TCSS 558: Applied Distributed Computing [Winter 2020] School of Engineering and Technology, UW-Tacoma

FEEDBACK FROM 1/21

• What are the differences between Docker (containers) and virtual machines?

Manuary 23, 2020

TCSSS8: Applied Distributed Computing [Winter 2020] School of Engineering and Technology, University of Washington-Tacoma

VM VS. CONTAINER (BARE METAL)						
App 1	App 2	App 3	App 1	App 2	App 3	
Bins/Lib	Bins/Lib	Bins/Lib	Bins/Lib	Bins/Lib	Bins/Lib	
Guest OS	Guest OS	Guest OS	Container Engine			
Hypervisor			Operating System			
Infrastructure						
Virtual Machines			Containers			
January 23, 2020 TCSS558: Applied Distributed Co School of Engineering and Techn			mputing [Winter 2020] plogy University of Was	hington - Tacoma	16.7	

MOTIVATION FOR CONTAINERIZATION Containers provide "light-weight" alternative to full OS virtualization provided by a hypervisor Containers do not provide a full "machine" Instead use operating system constructs to provide "sand boxes" for execution Linux cgroups, namespaces, etc. Containers can run on bare metal, or atop of VMs Container C C C C C C C C o o o o o o o n n n n n n n L L L L L t t t Host OS's bins/libs VM VM VM VM VM VM VM Application Dependencies Hyperv isor engine Guest OS Containers engine Hardware Host OS Host OS Hardware Type 1 Containers Hypervisor/VM Hardware Type 2 January 23, 2020 TCSS558: Applied Distributed Computing [Winter 2020] School of Engineering and Technology, University of Washington - Tacom L6.9

9

14

MIDDLEWARE ORGANIZATION

Relies on two important design patterns:
Wrappers
Interceptors
Both help achieve the goal of openness

Manuary 23, 2020
CSSSS: Appled Distibuted Computing Minter 2020
School of Engineering and Technology, University of Washington - Tacoma

21

20

22

 Does a microservices architecture (e.g. AWS Lambda) support modifiability at runtime ?

 January 23, 2020
 TCSSSS: Appled Distributed Computing [Winter 2020] School of Engineering and Technology, University of Washington - Tacoma
 (4:23)

 RESEARCH DIRECTIONS

 Sector 5.201

 Ctober 5.201

Local OS

25

CH 2.3: SYSTEM

ARCHITECTURES

eering and Technology, University of Wa

ary 23, 2020

28

L6.27

interactions, and placement is a "realization" of an <u>architectural style</u>
 System architectures represent designs used in

27

practice

January 23, 2020

TCSS558: Applied Distributed Computing [Winter 2020] School of Engineering and Technology, University of Washington - Tacoma

35

ICP/	UDP
ТСР	UDP
Reliable	Unreliable
Connection-oriented	Connectionless
Segment retransmission and flow control through windowing	No windowing or retransmission
Segment sequencing	No sequencing
Acknowledge segments	No acknowledgement

32

CONNECTIONLESS VS CONNECTION ORIENTED						
	Connectionless (UDP) stateless	Connection-oriented (TCP) stateful				
Advantages	 Fast to communicate (no connection overhead) Broadcast to an audience Network bandwidth savings 	Message delivery confirmation Idempotence not required Messages automatically resent - if client (or network) is temporarily unavailable Message sequences guaranteed				
Disadvantages	 Cannot tell difference of request vs. response failure Requires idempotence Clients must be online and ready to receive messages 	 Connection setup is time- consuming More bandwidth is required (protocol, retries, multinode- communication) 				
January 23, 2020	TCSS558: Applied Distributed Computing [Wi School of Engineering and Technology, Unive	nter 2020] rsity of Washington - Tacoma				

39

41

45

 UNSTRUCTURED PEER-TO-PEER

 • No topology: How do nodes find out about each other?

 • Each node maintains adhoc list of neighbors

 • Each node maintains adhoc list of neighbors

 • Facilitates nodes frequently joining, leaving, adhoc systems

 • Neighbor: node reachable from another via a network path

 • Neighbor lists constantly refreshed

 • Nodes query each other, remove unresponsive neighbors

 • Forms a "random graph"

 • Predetermining network routes not possible

 • How would you calculate the route algorithmically?

 • Routes must be discovered

 Immary 23, 2020
 ICSSSB: Applied Distributed Computing [Winter: 2020] School of Engineering and Technology. University of Washington - Tacoma
 16.51

HIERARCHICAL

 TYPES OF SYSTEM ARCHITECTURES

 • Centralized system architectures

 • Client-server
 • Multitiered

 • Decentralized peer-to-peer architectures
 • Structured

 • Unstructured
 • Hierarchically organized

 • Hybrid architectures
 • Structured

 • Hybrid architectures
 • Structured

 • Hord of Engineering and Technology, University of Washington-Tacoma
 us37

59

COLLABORATIVE DISTRIBUTED SYSTEM EXAMPLE

- Leverages idle client network capacity in the background
- User joins the system by interacting with a central server
 Client accesses global directory from a *tracker* server at well
- known address to access torrent file Torrent file tracks nodes having chunks of requested file
- Client begins downloading file chunks and immediately then participates to reserve downloaded content <u>or network</u> <u>bandwldth is reduced!!</u>

Chunks can be downloaded in parallel from distributed nodes							
January 23, 2020	TCSS558: Applied Distributed Computing [Winter 2020] School of Engineering and Technology, University of Washington - Tacoma	L6.60					

TCSS 558: Applied Distributed Computing [Winter 2020] School of Engineering and Technology, UW-Tacoma

61

