
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Homework 0 – questions

 Feedback from 1/23

Active Reading Quiz – Chapter 2.3

Chapter 2.3: System architectures

Chapter 3.1: Threads

Chapter 3.2: Clients

Chapter 3.3: Servers

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

OBJECTIVES

1

2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.2

 Please classify your perspective on material covered in today’s
class (16 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.81

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 4.94

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

MATERIAL / PACE

 “I ’m a l i ttle bit lost in this class. There are so many jargon
and abstract concepts. How about our examinations? Do we
need to group concepts in detail?”
(newness 10, pace 5)

 I could envision a question where the objective is to group or
classify terms (concepts)

 In general consider bloom’s taxonomy which discusses the
“levels” of learning and synthesizing new knowledge

 (1) remember, (2) understand, (3) apply, (4) analyze, (5)
evaluate, (6) create

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

FEEDBACK FROM 1/23

3

4

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.3

BLOOM’S TAXONOMY:
TOWARDS THE SYNTHESIS OF NEW KNOWLEDGE

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

 Could we spend less time responding to feedback?
(newness 2, pace 1)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

FEEDBACK - 2

5

6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.4

 Is it possible to reschedule the midterm (2/13)?

 UW-Seattle Winter Job & Internship Fair is Thursday
February 13

 MIDTERM SCHEDULING SURVEY AVAILABLE on CANVAS

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

FEEDBACK - 3

CH 2.3: SYSTEM
ARCHITECTURES

January 28, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.8

7

8

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.5

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

TYPES OF SYSTEM ARCHITECTURES

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .

9

10

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.6

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

Resource utilization profile changes
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

12

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

11

12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.7

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),
fi leserver (F), and logging server (L)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distr ibute load

 Load balancing

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

MULTITIERED RESOURCE SCALING

13

14

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.8

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

MULTITIERED RESOURCE SCALING - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

TYPES OF SYSTEM ARCHITECTURES

15

16

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.9

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

 Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

STRUCTURED PEER-TO-PEER

17

18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.10

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements wil l have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

FIXED HYPERCUBE EXAMPLE

19

20

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.11

 Example: f ixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does i t matter which node is selected for the first hop?

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

21

22

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.12

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a cer tain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value
lookup to any node

 Node forwards cl ient
request to node with
m-bit ID closest to, but
not greater than key k

 Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

CHORD SYSTEM

23

24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.13

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facil itates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor l ists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

UNSTRUCTURED PEER-TO-PEER

Methods to find/disseminate data in unstructured
peer-to-peer networks:

 Flooding

Random Walks

Policy-based search

Alternate topology:

Hierarchically organized peer-to-peer networks

UNSTRUCTURED PEER-TO-PEER – 2

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

25

26

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.14

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to u (or forwarder) if having data

 Forwards request to ALL neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results by saturating the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until
data is found

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can start “n” random walks simultaneously to

reduce search time
 As few as n=16..64 random walks sufficient to reduce search

time (LV et al. 2002)
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

SEARCHING FOR DATA - 2

27

28

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.15

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

SEARCHING FOR DATA - 3

 Problem:
Adhoc system search per formance does not scale well as
system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage
nodes

 Weak peer – Store data

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

HIERARCHICAL
PEER-TO-PEER NETWORKS

29

30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.16

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements

must be met to become
a super peer?

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

HIERARCHICAL
PEER-TO-PEER NETWORKS - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

TYPES OF SYSTEM ARCHITECTURES

31

32

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.17

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Adhoc peer-to-peer devices connect to the internet through an

edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to

execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

HYBRID
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the

cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud  in the sky
 compute/resource capacity is huge, but far away…

 Fog  (devices) on the ground
 compute/resource capacity is constrained and local…
January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L7.34

HYBRID
ARCHITECTURES - 2

33

34

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.18

 BitTorrent Example:
File sharing system – users must contribute as a fi le host to
be eligible to download fi le resources

 Original implementation features hybrid architecture

 Leverages idle cl ient network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well
known address to access torrent fi le

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading fi le chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

COLLABORATIVE DISTRIBUTED
SYSTEM EXAMPLE

 What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?
 Spreading/finding data

 Flooding, Random walk

 What are some advantages of a decentralized structured peer-
to-peer architecture?

 What are some disadvantages?

 What are some advantages of a decentralized unstructured
peer-to-peer architecture?

 What are some disadvantages?

REVIEW QUESTIONS

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

35

36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.19

CH. 3: PROCESSES
CH. 3.1: THREADS

L7.37

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

CHAPTER 3

37

38

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.20

 For implementing a server (or cl ient) threads offer many
advantages vs. heavy weight processes

 What is the difference between a process and a thread?
 (review?) from Operating Systems

 Key dif ference : what do threads share amongst each other
that processes do not…. ?

 What are the segments of a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

CH. 3.1 - THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

THREADS - 2

39

40

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.21

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: ht tp://unikernel .org/projects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a t ime

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

THREADS - 3

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

OSV: ONE PROCESS, MANY THREADS

41

42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.22

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

BLOCKING THREADS

43

44

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.23

 IPC – mechanism using pipes, message queues, and shared
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread


#2 C/S:
Kernel threadProc B

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

INTERPROCESS COMMUNICATION

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the

context switch

 Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

 Primarily cache perturbation

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

CONTEXT SWITCHING

45

46

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.24

 Refers to cache reorganization that occurs as a result of a
context switch

 Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

 80% performance overhead from context switching results
from this “cache perturbation”

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

CONTEXT SWITCH –
CACHE PERTURBATION

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of many-to-one threading?

 What are some disadvantages?

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

THREADING MODELS

47

48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.25

 One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an
existing kernel level thread

 Thread operations (create, delete, locks) run in kernel mode
 Threads scheduled individually by the OS
 System calls required, context switches as expensive as

process context switching
 Idea is to have preinitialized kernel threads for user processes
 Linux uses this model…

 What are some advantages of one-to-one threading?

 What are some disadvantages?
January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L7.49

THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple

copies of the data

 Do distributed objects share memory?

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

APPLICATION EXAMPLES

49

50

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.26

 Web browser
 Uses threads to load and render portions of a web page to the

user in parallel
 A client could have dozens of concurrent connections all

loading in parallel

 testFibPar.sh
 Assignment 0 cl ient script (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all

loading data in parallel

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

MULTIPLE THREADS

51

52

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.27

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode
- cpuIdle: CPU idle time
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
disk
- dsw: disk sector writes
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes
- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

 Reported by: top, htop , w , uptime , and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

LOAD AVERAGE

53

54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.28

 Metric – measures degree of parallelism realized by running
system, by calculating average uti lization:

 Ci – fraction of t ime that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can uti lize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distr ibuted systems

 Even on single-core machines greatly improves per formance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

MULTITHREADED SERVERS

55

56

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.29

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing)

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a
request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before
proceeding with request processing

 Consider the implications of these designs for responsiveness,
availabil ity, scalability. . .

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

57

58

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.30

CH. 3.2:
VIRTUALIZATION

L7.59

 Init ially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based
hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many
virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.60

VIRTUALIZATION

59

60

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.31

 Levels of instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application:

 Goal of virtualization:
mimic these interface to provide a vir tual computer

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

TYPES OF VIRTUALIZATION

 Process vir tual machine
 Interpret instructions: (interpreters)

(JavaVM) byte code  HW instructions
 Emulate instructions: (emulators)

(Wine) windows code  Linux code

 Native virtual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code

directly on the CPU
 Type 1 hypervisor

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

TYPES OF VIRTUALIZATION - 2

61

62

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.32

 Hosted virtual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full virtualization: scan the EXE, insert code around privi leged

instructions to diver t control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of

privileged instructions

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

TYPES OF VIRTUALIZATION - 3

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.64

EVOLUTION OF AWS VIRTUALIZATION

Fro m ht t p :// www.brendangregg. co m/b lo g/ 2017 -11 -29/ aws - ec 2- v i r t u a l i zat io n -2017. ht ml

VS:

V i r tual izat ion

In sof tware

P :

Parav ir tual

VH :

V i r tual izat ion

In Hardware

H:

Hardware

63

64

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.33

 Ful l V ir tualization - Ful ly Emulated
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, timers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter)

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, timers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.66

AWS VIRTUALIZATION - 3

65

66

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.34

 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

AWS VIRTUALIZATION - 4

CH. 3.3: CLIENTS

L7.68

67

68

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.35

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

TYPES OF CLIENTS

 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes

 Example: shared calendar application

 Application independent
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

CLIENTS

69

70

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.36

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the
network  remote Linux GUI

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

X WINDOWS

 Window manager:

 Application running
atop of X-windows
which provides flair

 Many variants

 Without X windows is
quite bland

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.72

X WINDOWS - 2

71

72

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.37

January 28, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.73

 Layered architecture

 X-kernel: low level
interface/APIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

 Provided on Linux
as Xlib

 Provides network
enabled GUI

 Layering allows for
use for custom
window managers

 How to Install VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.74

EXAMPLE: VNC SERVER

73

74

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.38

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.75

EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &

 On the VM:
 Edit config fi le: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.76

EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

75

76

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.39

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.77

EXAMPLE: VNC SERVER - 3

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.78

EXAMPLE: VNC CLIENT

77

78

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.40

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.79

EXAMPLE: VNC CLIENT - 2

 EC2 instance
with a GUI. . .!!!

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.80

REMOTE COMPUTER IN THE CLOUD

79

80

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.41

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.81

THIN CLIENTS

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects
performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.82

THIN CLIENTS - 2

81

82

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.42

 Virtual network computing (VNC)

 Send display over the network at the pixel level
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.83

THIN CLIENTS - 3

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.84

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

83

84

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.43

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.85

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic

 Clients help enable distribution transparency of servers

 Replication transparency
 Client aggregates responses from multiple servers

 Only the client knows of replicas

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.86

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY

85

86

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.44

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.87

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

QUESTIONS

January 28, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.114

87

114

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 28, 2020

Slides by Wes J. Lloyd L7.45

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.115

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.116

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

115

116

