivaPs 1214 5004-5005 RTP 12035-1203¢ [EEESTATENI
161-162 SNMP 1241 Nessus 5050 faRgoliessengen) 12345 SIS
177 xOMCP 1311 Dell OpenManage 5060 SIP 13720-13721 NetBackup
179 8GP. 1337 190

57

NTP EXAMPLE

= Daemon servers
= Run locally on Linux
=Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)
Daemons routes local client traffic to the configured
endpoint servers
University of Washington: time.u.washington.edu
Example “ntpg -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCSS558: Applied Distributed Computing [Winter 2020] Loso
School of Engineering and Technology, University of Washington - Tacoma

‘ February 4, 2020

59

Slides by Wes J. Lloyd

56

TYPES OF SERVERS

= Daemon server
= Example: NTP server

=Superserver

= Stateless server
= Example: Apache server

= Stateful server
= QObject servers

= EJB servers

TCS5558: Applied Distributed Computing [Winter 2020] ‘ L8

‘ (R 1o ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

58

SUPERSERVER

= Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines
= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet
= inetd daemon responds to multiple endpoints for multiple
services
= Requests fork a process to run required executable program

= Check what ports you’'re listening on:
®" sudo netstat -tap | grep LISTEN

TCS5558: Applied Distributed Computing [Winter 2020] ‘ Los0

‘ (R A Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

60

L9.10

TCSS 558: Applied Distributed Computing February 4, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

INTERRUPTING A SERVER STATELESS SERVERS

= Server design issue: = Data about state of clients is not stored
= Active client/server communication is taking place over a port = Example: web application servers are typically stateless
= How can the server / data transfer protocol support interruption? = Also function-as-a-service (FaaS) platforms

= Consider transferring a 1 GB image, how do you pass a

unrelated message in this stream? = Many servers maintain information on clients (e.g. log files)

1. Out-of-band data: special messages sent in-stream to support -
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)

= Soft state information expires and is deleted

= Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

‘ February 4, 2020 TCS5558: Applied Distributed Computing [Winter 2020] ‘ o1 ‘ ‘ February 4, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

61 62

STATEFUL SERVERS STATEFUL SERVERS - 2

= Maintain persistent information about clients = Session state
= Information must be explicitly deleted by the server = Tracks series of operations by a single user
= Example: = Maintained temporarily, not indefinitely
File server - allows clients to keep local file copies for RW = Often retained for multi-tier client server applications
= Server tracks client file permissions and most recent versions * Minimal consequence if session state is lost

= Table of (client, file) entries = Clients must start over, reinitialize sessions

= Permanent state

= If server crashes data must be recovered = Customer information, software keys
= Entire state before a crash must be restored
= Fault tolerance - Ch. 8

= Client-side cookies

= When servers don’t maintain client state, clients can store state
locally in “cookies”
= Cookies are not executable, simply client-side data

‘ February 4, 2020 TC55558: Applied Distributed Computing [Winter 2020] ‘ o ‘ ‘ February 4, 2020 TCsS558: Applied Distributed Computing [Winter 2020] ‘ oo ‘

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

63 64

OBJECT SERVERS OBJECT SERVERS - 2

= OBJECTIVE: Host objects and enable remote client access = Should object servers Isolate memory for object Instances?
= Do not provide a specific service = Share neither code nor data
= Do nothing if there are no objects to host = May be necessary if objects couple data and implementation

= Support adding/removing hosted objects
= Provide a home where objects live

A . . = Object server threading designs:
= Objects, themselves, provide “services”

= Single thread of control for object server

= Object parts = One thread for each object
= State data = Servers use separate thread for client requests
= Code (methods, etc.)

= Translent object(s) = Threads created on demand vs.

= Objects with limited lifetime (< server) Server maintains pool of threads

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”). = What are the tradeoffs for creating server threads on demand vs.

= Disadvantage: initialization may be expensive using a thread pool?

= Alternative: preinitialize and retain objects on server start-up

‘ February 4, 2020 TCsS558: Applied Distributed Computing [Winter 2020] ‘ oss ‘ ‘ February 4, 2020 TCsS558: Applied Distributed Computing [Winter 2020] ‘ oss ‘

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

65 66

Slides by Wes J. Lloyd L9.11

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 4, 2020

EJB - ENTERPRISE JAVA BEANS

= EJB- specialized Java object hosted by a EJB web container
= 4 types: stateless, stateful, entity, and message-driven beans
= Provides “middleware” standard (framework) for implementing

back-ends of enterprise applications

= EJB web application containers integrate support for:

= Transaction processing

= Persistence

= Concurrency

= Event-driven programming

= Asynchronous method invocation

= Job scheduling

= Naming and discovery services (JNDI)

= Interprocess communication

= Security

= Software component deployment to an application server

TCS5558: Applied Distributed Computing [Winter 2020]

(e 2 T o T s s o T T T T ‘ L7 ‘

APACHE WEB SERVER

= Highly configurable, extensible, platform independent
= Supports TCP HTTP protocol communication

= Uses hooks - placeholders for group of functions

= Requests processed in phases by hooks

= Many hooks: Vo Vode cuncton | Modle
= Translate a URL ‘DBIIJ; ‘DD!M ,EBEE‘
= Write info to log N / T i i e
= Check client ID mEL Mo fn g
= Check access rights = \ﬁ‘ ﬁ
® Hooks processed in order ‘]/ﬁ‘ Hooks point to functions in modules
enforcing flow-of-control / 1

= Functions in replaceable

Apache core
Funcions called per hook L[_l,l
modules Request Response

TCSS558: Applied Distributed Computing [Winter 2020]

staani2020) School of Engineering and Technology, University of Washington - Tacoma ‘ Lo68 ‘

67

68

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch
(possibly multiple)

Application/compute servers Distributed
fle/database
system

m—
mE——
[]

Dispatched

Client requests request

NN

First fier Second tier Third tier

TCS5558: Applied Distributed Computing [Winter 2020]

e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome ‘ e ‘

February 4, 2020 ‘

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - OSl layers 4-7

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCSS558: Applied Distributed Computing [Winter 2020]

ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma ‘ o7 ‘

‘ February 4, 2020

69

70

LAN REQUEST DISPATCHING - 2

= Who is the best server to handle the request?

= Switch plays important role in s
distributing requests gingle 70 —=—= —

= Implements load balancing

" Round-robln - routes client
requests to servers in a looping
fashion -

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

Request
(handed off) *

TCS5558: Applied Distributed Computing [Winter 2020]

(e 2 Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms ‘ o7 ‘

WIDE AREA CLUSTERS

= Deployed across the internet
= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploylng a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

= (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?

TCS$558: Applied Distributed Computing [Winter 2020]

Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma ‘ e ‘

‘ February 4, 2020

71

Slides by Wes J. Lloyd

72

L9.12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 4, 2020

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server
= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev
Show device configuration

nmcli device show <device name>

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 2 T o T s s o T T T T

73

Local Name Server
5. lterative Query to root
4.Check < (root)
Cache 6. Name Server for .edu
o
7 13, Update, e Root Name Server
Cache -~ D
Cache
Server T 7. lterative
3. Recursive Qusty 1o adu s
o e 8. Name Server for
googleplex.edu
2.Check v .edu Name Server
. [9. terative Query o
to googleplex.edu
e pos—— e
e 10. Name Server for googleplex
Cache Resolver compsci.googleplex.edu
| googleplex.edu
1.Resolution [Name Server
Epat [16. Requested 11, lterative Query to ¥
1P Address compsci.googleplex.edu
| ——= = compsci
g m 12.1P Address for >
R 2 e compsci.
2 Name Server E‘:"ZI qﬂ
17. HTTP Request L N .
User & Browser 1o Resolved Address B
Client

75

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
= Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
= Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
= Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 2 Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms

DNS LOOKUP

= First query local server(s) for address

= Typically there are (2) local DNS servers
= One is backup

= Hostname may be cached at local DNS server
= E.g. www.google.com

= |f not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

‘ February 4, 2020 TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lo

74

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

" traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased

‘ February 4, 2020 TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ 176

76

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

‘ February 4, 2020 TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ 178

77

Slides by Wes J. Lloyd

78

L9.13

TCSS 558: Applied Distributed Computing February 4, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

QUESTIONS

February 4, 2020

79

Slides by Wes J. Lloyd L9.14

