TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Chapter 3 - Processes

Wes J. Lloyd

School of Engineering
and Technology

University of Washington - Tacoma

OBJECTIVES

= Assignment O - questions
= Feedback from 1/28

®m Chapter 3.1: Threads
mAssignment 1 - introduction
® Chapter 3.2: Virtualization
® Chapter 3.3: Clients

®m Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.2

Slides by Wes J. Lloyd

January 30, 2020

L8.1

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (11 respondents):

®m 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.09

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 4.91

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

ASSIGNMENT O:

DIRECTLY TESTING FIBONACCI SERVICE

m First try "telnet" port test on slides 5.13 and 5.14 (lecture 5)
= |f telnet is able to access port, then test Fibonacci service directly

= Create a testFib.sh script by extracting lines from the
testFibPar.sh script:

host=34.232.53.152
port=8080
json={"\"number\"":50000}

curl -X POST -H "Content-Type: application/json"
http://$host:$port/fibo/fibonacci -d $json

® Adjust host and port

m Call service to calculate a variety of numbers:
e.g. 5, 50, 500, 5000, 50000, etc.

= |f service does not respond with a Fibonacci value, it is not working

TCSS558: Applied Distributed Computing [Winter 2020]

8.4
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

Slides by Wes J. Lloyd

January 30, 2020

L8.2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

FEEDBACK FROM 1/28

" How does a system get implemented as structure
vS. unstructured?

®m Developers or designers may intentionally select the
distributed system architecture

®- OR - there may be no choice.
A given architecture is required by the constraints of the
devices involved in the communication

= Example: Ad hoc wireless sensor network
= Structured peer-to-peer not option as nodes rapidly join & leave

= Centralized client/server or multitier not possible as system
has only peer nodes and no central servers

TCSS558: Applied Distributed Computing [Winter 2020] 185
School of Engineering and Technology, University of Washington - Tacoma ’

January 30, 2020

FEEDBACK - 2

® What is the difference between adhoc lists that nodes
in an Unstructured Peer-to-Peer System maintain, and
the finger table stored by nodes of a Chord System?
® Key similarity:
= Both lists consist of nodes that the Q °
nodes can directly communicate with Q
= There is a 1-hop network link °

= Key difference:

= Finger tables in Chord System are
used to route messages to implement
a distributed hash table

= Each node has table that describes ® ®
how to route queries Q

= (more in Ch. 5)

TCSS558: Applied Distributed Computing [Winter 2020] 186

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

January 30, 2020

L8.3

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

[

Scale
(running processes)

Il

EEE |

Workload diversity
(process types)

CH. 3: PROCESSES
CH. 3.1: THREADS

CHAPTER 3

® Chapter 3 titled “processes”

® Covers variety of distributed system implementation
details

= “Grab bag” of topics

® Processes/threads
= Virtualization

= Clients

= Servers

® Code migration

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIENRY) &), A School of Engineering and Technology, University of Washington - Tacoma

L8.8

Slides by Wes J. Lloyd

January 30, 2020

L8.4

TCSS 558: Applied Distributed Computing January 30, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

CH. 3.1 - THREADS

|-

® For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

® What is the difference between a process and a thread?
= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... ?

= What are the segments of a program stored in memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

THREADS - 2

|-

= Do several processes oh an operating system share...

= Heap segment?

= Stack segment?
= Code segment?

® Can we run multiple copies of the same code?

® These may be managed as shared pages (across processes) in
memory

® Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

TCSS558: Applied Distributed Computing [Winter 2020]

L8.10
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

10

Slides by Wes J. Lloyd L8.5

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THREADS - 3 | |

® Threads avoid the overhead of process creation

No new heap or code segments required

What is a

context switch?

Context switching among threads is considered to be more
efficient than context switching processes

Less elem

Unikernel:

ents to swap-in and swap-out

specialized single process OS for the cloud

Example: Osv, Clive, MirageOS (see: http://unikernel.org/projects/)

Single pro

cess operating system with many threads

Developed for the cloud to run only one application at a time

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

18.11
School of Engineering and Technology, University of Washington - Tacoma

11

ONE PROCESS, MANY THREADS

Tomeat

Threads

X page-acoess-sca-2- 1.0

x| flbhtpserver - 217 - 1.8

>java.so - 220 - 0.0

>>javaso - 226- 0.0

>>java.so - 227 - 0.0

25611

page-access-
sca ™

flibhttpserver.

>java.so "™
>>java.so """

>>java.so "

»>3>2>javas0 - 239 - 0.0

+|reclaimer - 1-0.0
225612 22612 225643 25613 2ZSEIA 2256 RSG5 225615 22:56:16

+ page_poal 12-3-0.0

+ itmerreal-4- 00

+|ifmer-vint -5 - 0.0

+| balancero - 6- 0.0

+/rew0-7-00

+|page_pool_11_0-8-0.0

+ percpuo-9- 0.0

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

18.12
School of Engineering and Technology, University of Washington - Tacoma

12

Slides by Wes J. Lloyd

January 30, 2020

L8.6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THREADS - 4

® Important implications with threads:
® (1) multi-threading should lead to performance gains

® (2) thread programming requires additional effort when
threads share memory

= Known as thread synchronization, or enabling concurrency

= Access to critical sections of code which modify shared
variables must be mutually exclusive

= No more than one thread can execute at any given time
= Critical sections must run atomically on the CPU

|-

TCSS558: Applied Distributed Computing [Winter 2020]

18.13
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

13

BLOCKING THREADS

® Example: spreadsheet with formula to compute sum of column
m User modifies values in column

® Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

® Single core CPU

= Tasks appear as if they are performed simultaneously
® Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2020]

L8.14
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

14

Slides by Wes J. Lloyd

January 30, 2020

L8.7

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

INTERPROCESS COMMUNICATION

® |PC - mechanism using pipes, message queues, and shared
memory segments

® |PC mechanisms incur context switching
= Process I/0 must execute in kernel mode

® How many context switches are required for process A to
send a message to process B using IPC?

Process A Process B

= #1 C/S:

Proc A>kernel thread

S1: Switch from user space
n Wwiemeligpace. | \J. A | 53: Switch from kemnel
T — 1] space to user space
#2 C/S: L T——
Kernel thread>Proc B Operating system
82: Switch context from
process A to process B

TCSS558: Applied Distributed Computing [Winter 2020]

18.15
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

15

CONTEXT SWITCHING

= Direct overhead
= Time spent not executing program code (user or kernel)

= Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

= Stack, code, heap, registers, code pointers, stack pointers
= Memory page cache invalidation

® |[ndirect overhead

= Overhead not directly attributed to the physical actions of the
context switch

= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

= Primarily cache perturbation

TCSS558: Applied Distributed Computing [Winter 2020]

L8.16
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

16

Slides by Wes J. Lloyd

January 30, 2020

L8.8

TCSS 558: Applied Distributed Computing January 30, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

CONTEXT SWITCH -

CACHE PERTURBATION

m Refers to cache reorganization that occurs as a result of a
context switch

® Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

MRUE‘
LRU@

TCSS558: Applied Distributed Computing [Winter 2020]

18.17
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

17

MANY-TO-ONE e

THREADING MODEL

= Many-to-one threading model:

= Multiple user-level threads per process «— kel thread
® All threads mapped to single schedulable process in the 0OS

® Program appears as single process to the system

® Thread operations (create, delete, locks) run in user mode

®m Any blocking system call by one thread blocks entire process

® User manages scheduling of threads, not 0OS

® One kernel thread per process: process restricted to 1 CPU

= Key take-away: thread management handled by user processes

= What are some advantages of many-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

January 30, 2020

18

Slides by Wes J. Lloyd L8.9

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

= What are some disadvantages?

MANY-TO-ONE e
THREADING MODEL

= Many-to-one threading model:
= Multiple user-level threads per process <« kemel thread

Initial implementation of Java threads (~ 1995?)
used many-to-one - A
threading model

This threading model is
how seldomly used

: Schedulable
entity (a.g

| Kemel | LwP)

~f = Thread O =LWP

TCSS558: Applied Distributed Computing [Winter 2020]

18.19
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

19

<«—— user thread

ONE-TO-ONE ; ; g ;
THREADING MODEL () é é_keme,mread

= Threads operations managed by the OS (create, delete, lock)

® Thread ops run in kernel mode using separate kernel threads
= Kernel API calls farmed out to preinitialized kernel level theads
= Requires system calls and context switch from user to kernel thread

® One user thread to one kernel thread
® User process can use many kernel threads
® Also called kernel-level threads

= All threads scheduled individually by the 0OS
= Enables running single process across multiple CPUs

= Now commonly used... (used in Linux)

= What are some advantages of one-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2020]

q A 3 A q L8.20
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

20

Slides by Wes J. Lloyd

January 30, 2020

L8.10

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

APPLICATION EXAMPLES

= Alternative: Collection of concurrent processes
® Google chrome: tabs backed by processes
m Apache http server: Apache Multi-Processing-Module (MPM prefork)

® Multiprocess programming avoids synchronization of concurrent
access to shared data, by providing coordination and data sharing
via interprocess communication (IPC)

® Each process maintains its own private memory

= While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??

= Replication instead of synchronization - must synchronize multiple
copies of the data

® Do distributed objects share memory?

TCSS558: Applied Distributed Computing [Winter 2020]

18.21
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

21

MULTITHREADED CLIENTS

= Web browser

m Uses threads to load and render portions of a web page to the
user in parallel

® A client could have dozens of concurrent connections all
loading in parallel

= testFibPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:
® Several connections can be opened simultaneously

® Client: dozens of concurrent connections to the webserver all
loading data in parallel

TCSS558: Applied Distributed Computing [Winter 2020]

18.22
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

22

Slides by Wes J. Lloyd

January 30, 2020

L8.11

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MULTIPLE THREADS

® |n Linux, threads also receive a process ID (PID)
® To display threads of a process in Linux:

® |dentify parent process explicitly:
® top -H -p <pid>
® htop -p <pid>

® ps -iT <pid>

® Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2020]

18.23
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

23

PROCESS METRICS

isk
- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
CPU disk
- cpuUsr: CPU time in user mode - dsw: disk sector writes
-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed
- cpuldle: CPU idle time - dwm: merged adjacent disk writes
- cpuloWait: CPU time waiting for I/0 - writetime: time spent writing to disk
- cpulntSrvc:CPU time serving interrupts
- cpuSftintSrvc: CPU time serving soft interrupts M
- cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

24

Slides by Wes J. Lloyd

January 30, 2020

L8.12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

LOAD AVERAGE

" Reported by: top, htop, w, uptime, and /proc/loadavg
® Updated every 5 seconds
®m Average number of processes using or waiting for the CPU

® Three numbers show exponentially decaying usage
for 14 minute, 5 minutes, and 15 minutes

® One minute average: exponentially decaying average
= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

m 1.0 =1-CPU core fully loaded
m 2.0 =2-CPUcores
® 3.0 = 3-CPU cores . ..

TCSS558: Applied Distributed Computing [Winter 2020]

18.25
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

25

THREAD-LEVEL PARALLELISM

® Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N "
25211'01’
1—cp

TLP =

m Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

m Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2020]

L8.26
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

26

Slides by Wes J. Lloyd

January 30, 2020

L8.13

TCSS 558: Applied Distributed Computing January 30, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

MULTITHREADED SERVERS

= Common & essential for TCP/IP servers and distributed systems
= Example: Apache tomcat webserver: threads
® Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
= Two common designs:
= Generate new thread for every request
= Thread pool - pre-initialize set of threads to service requests

. Request dispatched
Dispatcher thread to a worker thread Server
3 ;

JE—
q_-\a:‘_'_ | 1 Worker thread

Operalting system

Request coming in 3
lfrom the network

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.27

27

SINGLE THREAD & FSM SERVERS

m Single thread server
= A single thread handles all client requests
= BLOCKS for 1/0
= All waiting requests are queued until thread is available

= Finite state machine
= Server has a single thread of execution
=|/0 performed asynchronously (non-BLOCKing)
= Server handles other request while waiting for 1/0
= [nterrupt fires when I/0 completes
= Single thread “jumps” back into context to finish request

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.28

28

Slides by Wes J. Lloyd L8.14

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

SERVER DESIGN ALTERNATIVES

= A blocking system call implies that a thread servicing a
request synchronously performs I/0

® The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

®m Consider the implications of these designs for responsiveness,

availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking 1/0
Single-thread No parallelism, blocking I/0
Finite-state machine Parallelism, non-blocking I/0

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.29

29

VIRTUALIZATION

30

Slides by Wes J. Lloyd

January 30, 2020

L8.15

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

VIRTUALIZATION

® |nitially introduced in the 1970s
on IBM mainframe computers

® Legacy operating systems run in mainframe-based VMs

m 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

® Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

® Cloud computing: Amazon offers VMs as-a-service (laaS)

® Legacy software could be sustained by virtualizing legacy OSes

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

18.31

31

TYPES OF VIRTUALIZATION

= Levels of instructions: |iyraryfunctions Application

= I
= Hardware: CPU System calls ___| Lbrary
= Privileged instructions Privileged jcm_‘
KERNEL MODE instructions ~~5 m -
‘ Hardware

= General instructions
USER MODE

® Operating system: system calls

m Library: programming APIs: e.g. C/C++,C#, Java libraries

= Application:
= Goal of virtualization:
mimic these interface to provide a virtual computer

General
instructions

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.32

32

Slides by Wes J. Lloyd

January 30, 2020

L8.16

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TYPES OF VIRTUALIZATION - 2

= Process virtual machine

‘ Application/Libraries

= |[nterpret instructions: (interpreters)
(JavaVM) byte code > HW instructions

= Emulate instructions: (emulators)
(Wine) windows code - Linux code

® Native virtual machine monitor (VMM)

Runtime system

Operating system

Hardware

= Hypervisor (XEN): small OS with its own kernel
= Provides an interface for multiple guest OSes

= Facilitates sharing/scheduling of
CPU, device I/0 among many guests

= Guest OSes require special kernel to interface w/ VMM

Application/Libraries

Operating system

Virtual machine monitor

Hardware

= Supports Paravirtualization for performance boost to run code
directly on the CPU

= Type 1 hypervisor

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

18.33

33

TYPES OF VIRTUALIZATION - 3

= Hosted virtual machine monitor (VMM)

Application/Libraries

= Runs atop of hosted operating system

= Uses host OS facilities for CPU scheduling, I/0
= Full virtualization

= Type 2 hypervisor

= Virtualbox

Operating system

Virtual machine monitor

Operating system

Hardware

® Textbook: note 3.5-good explanation of full vs. paravirtualization
® GOAL: run all user mode instructions directly on the CPU

® x86 instruction set has ~17 privileged user mode instructions
= Full virtualization: scan the EXE, insert code around privileged

instructions to divert control to the VMM
® Paravirtualization: special OS kernel eliminates side effects of

privileged instructions

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.34

34

Slides by Wes J. Lloyd

January 30, 2020

L8.17

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

EVOLUTION OF AWS VIRTUALIZATION

From http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-20417.html
AWS EC?2 Virtualization Types

VS:

Importance
Virtualization T —— Most Least
In software Near-metal performance o
Optimized performance 1',/

& Poor performance °g,
Paravirtual 5w e i

1 VM Fully Emulated
VH: Od (2| vm Xen PV 3.0 PV drivers
Virtualization 3| WM Xen HVYM 3.0 PV drivers

41 VM Xen HVM 401 PVHVM drivers
In Hardware 5| V™ Xen AWS 2013 PVHVM + SR:IOV(net)

6| VM Xen AWS 2017 PVHVM + SR-IOV(net. stor.)
H: 7| v | AwsNiro2017
Hardware New |8 | HW | AWS Bare Metal 2017 H H H H H

Bare Metal H|H|H|H|H|[H

VM: Virtual Machine. HW: Hardware.
VE: VirL. in saftware. VH: Virt. in hardware. P! Paravirt. Not all combinations shown.
SR-I0V(net): ixgbelena driver. SR-IOV(storage): nvme driver.

TCSS558: Applied Distributed Computing [Winter 2020]

18.35
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

35

AWS VIRTUALIZATION - 2

= Full Virtualization - Fully Emulated
= Never used on EC2, before CPU extensions for virtualization
= Can boot any unmodified 0S
= Support via slow emulation, performance 2x-10x slower

= Paravirtualization: Xen PV 3.0
= Software: Interrupts, timers
= Paravirtual: CPU, Network I/0, Local+Network Storage
= Requires special OS kernels, interfaces with hypervisor for 1/0
= Performance 1.1x - 1.5x slower than “bare metal”
= Instance store instances: 15T & 2" generation- mi.large, m2.xlarge

= Xen HVM 3.0
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage
= Software: interrupts, timers
= EBS backed instances
= m1, cl instances

TCSS558: Applied Distributed Computing [Winter 2020]

L8.36
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

36

Slides by Wes J. Lloyd

January 30, 2020

L8.18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

AWS VIRTUALIZATION - 3

= XEN HVM 4.0.1
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage, interrupts, timers

= XEN AWS 2013 (diverges from opensource XEN)
= Provides hardware virtualization for CPU, memory, network
= Paravirtual: storage, interrupts, timers
= Called Single root I/0 Virtualization (SR-I0V)

= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

= I[mproves VM network performance
= 3rd & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbps
= XEN AWS 2017
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= |nstance storage hardware virtualization (x1.32xlarge, i3 family)

TCSS558: Applied Distributed Computing [Winter 2020]

18.37
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

37

AWS VIRTUALIZATION - 4

= AWS Nitro 2017

= Provides hardware virtualization for CPU, memory, network, local
disk, remote disk, interrupts, timers

= All aspects of virtualization enhanced with HW-level support

= November 2017

= Goal: provide performance indistinguishable from “bare metal”
= 5th generation instances - ¢5 instances (also ¢5d, c5n)

= Based on KVM hypervisor

= Overhead around ~1%

TCSS558: Applied Distributed Computing [Winter 2020]

L8.38
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

38

Slides by Wes J. Lloyd

January 30, 2020

L8.19

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CH. 3.3: CLIENTS

TYPES OF CLIENTS

®Thick clients
= Web browsers
= Client-side scripting
= Mobile apps
= Multi-tier MVC apps

®Thin clients
= Remote desktops/GUIs (very thin)

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

40

Slides by Wes J. Lloyd

January 30, 2020

L8.20

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CLIENTS

® Application specific protocol
= Thick clients
= Clients maintain local data
= Middleware (APIs)
= Clients synchronize data with remote nodes
= Example: shared calendar application

Client machine

Server machine|

Application
Application-

Application

® Application independent

= Thin clients
= Client acts as a remote terminal

= Provides interface to user (GUI / Ul)

= Server houses entire application stack

n specific ;
Middleware protocol Middleware
Local 08 Local 08
: :

J—\;'; oo -J—
Client machine Server machine|

-AppEication -Appiication
A Application- A
independent
Middleware protocol Middleware
< » :
Local 0S8 Local OS
J— mamEmEmEmmEm '-'-"-J—

Netwark

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

41

X WINDOWS

® Layered architecture to transport Ul o

ver network

B Remote desktop functionality for Linux/Unix systems

B X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and

events with X kernels (servers)

= Clients and servers on single machine - Linux GUI

= Client and server communication transported over the

network = remote Linux GUI

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

42

Slides by Wes J. Lloyd

January 30, 2020

L8.21

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

X

= Window manager:

= Application running
atop of X-windows
which provides flair

= Many variants

= Without X windows is
quite bland

WINDOWS - 2

The current manual page is: xsetdx).

user preference utility for ¥

15
xset |-display display] [-b] [b on/off] [b [voluse [pitch [duration]]]
[i-Ibe] [=c] [c onfaff] [c [volume]] [[+~[dpns] [dpns stanady [suspend
T off]]] [dams force standby/suspend/off/en] [[-+]£p(-+
¢AL...11) Ifp default] [fp cehash [[-1led [integer]] [led
nfouse] faccelmulel/accel divl [tArashold]]] Infouse]
dafanlt] [p pind color] AL1E Memootal] | [¢ cafuff) |2 eite anliy
Soi¥l) (a2l ank b liak] 'lasaponainomapess] Fs
onfa m o deFanli], (o aativats] fo resetd Ig)
DESCRIPTION
This progran is used to set various user preference options of the dis-
play
oPTIONS
- display display
This

aption specifies the setver to uss; see X7}

b The b option controls bell volme. pitch and ducation This

option accepts up to thres mmerical paraneters, = preceding
dash(-). or a ‘enfoff' flag If no paraneters ace given. or
the ‘on’ flag 1s used, the system defaults will be used If
the dash or 'Off' are given, the bell vill be turned off. If
caly one numecical parmnete:

be The be option controls fug compatifility node in the secver, if

January 30, 2020 TCSS558: Appl

ied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

18.43

43

= Layered architecture

= X-kernel: low level
interface/APlIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

® Provided on Linux
as Xlib

® Provides network
enabled GUI

® | ayering allows for
use for custom
window managers

January 30, 2020

Application Clients - User Productivity
OpenOffice.org, Firefox, Gimp

Desktop Environment - Application and
File Management
Gnome/KDE panels, desktop icon managers

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Session Manager
gnome-session, ksmserver

Dlsglay Manager - Local X Server Startup
User Authentication
gdm, kdm, xdm

Toolkits
GTK, Qt, Moif, Xaw

)’g Window Server - Display Hardware Management
org

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

44

Slides by Wes J. Lloyd

January 30, 2020

L8.22

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu EC2 instance VM:
® sudo apt-get update

" # ubuntu 16.04
® sudo apt-get install ubuntu-desktop

® sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

= # on ubuntu 18.04
® sudo apt install xfced4 xfced-goodies

" sudo apt-get install tightvncserver # both

m Start VNC server to create initial config file
B yncserver :1

TCSS558: Applied Distributed Computing [Winter 2020]

18.45
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

45

EXAMPLE: VNC SERVER - UBUNTU 16.04

® On the VM: edit config file: nano ~/.vnc/xstartup

®m Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL XMODMAP DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r SHOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2020]

L8.46
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

46

Slides by Wes J. Lloyd

January 30, 2020

L8.23

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER - UBUNTU 18.04

® On the VM:
® Edit config file: nano ~/.vnc/xstartup
®m Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/ .Xresources
startxfced &

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.47

47

EXAMPLE: VNC SERVER - 3

®m On the VM: reload config by restarting server
® yncserver -kill :1

B yncserver :1

® Open port 22 & 5901 in EC2 security group:

Edit inbound rules X
Type | Protocol (i Port Range (i Source i
S5H TCP 2 Anywhere v [0.0.0.0/0 [x]
Custom TCP Rule = TCP | 5801 ; Anywhere v 0.0.0.0/0 Q
Add Rule Cancel m
TCSS558: Applied Distributed Computing [Winter 2020]
LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma 1848

48

Slides by Wes J. Lloyd

January 30, 2020

L8.24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC CLIENT

® On the client (e.g. laptop):

® Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

® This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1l ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Winter 2020]

18.49
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

49

EXAMPLE: VNC CLIENT - 2

® On the client (e.g. laptop):

® Use a VNC Client to connect

® Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others

®= Remmina login:

® Chose “VNC” protocol

n Log Into “|00a|h05t:5901" a Remmina Remote Desktop Client
B new

f VNC~ | localhost:5901 Connect!

)
jName <« Group Server

TCSS558: Applied Distributed Computing [Winter 2020]

L8.50
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

50

Slides by Wes J. Lloyd

January 30, 2020

L8.25

TCSS 558: Applied Distributed Computing

[Winter 2020] School
UW-Tacoma

of Engineering and Technology,

REMOTE COMPUTER IN THE CLOUD

> B =@ &

m EC2 instance -o- =
with a GUI. . .!!!

o ubuntu@Iip-172-31-58-89: ~
File Edit View Search Terminal Help
ubuntu@ip 89:

Downloads

Templates

1 ubuntu@ip-172-31-5

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.51

51

THIN CLIENTS

® Thin clients
= X windows protocol
= A variety of other remote desktop protocols exist:

Remote desktop protocols include the following:

+ Apple Remote Desktop Pratocol (ARD) — Original protocol for Apple Remote Desktop en macOS machines.

« Appliance Link Protocol (ALP) — a Sun Microsystems-specific protocol featuring audio (play and record), remote printing, remote USB, accelerated video

+ HP Remote Graphics Software (RGS) — a proprietary protocol designed by Hewlett-Packard specifically for high end workstation remoting and collaboration.

« Independent Computing Architecture (ICA) — a proprietary protocol designed by Citrix Systems

» NX technology (NoMachine NX) — Cross platform protocol featuring audio, video, remote printing, remote USB, H264-enabled.

» PC-over-IP (PColP) — a proprietary protocol used by VMware (licensed from Teradici)?!

« Remote Desktop Pratocol (RDP) — a Windows-specific protocol featuring audio and remote printing

« Remote Frame Buffer Protocol (RFB) — A framebuffer level cross-platform protocol that VNC is based on.

« SPICE (Simple Protocol for Independent Computing Environments) — remote-display system built for virtual environments by Qumranet, now Red Hat

« Splashtop — a high performance remote desktop protocol developed by Splashtop, fully optimized for hardware (H.264) including Intel / AMD chipsets, NVIDIA
of media codecs, Splashtop can deliver high frame rates with low latency, and also low power consumption.

= X Window System (X11) — a well-established cross-platform protocol mainly used for displaying local applications; X11 is network transparent

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.52

52

Slides by Wes J. Lloyd

January 30, 2020

L8.26

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THIN CLIENTS - 2

® Applications should separate application logic from Ul

® When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

® Client must wait for response

® Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

®m Send only differences between messages with same identifier
® Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2020]

18.53
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

53

THIN CLIENTS - 3

® Virtual network computing (VNC)

®m Send display over the network at the pixel level
(instead of X lib events)

® Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
® Can transport any GUI this way

= THINC- hybrid approach

® Send video device driver commands over network
® More powerful than pixel based operations

® Less powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Winter 2020]

L8.54
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

54

Slides by Wes J. Lloyd

January 30, 2020

L8.27

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

® Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
< |.| >

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

18.55
School of Engineering and Technology, University of Washington - Tacoma

55

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

® Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC I‘I X11
< 1 >
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
e More network traffic

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

L8.56
School of Engineering and Technology, University of Washington - Tacoma

56

Slides by Wes J. Lloyd

January 30, 2020

L8.28

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

® Clients help enable distribution transparency of servers

® Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine Server 1 Server 2 Server 3
Client Server Server Server
app! appl appl appl
|
hd

Client side handles
request replication

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.57

57

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

® | ocation/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

®m Replication transparency
= Client aggregates responses from multiple servers

® Failure transparency
= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.58

58

Slides by Wes J. Lloyd

January 30, 2020

L8.29

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

i

SERVERS

® Cloud & Distributed Systems - rely on Linux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |IT is moving to the cloud. And, what powers the cloud?
= Linux

= Uptime Institute survey - 1,000 IT executives (2016)

= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites

= 23% expect the shift in 2017, 70% by 2020...
® Docker on Windows / Mac 0S X

= Based on Linux

= Mac: Hyperkit Linux VM

= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIENRY) &), A School of Engineering and Technology, University of Washington - Tacoma

L8.60

60

Slides by Wes J. Lloyd

January 30, 2020

L8.30

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

SERVERS - 2

m Servers implement a specific service for a collection of clients
m Servers wait for incoming requests, and respond accordingly

m Server types

m |[terative: immediately handle client requests
® Concurrent: Pass client request to separate thread

® Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

m Alternative: fork a new process for each incoming request
® Hybrid: mix the use of multiple processes with thread pools

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.61

61

END POINTS

E Clients connect to servers via:
IP_ Address and Port Number

® How do ports get assigned?

= Many protocols support “default” port numbers

= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

= When designing new TCP client/servers must be careful

nhot to repurpose ports already commonly used by others

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.62

62

Slides by Wes J. Lloyd

January 30, 2020

L8.31

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CoMMON PORTS packetlife.net

TCP/UDP Port Numbers

7 Echo 554 RTSP 2745 EEEE 6891-6901 WifdeWSILVENIN
19 Chargen 546-547 DHCPv6 2967 Symantec AV 6970 Quicktime
20-21 FTP 560 rmonitor 3050 Interbase DB 7212 GhostSurf
23 Telnet 587 SMTP 3124 HTTP Proxy 8000 Internet Radio
25 SMTP 591 FileMaker 3127 [ESST 8080 HTTP Proxy
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy 8086-8087 Kaspersky AV
43 WHOIS 631 Internet Printing 3222 GLBP 8118 Privoxy
49 TACACS 636 [[DAPGUEFSSENN 3260 iSCSI Target 8200 VMware Server
53 DNS 639 MSDP (PIM) 3306 MySQL 8500 Adobe ColdFusion
67-68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server 8767 [feamspeaci]
69 TFTP 691 MS Exchange 3689 iTunes 8566 ERGICE
70 Gopher 860 iSCs! 3690 Subversion 9100 HP JetDirect
79 Finger 873 rsync 3724 World of Warcraft | 9101-9103 Bacula
80 HTTP 902 VMware Server 3784-3785 Ventrilo 9119 [FXENNN
88 Kerberos 989-990 FiEEErss 4333 msQL 9800 WebDAV
102 MS Exchange 993 [MAP4 over SSL | 1424 EEEED ss9s [GREEEEN
110 POP3 995 POP3 overssL | 4664 Google Desktop LEEEY
113 Ident 1025 Microsoft RPC 4672 eMule 9999 Urchin
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin 10000 Webmin
123 NTP 1080 SOCKS Proxy 5000 UPnP 10000 BackupExec
135 Microsoft RPC 1080 SR 5001 Slingbox 10113-10116 NetlQ
137-139 NetBIOS 1194 OpenVPN 5001 iperf 11371 OpenPGP
143 IMAP4 1214 (SZE| 5004-5005 RTP 12035-12036 SEEERGLEIINN
161-162 SNMP 1241 Nessus 5050 [YaRGeTiessengery 12345 [(EEENN
177 XDMCP 1311 Dell OpenManage 5060 SIP 13720-13721 NetBackup
179 BGP 1337 WASTENUNN 5100 AICONNNNNNNN =~ 14567 ESCASONNNNNN |

63

TYPES OF SERVERS

®Daemon server
= Example: NTP server

mSuperserver

= Stateless server
= Example: Apache server

= Stateful server
= Object servers

mEJB servers

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.64

64

Slides by Wes J. Lloyd

January 30, 2020

L8.32

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

NTP EXAMPLE

® Daemon servers
= Run locally on Linux
= Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)

Daemons routes local client traffic to the configured
endpoint servers

University of Washington: time.u.washington.edu
Example “ntpgq -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCSS558: Applied Distributed Computing [Winter 2020]

18.65
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

65

SUPERSERVER

E Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines

= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet

= inetd daemon responds to multiple endpoints for multiple
services

= Requests fork a process to run required executable program

® Check what ports you're listening on:
" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2020]

L8.66
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

66

Slides by Wes J. Lloyd

January 30, 2020

L8.33

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

INTERRUPTING A SERVER

® Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

® Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

®m Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Winter 2020]

18.67
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

67

STATELESS SERVERS

® Data about state of clients is not stored

= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

® Many servers maintain information on clients (e.g. log files)

m Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

m Soft state: server maintains state on the client for a limited
time (to support sessions)

m Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2020]

L8.68
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

68

Slides by Wes J. Lloyd

January 30, 2020

L8.34

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

STATEFUL SERVERS

® Maintain persistent information about clients
® Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

m Server tracks client file permissions and most recent versions
= Table of (client, file) entries

® |f server crashes data must be recovered
® Entire state before a crash must be restored
® Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2020]

18.69
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

69

STATEFUL SERVERS - 2

m Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

® Permanent state
= Customer information, software keys

® Client-side cookies

= When servers don’t maintain client state, clients can store state
locally in “cookies”

= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Winter 2020]

L8.70
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

70

Slides by Wes J. Lloyd

January 30, 2020

L8.35

TCSS 558: Applied Distributed Computing January 30, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

OBJECT SERVERS

OBJECTIVE: Host objects and enable remote client access
Do not provide a specific service

= Do nothing if there are no objects to host

® Support adding/removing hosted objects

Provide a home where objects live

Objects, themselves, provide “services”

Object parts
= State data
= Code (methods, etc.)

Transient object(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.71

71

OBJECT SERVERS - 2

Should object servers isolate memory for object instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

® Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

® Threads created on demand vs.
Server maintains pool of threads

What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.72

72

Slides by Wes J. Lloyd L8.36

TCSS 558: Applied Distributed Computing January 30, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

EJB - ENTERPRISE JAVA BEANS

EJB- specialized Java object hosted by a EJB web container
4 types: stateless, stateful, entity, and message-driven beans

Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

= EJB web application containers integrate support for:
= Transaction processing
= Persistence
= Concurrency
= Event-driven programming
= Asynchronous method invocation
= Job scheduling
= Naming and discovery services (JNDI)
= Interprocess communication
= Security
= Software component deployment to an application server

TCSS558: Applied Distributed Computing [Winter 2020]

18.73
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

73

APACHE WEB SERVER

Highly configurable, extensible, platform independent
® Supports TCP HTTP protocol communication
Uses hooks - placeholders for group of functions
®m Requests processed in phases by hooks

= Many hooks: Hodue ode

= Translate a URL

= Write info to log

= Check client ID

= Check access rights

® Hooks processed in order
enforcing flow-of-control -
Apache core

® Functions in replaceable inctions caled et hook

Function

Link between
function and hool

00, pA. m

"Hooks point to functions in modules

m0du|eS RequestT

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

Response

January 30, 2020 18.74

74

Slides by Wes J. Lloyd L8.37

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

SERVER CLUSTERS

® Hosted across an LAN or WAN
® Collection of interconnected machines
® Can be organized in tiers:

= Web server > app server > DB server
= App and DB server sometimes integrated

Logical switch Application/compute servers Distributed
(possibly multiple) file/database
system

Dispatched
Client requests reque_zst// B _
- =
.l ==l - U

]

First tier Second tier Third tier

L8.75

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

75

January 30, 2020

LAN REQUEST DISPATCHING

® Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

® Transport-layer switches: switch accepts TCP connection

requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)

= HW Load balancer - OSI layers 4-7

= Network-address-translation (NAT) approach:

= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection

= Maps (rewrites) source and destination addresses

® Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

L8.76

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

76

Slides by Wes J. Lloyd

L8.38

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

LAN REQUEST DISPATCHING - 2

® Who is the best server to handle the request?

® Switch plays important role in e

distributing requests singe TOP ———zone . "] Server
* Implements load balancing e / .
= Round-robin - routes client o L Rewest |] e nangeson :
requests to servers in a looping .

fashion
= Transport-level - route client

Server

requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Winter 2020]

18.77
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

77

WIDE AREA CLUSTERS

® Deployed across the internet

® Leverage resource/infrastructure from Internet Service
Providers (ISPs)

B Cloud computing simplifies building WAN clusters

® Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?
® (2) across multiple availability zones?

TCSS558: Applied Distributed Computing [Winter 2020]

L8.78
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

78

Slides by Wes J. Lloyd

January 30, 2020

L8.39

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

WAN REQUEST DISPATCHING

® Goal: minimize network latency using WANs (e.g. Internet)
® Send requests to nearby servers

® Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized nhaming system

® Linux: find your DNS servers:

Find you device name of interest
nmcli dev
Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Winter 2020]

18.79
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

79

DNS LOOKUP

® First query local server(s) for address

® Typically there are (2) local DNS servers
= One is backup

® Hostname may be cached at local DNS server
=" E.g. www.google.com

® If not found, local DNS server routes to other servers
® Routing based on components of the hostname

® DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCSS558: Applied Distributed Computing [Winter 2020]

L8.80
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

80

Slides by Wes J. Lloyd

January 30, 2020

L8.40

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

Local Name Server

2. Check

Cache
o,
. L —
' 15. Update

Cache

5. Iterative Query to root

A J

6. Name Server for .edu

(root)

Root Name Server

7. iterative

Query to .edu

S —icd 8. Name Server for

edu

googleplex.edu
.edu Name Server

9. Iterative Query
to googleplex.edu

L

10. Name Server for
; leplex.edu

googleplex.edu
Name Server
11. Iterative Query to
compsci.googleplex.edu

12. IP Address for []

www.net.compsci.googleplex.edu compsci.googleplex.

User & Browser to Resolved Address

Client

googleplex

| compsci I

edu
Name Server Elg m

81

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

® traceroute <ip addr / hostname>

® Traces network path to destination
® By default, output is limited to 30 hops, can be increased

January 30, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.82

82

Slides by Wes J. Lloyd

January 30, 2020

L8.41

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
= Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
B Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
® Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
B Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2020]

18.83
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

83

DNS EXAMPLE - WAN DISPATCHING

® Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

® From local wireless network, ping VA us-east-1 google :
® Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2020]

L8.84
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

84

Slides by Wes J. Lloyd

January 30, 2020

L8.42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2020]

Januaryis 032020 School of Engineering and Technology, University of Washington -

RESEARCH DIRECTIONS

TCSS558: Applied Distributed Computing [Winter 2020]

Dclokels Bul School of Engineering and Technology, University of Washington -

86

Slides by Wes J. Lloyd

January 30, 2020

L8.43

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CLOUD AND DISTRIBUTED SYSTEMS

RESEARCH GROUP

= Meetings on Wednesdays from 12 (12:30) to 1:30pm
= VIDS 202
= MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (laaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

TCSS558: Applied Distributed Computing [Winter 2020]

18.87
School of Engineering and Technology, University of Washington - Tacoma

January 30, 2020

87

EXTRA SLIDES

88

Slides by Wes J. Lloyd

January 30, 2020

L8.44

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CHORD SYSTEM - FINGER TABLE

®m Each node keeps maintains a finger table with m entries
= m is the number of bits in the hash key
= Distance of the entries increases exponentially
® Contents of each node’s finger table:
for i=0 to m-1
finger table entry for node n:
index: n+2 2 points to: n+2' mod 2™
® The first entry of finger table is the node's immediate
successor (an extra successor field is not needed).

® Each time a node looks up a key kK, it passes the query to the
closest node to k in the finger table that is not greater than k

= With finger tables, the number of nodes contacted to find a

successor in an N-node network is O(log N).

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.89

89

CHORD SYSTEM - 2

= Keys have m-bits

" m=3 Index points to
0+2° 1 Keys:
= Always pass query 0+21 3 5,6
for key k to index 0+22 0

in the finger table Index points to

that is not greater 2 3 -
than k 1 3 » 1
5 0
® Example: key (k=7) [— 6 2
= Query arrives at (0) Index_points to
= 0: > (index=4, pass P 3 aa 2 geys:
to 0), key 7 is 4 5 0
adjacent =i 7 0

TCSS558: Applied Distributed Computing [Winter 2020]

LEITIETR £, AP School of Engineering and Technology, University of Washington - Tacoma

L8.90

90

Slides by Wes J. Lloyd

January 30, 2020

L8.45

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CHORD SYSTEM - 2

® Example (k=7)
® Query arrives at (1)

= 1: > (index=5, pass Keys
to 0), key 7 is 28
adjacent
® Query arrives at (3)
= 1: > (index=7, pass = - Keys:
to 0), key 7 is 3 1
adjacent 0
= Example (k=6) 4 0 Keys:
5 0 2
0

TCSS558: Applied Distributed Computing [Winter 2020]
lanuanys0;2020 School of Engineering and Technology, University of Washington - Tacoma

L8.91

91

Slides by Wes J. Lloyd

January 30, 2020

L8.46

