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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Class Activity 2 – Rearchitecting Distributed 
Systems

Homework 0 – networking review

 Feedback from 1/21

Chapter 2.2: Middleware organization

Research directions overview

Chapter 2.3: System architectures
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OBJECTIVES

IN-CLASS ACTIVITY:
ARCHITECTURAL

STYLES

L6.3

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 
TO CONSIDER

 Please classify your perspective on material covered in today’s 
class (9 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.55

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.44
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MATERIAL / PACE

What are the differences between Docker 
(containers) and vir tual machines?
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FEEDBACK FROM 1/21
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VM VS. CONTAINER (BARE METAL)
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(TRADITIONAL) CONTAINERS ON CLOUDWhat architecture does this look like?

 Containers provide “light-weight” alternative to full OS 
vir tualization provided by a hypervisor

 Containers do not provide a full “machine” 

 Instead use operating system constructs to provide “sand 
boxes” for execution

 Linux cgroups, namespaces, etc.

 Containers can run on bare metal, or atop of VMs
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MOTIVATION FOR CONTAINERIZATION

Hypervisor/VMContainers
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Assignment 0: For haproxy, using VM private IPs, 
why doesn’t network traffic need to go out to the 
internet?
 Every VM has a default VPC, and subnet

VMs that share the same (private) subnet can directly 
communicate

VMs that are on two different subnets within a VPC 
with a router can communicate via the router
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FEEDBACK - 2
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DEFAULT VPC

 I’m not understanding the haproxy diagram 
(whiteboard).

Why multiple ports?
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FEEDBACK - 3
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What is coupled?

Source code coupling

Referential coupling

Temporal coupling

What is decoupled?
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FEEDBACK - 4

Could you explain 
more about the 
publish-subscribe 
architecture?

How does a 
subscription 
model support
decoupling?
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FEEDBACK - 5

 Could we please open zoom section for every class?

 Can we have zoom online classes from now on?
 Due to new novel cornavirus

 UW faculty only have basic zoom license

 Limited to 40-minute sessions

 SET allows faculty to schedule full-length zoom sessions 
during inclement weather or campus quarantine
(by special request)
 Insufficient resources for daily use  
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FEEDBACK - 6

CH 2.2: MIDDLEWARE
ORGANIZATION
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Relies on two important design patterns:

Wrappers

 Interceptors

Both help achieve the goal of openness
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MIDDLEWARE ORGANIZATION

 Wrappers (also called adapters)
 WHY?: Interfaces available from legacy software may not be 

sufficient for all new applications to use
 WHAT: Special “frontend” components that provide interfaces for 

clients
 Interface wrappers transform client requests to “implementation”

(i.e. legacy software) at the component-level
 Can then provide modern service interfaces for legacy code/systems
 Components encapsulate (i.e. abstract) dependencies to meet all 

preconditions to operate and host legacy code
 Interfaces parameterize legacy functions, abstract environment 

configuration (i.e. make into black box)

 Contributes towards system OPENNESS
 Example: Amazon S3: S3 HTTP REST interface
 GET/PUT/DELETE/POST: requests handed off for fulfillment
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MIDDLEWARE: WRAPPERS
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 Inter-application communication
 Applications may provide unique interface for

every client application

 Scalability suffers
 N applications  O(N2) wrappers

 ALTERNATE: Use a Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate 
with the broker
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MIDDLEWARE: WRAPPERS - 2

clients
 Interceptor

Software construct, breaks flow of control, allows 
other application code to be executed

 Interceptors send calls to other servers, or to ALL 
servers that replicate an object while abstracting 
the distribution and/or replication
 Used to enable remote procedure calls (RPC), remote 

method invocation (RMI)

Object A calls method belonging to object B
 Interceptors route calls to object B regardless of location
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MIDDLEWARE: INTERCEPTORS

Request-level 
interceptor 
transforms: 
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware 
sends message 
through OS 
(TCP/IP socket) 
to transfer data: 
send(B,”doit”,val)

Non-intercepted:
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MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local interface matching Object B to 
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by 
request-level interceptor

 “Generic object invocation” is transformed into a message by 
message-level interceptor and sent over Object A’s network to 
Object B

 Interception automatically routes calls to all object replicas
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MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of 
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime 
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support 
modifiability at runtime ?
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MODIFIABLE MIDDLEWARE

RESEARCH DIRECTIONS
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 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.
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CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

CH 2.3: SYSTEM 
ARCHITECTURES
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 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 
system design problems

 Expressed as a logical organization of components
and connectors

 Deciding on the system components, their 
interactions, and placement is a “realization” of an 
architectural style

 System architectures represent designs used in 
practice
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SYSTEM ARCHITECTURES

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message 

arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?
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CENTRALIZED: 
SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS
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 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections
 Example: database connections often retained

 Ongoing debate:

 How do you differentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new 
requests to other DB nodes for replication, synchronization, etc .
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP

Connectionless (UDP) 
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 
CONNECTION ORIENTED

Connectionless (UDP) 
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no 
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent 

- if client (or network) is 
temporarily unavailable

• Message sequences 
guaranteed

Disadvantages • Cannot tell difference of 
request vs. response failure

• Requires idempotence
• Clients must be online and 

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required 
(protocol, retries, multinode-
communication)

January 23, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

CONNECTIONLESS VS 
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES
SC2

M D
F 

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .

31 32

33 34

35 36
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SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound       

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

Resource utilization profile changes 
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

38

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 
fileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers
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MULTITIERED RESOURCE SCALING - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES
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 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 
ARCHITECTURES

 Nodes organized using specific topology 
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys
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STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 
of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it  matter which node is  selected for the fi rst hop?
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WHICH CONNECTOR LEADS TO THE 
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)
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 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes
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DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value 
lookup to any node

 Node forwards client 
request to node with 
m-bit ID closest to, but 
not greater than key k 

 Nodes must continually 
refresh finger tables by 
communicating with 
adjacent nodes to 
incorporate node 
joins/departures
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CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to u (or forwarder) if having data

 Forwards request to ALL neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results by saturating the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until 
data is found
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SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a 

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can start “n” random walks simultaneously to 

reduce search time
 As few as n=16..64 random walks sufficient to reduce search 

time  (LV et al. 2002)
 Timeout required - need to coordinate stopping network-wide 

walk when data is found…
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SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of 
queries

 Nodes maintain lists of preferred neighbors which often 
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops
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SEARCHING FOR DATA - 3
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 Problem:
Adhoc system search performance does not scale well as 
system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage 
nodes

 Weak peer – Store data
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HIERARCHICAL
PEER-TO-PEER NETWORKS

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements 

must be met to become 
a super peer?
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HIERARCHICAL 
PEER-TO-PEER NETWORKS - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Adhoc peer-to-peer devices connect to the internet through an 

edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to 

execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge
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HYBRID 
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the 

cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud  in the sky   
 compute/resource capacity is huge, but far away…

 Fog  (devices) on the ground   
 compute/resource capacity is constrained and local…
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HYBRID 
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a file host to 
be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 
known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 
participates to reserve downloaded content or network 
bandwidth is  reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 
SYSTEM EXAMPLE
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QUESTIONS
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