TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Distributed Systems:
Types and

Architectures

Wes J. Lloyd

School of Engineering
and Technology
University of Washington - Tacoma

OBJECTIVES

" Homework O - questions

= Feedback from 1/23

m Active Reading Quiz - Chapter 2.3
= Chapter 2.3: System architectures
®m Chapter 3.1: Threads

= Chapter 3.2: Clients

®= Chapter 3.3: Servers

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

L7.2

Slides by Wes J. Lloyd

January 28, 2020

L7.1

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (16 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.81

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 4.94

TCSS558: Applied Distributed Computing [Winter 2020] 73
School of Engineering and Technology, University of Washington - Tacoma ’

January 28, 2020

FEEDBACK FROM 1/23

= “I'm a little bit lost in this class. There are so many jargon
and abstract concepts. How about our examinations? Do we
need to group concepts in detail?”
(newness 10, pace 5)

® | could envision a question where the objective is to group or
classify terms (concepts)

® |n general consider bloom’s taxonomy which discusses the
“levels” of learning and synthesizing new knowledge

® (1) remember, (2) understand, (3) apply, (4) analyze, (5)
evaluate, (6) create

TCSS558: Applied Distributed Computing [Winter 2020] 74

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

January 28, 2020

L7.2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

BLOOM’S TAXONOMY:

TOWARDS THE SYNTHESIS OF NEW KNOWLEDGE

Bloom’s Taxonomy

-- Produce new or original work
o e Dhesign, L dewelap, farmulate, author, investigate

Justify a stand or decision
eva I u ate appraise, argue, defend, fudge, select, support, value, critfque, weigh

Draw connections among ideas
ifTerentiate, organize, refate, compare, conlrass, distnguish, examine
experiment, guestion, test

Use information in new situations

execule, implement. solve, use, demonsirate, interprel. operate,
schedule, sketch

Explain ideas or concepts
olassify, describe, discuss, explain, [dentiiy, focate, recognire,
repat, select, ranslate

Recall facts and basicconcepts

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

® Could we spend less time responding to feedback?
(newness 2, pace 1)

TCSS 558 Winter 2020 Average Newness and Pace

10
= Newness = Pace

4
1 2 3 4 5 6
Lecture #
TCSS558: Applied Distributed Computing [Winter 2020]
fenuanvze 2oy School of Engineering and Technology, University of Washington - Tacoma L6

Slides by Wes J. Lloyd

January 28, 2020

L7.3

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 3

®|s it possible to reschedule the midterm (2/13)?

= UW-Seattle Winter Job & Internship Fair is Thursday

February 13

= MIDTERM SCHEDULING SURVEY AVAILABLE on CANVAS

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

Intercepted call

Client application

Request-evel interceptor

CH 2.3: SYSTEM

ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

January 28, 2020

L7.4

TCSS 558: Applied Distributed Computing January 28, 2020
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server

= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2020] 7.9

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

SC3 SC4
M D L M D FL M D F L
F
Bell’'s Number: 4 15
5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14
7
n /
M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

10

Slides by Wes J. Lloyd

L7.5

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

/ Resource utilization profile changes \
from component composition
M-bound RUSLE2 - Soil Erosion Model Webservice

* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application variants tested P
* M-bound: Standard service, M is compute bound 11

* D-bound: Modified service, D is compute bound

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

— 0 B

CPU time I disk reads disk writes networkreads network writes

Resource footprint

11
PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS
4 A Performance Change:)
Min to max performance
1 M-bound: 14%
D-bound: 25.7%

[UU

N e

15 . . 1 . 1 . . I . 1 . . 1 .
scl sc2 sc3 scd sc5 scb sc7 scB sc9 scl0scllscl?scl3scldscld

Service Configurations

12

12

Slides by Wes J. Lloyd

January 28, 2020

L7.6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MULTITIERED ARCHITECTURES - 2

"= MDFL architecture
® M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

e Server as a client
Client Application Database]
server server
Request |
L operation |
A ! Request !
M ! data
Wait for | Wait for
reply | data |
1
1 -
i Return
= Z
Return ;
reply !

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

13

MULTITIERED RESOURCE SCALING

= Vertical distribution

® The distribution of “M D F L”

®m Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server

m Vertical distribution impacts “network footprint” of application
m Service isolation: each component is isolated on its own HW

= Horizontal distribution ﬁ
® Scaling an individual tier

= Add multiple machines and distribute load
® Load balancing

TCSS558: Applied Distributed Computing [Winter 2020]

L7.14
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

14

Slides by Wes J. Lloyd

January 28, 2020

L7.7

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MULTITIERED RESOURCE SCALING - 2

® Horizontal distribution cont’d

= Sharding: portions of a database map” to a specific server

= Distributed hash table
= Or replica servers

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.15

15

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®m Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.16

16

Slides by Wes J. Lloyd

January 28, 2020

L7.8

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

® Client/server:
= Nodes have specific roles

® Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organized for communication?

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.17

17

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

®m Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

B Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.18

18

Slides by Wes J. Lloyd

January 28, 2020

L7.9

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED HASH TABLE (DHT)

® Distributed hash table (DHT) (ch. 5)
® Hash function

key (data item) = hash(data item’s value)

® Hash function “generates” a unique key based on the data
® No two data elements will have the same key (hash)

®m System supports data lookup via key

= Any node can receive and resolve the request

® Lookup function determines which node stores the key

existing node = lookup (key)

® Node forwards request to node with the data

TCSS558: Applied Distributed Computing [Winter 2020]

17.19
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

19

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

m Statically sized 4-D hypercube, every node has 4 connectors
m 2 x 3-D cubes, 8 vertices, 12 edges

® Node IDs represented as 4-bit code (0000 to 1111)

® Hash data items to 4-bit key (1 of 16 slots)

® Distance (hnumber of hops) determined by identifying number
of varying bits between neighboring nodes and destination

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020 L7.20

20

Slides by Wes J. Lloyd

January 28, 2020

L7.10

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

® Node 1110 is not a neighbor to 0111

® Which connector leads to the shortest path?

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

21

WHICH CONNECTOR LEADS TO THE

= Example: node 0111 (7) retrieves data from node 1110 (14)

SHORTEST PATH?

® Node 1110 is not a neighbor to 0111

[0111] Neighbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)

0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

® Does it matter which node is selected for the first hop?

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

22

Slides by Wes J. Lloyd

January 28, 2020

L7.11

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

DYNAMIC TOPOLOGY

® Fixed hypercube requires static topology
= Nodes cannot join or leave

® Relies on symmetry of number of nodes

® Can force the DHT to a certain size

® Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)

= Shortest path between any pair of nodes is ~ order O(log N)

= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.23

23

CHORD SYSTEM

B Data items have m-bit key

B Data item is stored at closest “successor” node with ID 2 key k

® Each node maintains finger table of successor nodes

® Client sends key/value
lookup to any node

= Node forwards client
request to node with
m-bit ID closest to, but | =
not greater than key k node 2

= Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

Node responsible for|
keys {5,6.7.8,9}

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.24

24

Slides by Wes J. Lloyd

January 28, 2020

L7.12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
®m Each node maintains adhoc list of neighbors
® Facilitates nodes frequently joining, leaving, adhoc systems

= Neighbor: node reachable from another via a network path

®m Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
® Forms a “random graph”
= Predetermining network routes not possible

= How would you calculate the route algorithmically?

® Routes must be discovered

TCSS558: Applied Distributed Computing [Winter 2020]

17.25
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

25

UNSTRUCTURED PEER-TO-PEER - 2

® Methods to find/disseminate data in unstructured
peer-to-peer networks:

= Flooding
" Random Walks
= Policy-based search

= Alternate topology:

= Hierarchically organized peer-to-peer networks

TCSS558: Applied Distributed Computing [Winter 2020]

L7.26
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

26

Slides by Wes J. Lloyd

January 28, 2020

L7.13

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
B [Node u] sends request for data item to all neighbors
® [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= |lgnores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing [Winter 2020]

L17.27
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

27

SEARCHING FOR DATA - 2

= Random walks
B [Node u] asks a randomly chosen neighbor [node v]

® |f [node v] does not have data, forwards request to a
random neighbor

= Features
= Low network traffic
= AKin to sequential search
= Longer search time

= [node u] can start “n” random walks simultaneously to
reduce search time

= As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2020]

L7.28
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

28

Slides by Wes J. Lloyd

January 28, 2020

L7.14

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA -3

® Policy-based search methods

® [ncorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

® Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSS558: Applied Distributed Computing [Winter 2020]

17.29
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

29

HIERARCHICAL

PEER-TO-PEER NETWORKS

= Problem:
Adhoc system search performance does not scale well as
system grows

® Allow nodes to assume ROLES to improve search
® Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)

= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
® Node roles
= Super peer -Broker node, routes client requests to storage
nhodes

= Weak peer - Store data

TCSS558: Applied Distributed Computing [Winter 2020]

L7.30
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

30

Slides by Wes J. Lloyd

January 28, 2020

L7.15

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

® Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

® Leader-election problem:
= Who can become a o -

super peer? __

= What requirements
must be met to become
a super peer?

L Overlay network of super peers

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

31

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered
®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®m Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.32

32

Slides by Wes J. Lloyd

January 28, 2020

L7.16

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

HYBRID

ARCHITECTURES

® Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:

® Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

m Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS558: Applied Distributed Computing [Winter 2020]

17.33
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

33

HYBRID . = e
ARCHITECTURES - 2

® Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

® End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

® Cloud - in the sky
= compute/resource capacity is huge, but far away...
® Fog - (devices) on the ground

= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

January 28, 2020

34

Slides by Wes J. Lloyd

January 28, 2020

L7.17

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:

File sharing system - users must contribute as a file host to
be eligible to download file resources

® Original implementation features hybrid architecture

® Leverages idle client network capacity in the background
® User joins the system by interacting with a central server

® Client accesses global directory from a tracker server at well
known address to access torrent file

® Torrent file tracks nodes having chunks of requested file

® Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

® Chunks can be downloaded in parallel from distributed nodes

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

35

REVIEW QUESTIONS

® What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?

= Spreading/finding data
= Flooding, Random walk

® What are some advantages of a decentralized structured peer-
to-peer architecture?

® What are some disadvantages?

® What are some advantages of a decentralized unstructured

peer-to-peer architecture?

® What are some disadvantages?

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

36

Slides by Wes J. Lloyd

January 28, 2020

L7.18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

>

Fl
£
&8
8&
b

CH. 3: PROCESSES
CH. 3.1: THREADS

Workload diversity
(process types)

CHAPTER 3

® Chapter 3 titled “processes”
® Covers variety of distributed system implementation

details

= “Grab bag” of topics

® Processes/threads
® Virtualization

® Clients
® Servers

® Code migration

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

38

Slides by Wes J. Lloyd

January 28, 2020

L7.19

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CH. 3.1 - THREADS

® For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

® What is the difference between a process and a thread?
= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... ?

= What are the segments of a program stored in memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

|-

TCSS558: Applied Distributed Computing [Winter 2020]

17.39
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

39

THREADS - 2

= Do several processes oh an operating system share...

= Heap segment?

= Stack segment?
= Code segment?

® Can we run multiple copies of the same code?

® These may be managed as shared pages (across processes) in
memory

® Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

|-

TCSS558: Applied Distributed Computing [Winter 2020]

L7.40
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

40

Slides by Wes J. Lloyd

January 28, 2020

L7.20

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THREADS - 3 | |

® Threads avoid the overhead of process creation

No new heap or code segments required

What is a

context switch?

Context switching among threads is considered to be more
efficient than context switching processes

Less elem

Unikernel:

ents to swap-in and swap-out

specialized single process OS for the cloud

Example: Osv, Clive, MirageOS (see: http://unikernel.org/projects/)

Single pro

cess operating system with many threads

Developed for the cloud to run only one application at a time

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

L7.41
School of Engineering and Technology, University of Washington - Tacoma

41

ONE PROCESS, MANY THREADS

Tomeat

Threads

X page-acoess-sca-2- 1.0

x| flbhtpserver - 217 - 1.8

>java.so - 220 - 0.0

>>javaso - 226- 0.0

>>java.so - 227 - 0.0

25611

page-access-
sca ™

flibhttpserver.

>java.so "™
>>java.so """

>>java.so "

»>3>2>javas0 - 239 - 0.0

+|reclaimer - 1-0.0
225612 22612 225643 25613 2ZSEIA 2256 RSG5 225615 22:56:16

+ page_poal 12-3-0.0

+ itmerreal-4- 00

+|ifmer-vint -5 - 0.0

+| balancero - 6- 0.0

+/rew0-7-00

+|page_pool_11_0-8-0.0

+ percpuo-9- 0.0

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

L7.42
School of Engineering and Technology, University of Washington - Tacoma

42

Slides by Wes J. Lloyd

January 28, 2020

L7.21

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THREADS - 4

® Important implications with threads:
® (1) multi-threading should lead to performance gains

® (2) thread programming requires additional effort when
threads share memory

= Known as thread synchronization, or enabling concurrency

= Access to critical sections of code which modify shared
variables must be mutually exclusive

= No more than one thread can execute at any given time
= Critical sections must run atomically on the CPU

|-

TCSS558: Applied Distributed Computing [Winter 2020]

17.43
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

43

BLOCKING THREADS

® Example: spreadsheet with formula to compute sum of column
m User modifies values in column

® Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

® Single core CPU

= Tasks appear as if they are performed simultaneously
® Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2020]

L7.44
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

44

Slides by Wes J. Lloyd

January 28, 2020

L7.22

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

INTERPROCESS COMMUNICATION

® |PC - mechanism using pipes, message queues, and shared
memory segments

® |PC mechanisms incur context switching
= Process I/0 must execute in kernel mode

® How many context switches are required for process A to
send a message to process B using IPC?

Process A Process B

= #1 C/S:

Proc A>kernel thread

S1: Switch from user space
n Wwiemeligpace. | \J. A | 53: Switch from kemnel
T — 1] space to user space
#2 C/S: L T——
Kernel thread>Proc B Operating system
82: Switch context from
process A to process B

TCSS558: Applied Distributed Computing [Winter 2020]

L7.45
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

45

CONTEXT SWITCHING

= Direct overhead
= Time spent not executing program code (user or kernel)

= Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

= Stack, code, heap, registers, code pointers, stack pointers
= Memory page cache invalidation

® |[ndirect overhead

= Overhead not directly attributed to the physical actions of the
context switch

= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

= Primarily cache perturbation

TCSS558: Applied Distributed Computing [Winter 2020]

L7.46
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

46

Slides by Wes J. Lloyd

January 28, 2020

L7.23

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

CONTEXT SWITCH -

CACHE PERTURBATION

m Refers to cache reorganization that occurs as a result of a
context switch

® Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

MRUE‘
LRU@

TCSS558: Applied Distributed Computing [Winter 2020]

L7.47
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

47

THREADING MODELS

= Many-to-one threading: multiple user-level threads per process
® Thread operations (create, delete, locks) run in user mode

® Multithreaded process mapped to single schedulable entity

® Only run thread per process runs at any given time

= Key take-away: thread management handled by user processes

= What are some advantages of many-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2020]

L7.48
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

48

Slides by Wes J. Lloyd

January 28, 2020

L7.24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THREADING MODELS - 2

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

= The kernel API calls (e.g. 1/0, locking) are farmed out to an
existing kernel level thread

® Thread operations (create, delete, locks) run in kernel mode
® Threads scheduled individually by the OS

m System calls required, context switches as expensive as
process context switching

® |dea is to have preinitialized kernel threads for user processes
® Linux uses this model...

= What are some advantages of one-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2020]

L7.49
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

49

APPLICATION EXAMPLES

®m Google chrome: processes
® Apache tomcat webserver: threads

® Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

® Each process maintains its own private memory

= While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??

= Replication instead of synchronization - must synchronize multiple
copies of the data

® Do distributed objects share memory?

TCSS558: Applied Distributed Computing [Winter 2020]

L7.50
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

50

Slides by Wes J. Lloyd

January 28, 2020

L7.25

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MULTITHREADED CLIENTS

= Web browser

m Uses threads to load and render portions of a web page to the

user in parallel

® A client could have dozens of concurrent connections all
loading in parallel

= testFibPar.sh
®m Assignment O client script (GNU parallel)

" Important benefits:
m Several connections can be opened simultaneously

® Client: dozens of concurrent connections to the webserver all

loading data in parallel

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.51

51

MULTIPLE THREADS

® |n Linux, threads also receive a process ID (PID)
® To display threads of a process in Linux:

® |dentify parent process explicitly:
® top -H -p <pid>
® htop -p <pid>

® ps -iT <pid>

® Virtualbox process ~ 44 threads
® No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.52

52

Slides by Wes J. Lloyd

January 28, 2020

L7.26

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

PROCESS METRICS

isk

CPU disk

- cpulntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts Network

- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads

- readtime: time spent reading from

-cpuUsr: CPU time in user mode - dsw: disk sector writes

-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed
-cpuldle: CPU idle time - dwm: merged adjacent disk writes
- cpuloWait: CPU time waiting for I/0 - writetime: time spent writing to disk

- cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received

LOAD AVERAGE

= Updated every 5 seconds

for 1 minute, 5 minutes, and 15 minutes

m 1.0 = 1-CPU core fully loaded
m 2.0 =2-CPUcores
m 3.0 = 3-CPU cores . ..

® Reported by: top, htop, w, uptime, and /proc/loadavg

®m Average number of processes using or waiting for the CPU
® Three numbers show exponentially decaying usage

® One minute average: exponentially decaying average
® Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

L7.54

54

Slides by Wes J. Lloyd

January 28, 2020

L7.27

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THREAD-LEVEL PARALLELISM

® Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

m Ci - fraction of time that exactly | threads are executed

® N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

® Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2020]

L7.55
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

55

MULTITHREADED SERVERS

® Multiple threads essential for servers in distributed systems
® Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
® Two designs:

= Generate new thread for every request

= Thread pool - pre-initialize set of threads to service requests

; Request dispatched
Dispatcher thread to a worker thread Server

A
/{_\4\ | —1 Worker thread
1000

Operating system

[Request coming in
lirom the network

TCSS558: Applied Distributed Computing [Winter 2020]

L7.56
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

56

Slides by Wes J. Lloyd

January 28, 2020

L7.28

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

SINGLE THREAD & FSM SERVERS

® Single thread server
= A single thread handles all client requests
= BLOCKS for 1I/0
= All waiting requests are queued until thread is available

® Finite state machine
= Server has a single thread of execution
= |/0 performing asynchronously (non-BLOCKing)
= Server handles other requests while waiting for 1/0
= [nterrupt fired with I/0 completes
=Single thread “jumps” back into context to finish request

TCSS558: Applied Distributed Computing [Winter 2020]

L7.57
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

57

SERVER DESIGN ALTERNATIVES

®m A blocking system call implies that a thread servicing a
request synchronously performs I/0

® The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

® Consider the implications of these designs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking 1/0
Single-thread No parallelism, blocking 1/0
Finite-state machine Parallelism, non-blocking /0

TCSS558: Applied Distributed Computing [Winter 2020]

L7.58
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

58

Slides by Wes J. Lloyd

January 28, 2020

L7.29

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

VIRTUALIZATION

59

VIRTUALIZATION

= |nitially introduced in the 1970s

on IBM mainframe computers

m | egacy operating systems run in mainframe-based VMs
= | egacy software could be sustained by virtualizing legacy OSes

®m 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,

multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many

virtual servers with mixed OSes on private clusters

® Cloud computing: Amazon offers VMs as-a-service (laaS)

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

L7.60

60

Slides by Wes J. Lloyd

January 28, 2020

L7.30

TCSS 558: Applied Distributed Computing January 28, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

TYPES OF VIRTUALIZATION

= Levels of instructions: |iyaryfunctions Application

= I
= Hardware: CPU System calls __| Library
= Privileged instructions Privileged j{m_‘ General
KERNEL MODE 2 i P instructions
‘ Hardware

= General instructions
USER MODE

= Operating system: system calls

® Library: programming APIs: e.g. C/C++,C#, Java libraries

= Application:

® Goal of virtualization:
mimic these interface to provide a virtual computer

TCSS558: Applied Distributed Computing [Winter 2020]

L7.61
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

61

TYPES OF VIRTUALIZATION - 2

‘ Application/Libraries

= Process virtual machine I I
= |nterpret instructions: (interpreters) Brotive sy

(JavaVM) byte code 2> HW instructions S——

= Emulate instructions: (emulators) I 1
(Wine) windows code - Linux code Hardware

= Native virtual machine monitor (VMM)
= Hypervisor (XEN): small OS with its own kernel
= Provides an interface for multiple guest OSes Gperating system

= Facilitates sharing/scheduling of ‘Vmﬁ,mamzn‘emnm |

CPU, device I/0 among many guests I T i
= Guest OSes require special kernel to interface w/ VMM | Herdware

= Supports Paravirtualization for performance boost to run code
directly on the CPU

= Type 1 hypervisor

Application/Libraries

TCSS558: Applied Distributed Computing [Winter 2020]

L7.62
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

62

Slides by Wes J. Lloyd L7.31

TCSS 558: Applied Distributed Computing January 28, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

TYPES OF VIRTUALIZATION - 3

Hosted virtual machine monitor (VMM) ‘ fophesioniis

= Runs atop of hosted operating system Operating system
= Uses host OS facilities for CPU scheduling, 1/0 I\Jiﬂualmam;nlamonﬂor !
= Full virtualization

= Type 2 hypervisor
= Virtualbox

Operating system
I [

Hardware

Textbook: note 3.5-good explanation of full vs. paravirtualization
GOAL: run all user mode instructions directly on the CPU
x86 instruction set has ~17 privileged user mode instructions

Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.63

63

EVOLUTION OF AWS VIRTUALIZATION

From http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
AWS EC2 Virtualization Types

Vs: Impontance
Virtuallzation Biiasinital peroiidna Most
In software Near-metal parformance
Optimized performance

P: Poor performance
Paravirtual Y [e =

1] vm Fully Emulated
VH: Od |2 W Xen PV 3.0 PV drivers
Virtuallzation 3| VW Xen HVM 3.0 PV drivers

4| V™ Xen HVM 4.0.1 PVHVM drivers
In Hardware 5| V™ Xan AWS 2013 PVHVM + SR-IOV(net)

6| VM Xen AWS 2017 PVHVM + SR-I0OV(net. stor.)
H: 7| vm AWS Nitro 2017
Hardware New |8 | HW | AWS Bare Metal 2017 H

Bare Metal H|H|H|H|H]|H

VM: Virtual Machine. HW: Hardware.
V8: VirL. in soltware. VH: Virt. in hardware. P: Paravirt. Not all combinations shown.
SR-10V{net): ixgbelena driver. SR-IOV(storage); nvme driver,

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020 L7.64

64

Slides by Wes J. Lloyd L7.32

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

AWS VIRTUALIZATION - 2

= Full Virtualization - Fully Emulated
= Never used on EC2, before CPU extensions for virtualization
= Can boot any unmodified OS
= Support via slow emulation, performance 2x-10x slower

= Paravirtualization: Xen PV 3.0
= Software: Interrupts, timers
= Paravirtual: CPU, Network I/0, Local+Network Storage
= Requires special OS kernels, interfaces with hypervisor for I/0
= Performance 1.1x - 1.5x slower than “bare metal”
= Instance store instances: 15T & 2nd generation- mil.large, m2.xlarge

= Xen HVM 3.0
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage
= Software: interrupts, timers
= EBS backed instances
= mi, cl instances

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

65

AWS VIRTUALIZATION - 3

= XEN HVM 4.0.1
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage, interrupts, timers

= XEN AWS 20413 (diverges from opensource XEN)
= Provides hardware virtualization for CPU, memory, network
= Paravirtual: storage, interrupts, timers
= Called Single root I/0 Virtualization (SR-I0V)

= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

= Improves VM network performance
= 3rd & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbps
= XEN AWS 2017
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= |Instance storage hardware virtualization (x1.32xlarge, i3 family)

TCSS558: Applied Distributed Computing [Winter 2020]

L7.66
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

66

Slides by Wes J. Lloyd

January 28, 2020

L7.33

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

AWS VIRTUALIZATION - 4

= AWS Nitro 2017

= Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

= All aspects of virtualization enhanced with HW-level support

= November 2017

= Goal: provide performance indistinguishable from “bare metal”
= 5th generation instances - ¢5 instances (also c5d, c5n)

= Based on KVM hypervisor

= Overhead around ~1%

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

67

CH. 3.3: CLIENTS

68

Slides by Wes J. Lloyd

January 28, 2020

L7.34

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TYPES OF CLIENTS

®Thick clients
=Web browsers
Client-side scripting
= Mobile apps
= Multi-tier MVC apps

®Thin clients
= Remote desktops/GUIs (very thin)

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

L7.69

69

CLIENTS

Client machine

® Application specific protocol

Server machine|

. . Application
= Thick clients |: Application-

specific

= Clients maintain local data Middleware | protocol

Application

Middleware
= Middleware (APIs) Focal 05 bocel 0%
= Clients synchronize data with remote nodes J—\'-’-”-’-”-’-”-’-”-’-"-’-’;"'1::47
= Example: shared calendar application
u App|icati0n independent Client machine Server machine|
= Thin clients Application Application
. . E Application- E
= Client acts as a remote terminal independent
. . Middlews protocol Middl
= Provides interface to user (GUI / Ul) T e e
Local QS Lpral os

= Server houses entire application stack | X

Network

January 28, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

L7.70

70

Slides by Wes J. Lloyd

January 28, 2020

L7.35

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

X WINDOWS

® Layered architecture to transport Ul over network
= Remote desktop functionality for Linux/Unix systems

® X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine - Linux GUI

= Client and server communication transported over the
network 2 remote Linux GUI

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.71

71

X WINDOWS - 2

= Window manager:

= Application running
atop of X-windows
which provides flair

= Many variants

HSET(1) ASET(1)

|
xeet - user preference utility for X

xset |-display display] [-b] [b on/off] [b [voluse lpizch [durationl]

Ti-the] [e) o onsete] (o Ivoluel] 1+-Tdpnol [dms sty | suspend

[]]] [dpns standby/suspead/o H m] (- up[=]
[toger|

= Without X windows is panired, i ety G
: Sk ot T T
q u Ite bla nd onfott] [s default] [o activate] [o reset] gl
DESCRIPTION

This progesm 1s used to set various user preference options of the dis-
play

aPTIONS
- display display
This aption specifies the secver to use; see 577
b The b optien cantrols bell volms, piteh snd durstion. his
Gption accepts up to thiee umerical parameters, a preceding

daah[) oF " ran/oft

{ Elaq e Dannev.axs are given. of
11 dIf

1111111

charact cs. The % ALl racteristics o
the bell 35 closely 35 it can £o the nser's specifications

be The be option contiols dug conpatibility node in the secver. it

TCSS558: Applled Distributed Computmg [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.72

72

Slides by Wes J. Lloyd

January 28, 2020

L7.36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

= Layered architecture

= X-kernel: low level
interface/APlIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

® Provided on Linux
as Xlib

® Provides network
enabled GUI

= Layering allows for
use for custom
window managers

January 28, 2020

Application Clients - User Productivity
(OpenOffice.org, Firefox, Gimp

Desktop Environment - Application and
File Management
Gnome/KDE panels, desktop icon managers

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Session Manager
gnome-session, ksmserver

and User Authentication
gdm, kdm, xdm

Display Manager - Local X Server Startup I

Toolkits
GTK, Qt, Moif, Xaw

X Window Server - Display Hardware Management
Korg

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.73

73

EXAMPLE: VNC SERVER

® How to Install VNC server on Ubuntu EC2 instance VM:

® sudo apt-get update

" # ubuntu 16.04

® sudo apt-get install ubuntu-desktop

® sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

= # on ubuntu 18.04

® sudo apt install xfce4 xfced-goodies

® sudo apt-get install tightvncserver

m Start VNC server to create initial config file

B yncserver :1

both

January 28, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.74

74

Slides by Wes J. Lloyd

January 28, 2020

L7.37

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER - UBUNTU 16.04

® On the VM: edit config file: nano ~/.vnc/xstartup
®m Replace contents as below (Ubuntu 16.04):

#!/bin/sh

export XKL_XMODMAP DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r SHOME/ .Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.75

75

EXAMPLE: VNC SERVER - UBUNTU 18.04

= On the VM:
m Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.76

76

Slides by Wes J. Lloyd

January 28, 2020

L7.38

TCSS 558: Applied Distributed Computing January 28, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

EXAMPLE: VNC SERVER - 3

®m On the VM: reload config by restarting server
® yncserver -kill :1

® yncserver :1

® Open port 22 & 5901 in EC2 security group:

Edit inbound rules X
Type i Protocol (i Port Range (i Source (i
S8H TCP 22 Anywhere * 0000/0 e
Custom TCP Rule - TCP | [5801 ; Anywhere v 0.0.0.00 9
Add Rule Cancel “

TCSS558: Applied Distributed Computing [Winter 2020] 7.7
School of Engineering and Technology, University of Washington - Tacoma :

January 28, 2020

77

EXAMPLE: VNC CLIENT

® On the client (e.g. laptop):

m Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

® This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip address>

® For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1l ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Winter 2020] 1778

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

78

Slides by Wes J. Lloyd L7.39

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC CLIENT - 2

® On the client (e.g. laptop):

Use a VNC Client to connect

® Remmina is provided by default on Ubuntu 16.04

®m Can “google” for many others

® Remmina login:

® Chose “VNC” protocol

® Log into “localhost:5901” 0 L

g YNC ¥ || localhost:5901 Connect!

j Name « Group Server

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.79

79

REMOTE COMPUTER IN THE CLOUD

® EC2 instance
with a GUI. . .!I!

Downloads

[~

Templates

= F1 ubuntu@ip172315.. @ Home

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.80

80

Slides by Wes J. Lloyd

January 28, 2020

L7.40

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

THIN CLIENTS

® Thin clients
= X windows protocol
= A variety of other remote desktop protocols exist:

Remote desktop protocals include the following:

« Apple Remote Desktop Protocol (ARD) - Original protocol for Apple Remote Desktop on macOS machines.

= Appliance Link Protocol (ALP) — a Sun Microsystems-specific protocol featuring audio (play and record), remote printing, remote USB, accelerated video

« HP Remate Graphics Software (RGS) — a proprietary protocol designed by Hewlett-Packard specifically for high end workstation remoting and collaboration.

= Independent Computing Architecture (ICA) — a proprietary protocol designed by Citrix Systems

s NX technology (NoMachine NX) — Cross platform protocol featuring audio, video, remote printing, remote USB, H264-enabled.

« PC-over-IP (PColP) — a proprietary protocol used by VMware (licensed from Teradici)?

s Remote Desktop Protocol (RDP) — a Windows-specific protocol featuring audio and remote printing

s Remote Frame Buffer Protocol (RFB) — A framebuffer level cross-platform protocol that VNC is based on.

+ SPICE (Simple Protocol for Independent Computing Environments) — remote-display system built for virtual environments by Qumranet, now Red Hat

+ Splashtop —a high performance remote desktop protocol developed by Splashtop, fully optimized for hardware (H.264) including Intel / AMD chipsets, NVIDIA
of media codecs, Splashtop can deliver high frame rates with low latency, and also low power consumption.

« X Window System (X11) — a well-established cross-platform protocol mainly used for displaying local applications; X11 is network transparent

TCSS558: Applied Distributed Computing [Winter 2020]

17.81
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

81

THIN CLIENTS - 2

®m Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

® Client must wait for response

®m Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

®m Send only differences between messages with same identifier
®m Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2020]

L7.82
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

82

Slides by Wes J. Lloyd

January 28, 2020

L7.41

TCSS 558: Applied Distributed Computing January 28, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

THIN CLIENTS - 3

® Virtual network computing (VNC)

® Send display over the network at the pixel level
(instead of X lib events)

® Reduce pixel encodings to save bandwidth - fewer colors
® Pixel-based approaches loose application semantics
® Can transport any GUI this way

® THINC- hybrid approach

® Send video device driver commands over network
® More powerful than pixel based operations

® | ess powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Winter 2020]

17.83
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

83

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
<

1] >

TCSS558: Applied Distributed Computing [Winter 2020]

L7.84
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

84

Slides by Wes J. Lloyd L7.42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

DISPLAY PROTOCOLS

TRADEOFFS: ABSTRACTION OF REMOTE

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC I‘I X11
< I >
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
e More network traffic

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.85

85

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

m Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine Server 1 Server £ Server 3
Client Server Server Server
appl! appl appl appl
|
A4

Client side handles \

request replication

—— I

Replicated request

m Clients help enable distribution transparency of servers

TCSS558: Applied Distributed Computing [Winter 2020]

Lananvizs 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.86

86

Slides by Wes J. Lloyd

January 28, 2020

L7.43

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

= | ocation/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

®m Replication transparency
= Client aggregates responses from multiple servers

® Failure transparency
= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2020]

lanuanyi2872020 School of Engineering and Technology, University of Washington - Tacoma

L7.87

87

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington -

January 28, 2020

114

Slides by Wes J. Lloyd

January 28, 2020

L7.44

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

RESEARCH DIRECTIONS

TCSS558: Applied Distributed Computing [Winter 2020]

OcteberS 2017 School of Engineering and Technology, University of Washington -

115

CLOUD AND DISTRIBUTED SYSTEMS

RESEARCH GROUP

= Meetings on Wednesdays from 12 (12:30) to 1:30pm
= MIDS 202
= MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (laaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

TCSS558: Applied Distributed Computing [Winter 2020]

q A 3 a . L7.116
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2020

116

Slides by Wes J. Lloyd

January 28, 2020

L7.45

