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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Assignment 0 – questions

 Feedback from 1/28

Chapter 3.1: Threads

Assignment 1 - introduction

Chapter 3.2: Virtualization

Chapter 3.3: Clients

Chapter 3.4: Servers

January 30, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

OBJECTIVES
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 Please classify your perspective on material covered in today’s 
class (11 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.09

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 4.91
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MATERIAL / PACE

 First try "telnet" por t test on slides 5.13 and 5.14 (lecture 5)

 If  telnet is  able to access port,  then test Fibonacci service directly
 Create a testFib.sh script by extracting lines from the 

testFibPar.sh script:

host=34.232.53.152

port=8080

json={"\"number\"":50000}

curl -X POST -H "Content-Type: application/json" 
http://$host:$port/fibo/fibonacci -d $json

 Adjust host and port

 Call  service to calculate a variety of numbers:
e.g.  5, 50, 500, 5000, 50000, etc.

 If  service does not respond with a Fibonacci value, it  is  not working
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ASSIGNMENT 0:
DIRECTLY TESTING FIBONACCI SERVICE 
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How does a system get implemented as structure 
vs. unstructured?

 Developers or designers may intentionally select the 
distributed system architecture

 - OR - there may be no choice.  
A given architecture is required by the constraints of the 
devices involved in the communication  

 Example: Ad hoc wireless sensor network
 Structured peer-to-peer not option as nodes rapidly join & leave

 Centralized client/server or multitier not possible as system 
has only peer nodes and no central servers
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FEEDBACK FROM 1/28

 What is the difference between adhoc lists that nodes 
in an Unstructured Peer-to-Peer System maintain, and 
the finger table stored by nodes of a Chord System? 

 Key similarity:
 Both lists consist of nodes that the

nodes can directly communicate with

 There is a 1-hop network link

 Key dif ference:
 Finger tables in Chord System are

used to route messages to implement 
a distributed hash table 

 Each node has table that describes
how to route queries  

 (more in Ch. 5)
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FEEDBACK - 2
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CH. 3: PROCESSES
CH. 3.1: THREADS

L8.7

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation 
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration
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CHAPTER 3
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 For implementing a server (or cl ient) threads offer many 
advantages vs. heavy weight processes

 What is the difference between a process and a thread?
 (review?) from Operating Systems

 Key dif ference :  what do threads share amongst each other 
that processes do not…. ?

 What are the segments of a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)
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CH. 3.1 - THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of  the same code?

 These may be managed as shared pages (across processes) in 
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment
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THREADS - 2
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 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch? 

 Context switching among threads is considered to be more 
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: ht tp://unikernel .org/projects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a t ime
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THREADS - 3
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OSV: ONE PROCESS, MANY THREADS
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 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared 
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU
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THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously 
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BLOCKING THREADS
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 IPC – mechanism using pipes, message queues, and shared 
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to 
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread


#2 C/S:
Kernel threadProc B
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INTERPROCESS COMMUNICATION

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments 
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the 

context switch

 Captures performance degradation related to the side effects of 
context switching  (e.g. rewriting of memory caches, etc.)

 Primarily cache perturbation 
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CONTEXT SWITCHING
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 Refers to cache reorganization that occurs as a result of a 
context switch

 Cache is not clear, but elements from cache are removed as a 
result of another program running in the CPU

 80% performance overhead from context switching results 
from this “cache perturbation”
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CONTEXT SWITCH –
CACHE PERTURBATION

 Many-to-one threading model:

 Multiple user-level threads per process

 All threads mapped to single schedulable process in the OS

 Program appears as single process to the system

 Thread operations (create, delete, locks) run in user mode 

 Any blocking system call by one thread blocks entire process

 User manages scheduling of threads, not OS

 One kernel thread per process: process restricted to 1 CPU

 Key take-away: thread management handled by user processes

 What are some advantages of many-to-one threading?

 What are some disadvantages?
January 30, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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MANY-TO-ONE 
THREADING MODEL
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 Many-to-one threading model:

 Multiple user-level threads per process

 All threads mapped to single schedulable process in the OS

 Program appears as single process to the system

 Thread operations (create, delete, locks) run in user mode 

 Any blocking system call by one thread blocks entire process

 User manages scheduling of threads, not OS

 One kernel thread per process: process restricted to 1 CPU

 Key take-away: thread management handled by user processes

 What are some advantages of many-to-one threading?

 What are some disadvantages?
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MANY-TO-ONE 
THREADING MODEL

Initial implementation of Java threads (~ 1995?)
used many-to-one 
threading model

This threading model is 
now seldomly used

 Threads operations managed by the OS (create, delete, lock)
 Thread ops run in kernel mode using separate kernel threads
 Kernel API calls farmed out to preinitialized kernel level theads
 Requires system calls and context switch from user to kernel thread

 One user thread to one kernel thread
 User process can use many kernel threads 
 Also called kernel-level threads

 All threads scheduled individually by the OS
 Enables running single process across multiple CPUs

 Now commonly used… (used in Linux)

 What are some advantages of one-to-one threading?

 What are some disadvantages?
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ONE-TO-ONE
THREADING MODEL
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 Alternative: Col lection of  concurrent processes

 Google chrome: tabs backed by processes

 Apache http server : Apache Multi-Processing-Module (MPM prefork) 

 Multiprocess programming avoids synchronization of concurrent 
access to shared data, by providing coordination and data sharing 
via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 
shared memory,  what is  the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distr ibuted objects share memory?
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APPLICATION EXAMPLES

 Web browser
 Uses threads to load and render portions of a web page to the 

user in parallel
 A client could have dozens of concurrent connections all 

loading in parallel

 testFibPar.sh
 Assignment 0 cl ient script  (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all 

loading data in parallel
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MULTITHREADED CLIENTS
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 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 30, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 
- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from 
disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 
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 Reported by: top,  htop ,  w , uptime , and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 
system, by calculating average uti lization:

 Ci – fraction of t ime that exactly I  threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can uti lize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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THREAD-LEVEL PARALLELISM
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 Common & essential for TCP/IP servers and distributed systems

 Example: Apache tomcat webserver: threads

 Even on single-core machines greatly improves per formance

 Take advantage of idle/blocking time
 Two common designs:

 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests
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MULTITHREADED SERVERS

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performed asynchronously (non-BLOCKing) 

 Server handles other request while waiting for I/O

 Interrupt fires when I/O completes

 Single thread “jumps” back into context to finish request
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SINGLE THREAD & FSM SERVERS

27

28



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

January 30, 2020

Slides by Wes J. Lloyd L8.15

 A blocking system call implies that a thread servicing a 
request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 
proceeding with request processing

 Consider the implications of these designs for responsiveness, 
availabil ity, scalability. . .
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SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O 

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

CH. 3.2: 
VIRTUALIZATION

L8.30
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 Init ially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based 
hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 
virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)
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VIRTUALIZATION

 Levels of  instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of virtualization:
mimic these interface to provide a vir tual computer
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TYPES OF VIRTUALIZATION
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 Process vir tual machine
 Interpret instructions: (interpreters)

(JavaVM)  byte code  HW instructions
 Emulate instructions: (emulators)

(Wine)  windows code  Linux code

 Native virtual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel 
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of 

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code 

directly on the CPU 
 Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 2

 Hosted virtual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full  vs. paravir tualization

 GOAL: run all  user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full virtualization: scan the EXE, insert code around privi leged 

instructions to diver t control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of 

privileged instructions
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TYPES OF VIRTUALIZATION - 3
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EVOLUTION OF AWS VIRTUALIZATION

Fro m ht t p :// www.brendangregg. co m/b lo g/ 2017 -11 -29/ aws - ec 2- v i r t u a l i zat io n -2017. ht ml

VS:

V i r tual izat ion

In  sof tware

P :

Parav ir tual

VH :

V i r tual izat ion

In  Hardware

H:

Hardware

 Ful l  V ir tualization - Ful ly Emulated 
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances
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AWS VIRTUALIZATION - 2

35

36



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

January 30, 2020

Slides by Wes J. Lloyd L8.19

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, timers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter) 

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, timers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)
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AWS VIRTUALIZATION - 3

 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, timers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%
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AWS VIRTUALIZATION - 4
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CH. 3.3: CLIENTS

L8.39

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)
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TYPES OF CLIENTS
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 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes 

 Example: shared calendar application

 Application independent 
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack
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CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and 
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the 
network  remote Linux GUI
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X WINDOWS
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 Window manager:

 Application running 
atop of X-windows 
which provides flair

 Many variants

 Without X windows is 
quite bland
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X WINDOWS - 2
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 Layered architecture

 X-kernel: low level 
interface/APIs for 
controlling screen, 
capturing keyboard 
and mouse events
(X window Server)

 Provided on Linux 
as Xlib

 Provides network 
enabled GUI

 Layering allows for
use for custom
window managers
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 How to Install  VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1
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EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):
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EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &
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 On the VM:
 Edit config fi le: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):
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EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:
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EXAMPLE: VNC SERVER - 3
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 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44
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EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”
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EXAMPLE: VNC CLIENT - 2
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 EC2 instance
with a GUI. . .!!!
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REMOTE COMPUTER IN THE CLOUD

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:
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THIN CLIENTS
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 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled 
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects 
performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of 
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps
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THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level 
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X
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THIN CLIENTS - 3
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic
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 Clients help enable distribution transparency of servers

 Replication transparency 
 Client aggregates responses from multiple servers

 Only the client knows of replicas
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new 

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency 
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY - 2
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CH. 3.4: SERVERS

L8.59

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 IT is moving to the cloud. And, what powers the cloud? 

Linux
 Uptime Institute survey - 1 ,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
January 30, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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SERVERS
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 Servers implement a specific service for a collection of cl ients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle cl ient requests

 Concurrent: Pass cl ient request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative :  fork a new process for each incoming request

 Hybrid :  mix the use of multiple processes with thread pools
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SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points 
(servers/services)

When designing new TCP client/servers must be careful 
not to repurpose ports already commonly used by others
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END POINTS
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Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers
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TYPES OF SERVERS

63

64



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

January 30, 2020

Slides by Wes J. Lloyd L8.33

 Daemon servers 

 Run locally on Linux

 Track current server end points (outside servers)

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)

 Daemons routes local client traffic to the configured 
endpoint servers

 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)
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NTP EXAMPLE

 Linux inetd / xinetd
 Single superserver
 Extended internet service daemon
 Not installed by default on Ubuntu
 Intended for use on server machines
 Used to configure box as a server for multiple internet services
 E.g. ftp, pop, telnet

 inetd daemon responds to multiple endpoints for multiple 
services
 Requests fork a process to run required executable program

 Check what ports you’re listening on:
 sudo netstat -tap | grep LISTEN
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SUPERSERVER
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 Server design issue:
 Active client/server communication is taking place over a port

 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 
unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 
interrupting the server  (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily

 Must kill the client and/or server
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INTERRUPTING A SERVER

 Data about state of cl ients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited 
time (to support sessions)

 Soft state information expires and is deleted
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STATELESS SERVERS
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 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 
File server - al lows clients to keep local fi le copies for RW

 Server tracks client fi le permissions and most recent versions
 Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS

 Session state
 Tracks series of operations by a single user

 Maintained temporarily, not indefinitely

 Often retained for multi-tier client server applications

 Minimal consequence if session state is lost

 Clients must start over, reinitialize sessions

 Permanent state
 Customer information, software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state 

locally in “cookies”

 Cookies are not executable, simply client-side data
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STATEFUL SERVERS - 2
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 OBJECTIVE: Host objects and enable remote client access
 Do not provide a specific  service 

 Do nothing if there are no objects to host
 Suppor t adding/removing hosted objects 
 Provide a home where objects l ive
 Objects,  themselves ,  provide “services”

 Object par ts
 State data
 Code (methods, etc.)

 Transient object(s)
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server start-up
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OBJECT SERVERS

 Should object servers isolate memory for  object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading designs:
 Single thread of control for object server
 One thread for each object
 Servers use separate thread for client requests

 Threads created on demand    vs.
Server maintains pool of threads

 What are the tradeoffs for  creating server threads on demand vs.  
using a thread pool?
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OBJECT SERVERS - 2
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 EJB- specialized Java object hosted by a EJB web container
 4 types: stateless, stateful, entity, and message-driven beans
 Provides “middleware” standard (framework) for implementing 

back-ends of enterpr ise applications
 EJB web application containers integrate suppor t for:

 Transaction processing
 Persistence
 Concurrency
 Event-driven programming
 Asynchronous method invocation
 Job scheduling
 Naming and discovery services (JNDI)
 Interprocess communication
 Security 
 Software component deployment to an application server
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EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules
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APACHE WEB SERVER

Hooks point to functions in modules
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 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated
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SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides 
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 
requests, hands off to a server
 Example: hardware load balancer (F5 networks – Seattle)

 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:
 All requests pass through switch

 Switch sits in the middle of the client/server TCP connection

 Maps (rewrites) source and destination addresses

 Connection hand-off approach:
 TCP Handoff: switch hands of connection to a selected server
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LAN REQUEST DISPATCHING
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 Who is the best server to handle the request?

 Switch plays important role in 
distributing requests

 Implements load balancing

 Round-robin – routes client 
requests to servers in a looping
fashion

 Transport-level – route client 
requests based on TCP port number

 Content-aware request distribution – route requests based on 
inspecting data payload and determining which server node 
should process the request
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LAN REQUEST DISPATCHING - 2

 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to 
form a cluster

 For deploying a cloud-based cluster (WAN), what are the 
implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?
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WIDE AREA CLUSTERS
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 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>
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WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased
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DNS: LINUX COMMANDS
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!
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QUESTIONS
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RESEARCH DIRECTIONS
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 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.
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CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

EXTRA SLIDES
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 Each node keeps maintains a finger table with m entries
 m is the number of bits in the hash key

 Distance of the entries increases exponentially 

 Contents of each node’s finger table:
for i=0 to m-1

finger table entry for node n:
index: n+2i   points to: n+2i mod 2m

 The first entry of finger table is the node's immediate 
successor (an extra successor field is not needed). 

 Each time a node looks up a key k, it passes the query to the 
closest node to k in the finger table that is not greater than k

 With finger tables, the number of nodes contacted to find a 
successor in an N-node network is O(log N).
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CHORD SYSTEM – FINGER TABLE

 Keys have m-bits

 m=3

 Always pass query 
for key k to index 
in the finger table 
that is not greater 
than k

 Example: key (k=7)

 Query arrives at (0)
 0:  (index=4, pass 

to 0), key 7 is 
adjacent
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CHORD SYSTEM – 2 

Index  points to

Index  points to

Index  points to
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 Example (k=7)

 Query arrives at (1)
 1:  (index=5, pass 

to 0), key 7 is 
adjacent

 Query arrives at (3)
 1:  (index=7, pass

to 0), key 7 is
adjacent

 Example (k=6)
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CHORD SYSTEM – 2 
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