
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/16

 Homework 0 – networking review

 Chapter 2.1: Architectural Styles

 Class Activity 2 – Rearchitecting Distributed Systems

 Chapter 2.2: Middleware organization

 Research directions overview

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

1

2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.2

 Please classify your perspective on material covered in today’s
class (19 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.05

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.24

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

MATERIAL / PACE

Stateful vs. Stateless Server Designs
STATEFUL: server maintains
client-specific state
 Requests from specific

cl ients routed to specific
servers holding state

 Keeping state information at
server reduces size of
messages, allows server to
respond more quickly:
client data already at server

 Cached client data provides
speedup

 Less scalable
 Less fault tolerant (single

pt. of failure- cl ients limited
to specific server)

STATELESS: Server maintains no
state information regarding
c l ient accesses
 Requests must contain all

required data:
no memory of c l ient

 Better fault tolerance: server
can crash, no state data to
loose

 Where requests are processed
DOES NOT MATTER !

 More flexible load balancing
 Better scalabil ity
 Coding stateless server is

simpler

FEEDBACK FROM 1/16:
WHAT DOES “STATELESS” MEAN?

January 21, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.3

 Should we apply for “starter account” with $100
credits, or normal AWS account with $75 credits?
 Only AWS Educate accounts available via the

GitHub Student Developer pack or AWS Educate
provide ANY credits =(
 These accounts no longer require a credit card!

 A Normal AWS account only has free tier access, and no
credits, but requires a credit card
 These accounts have no service restrictions

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 2

 Haproxy requires network path to all tomcat docker containers
 If haproxy can’t reach server, routing FAILS

 Scenario 1 – Use VM Public IPs

 Configure VM's public IP address and port number in
haproxy.cfg

 Network traffic is routed out to internet and to public IP

 Goes through AWS firewall (e.g. security group)

 When traf fic reaches VM, docker port forwarding rule routes to
container

 Ports need to be opened in AWS security group so traf fic is
allowed to pass from internet to the VM
 E.g. 8081, 8082, 8083, etc.

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

ASSIGNMENT 0 - NETWORKING

5

6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.4

 Scenario 2 - Use VM Private IPs

 Alternate to using VM's public IP

 Network traffic does not need to go out to the internet.
Doesn't leave the VM.

 VM knows its own private IP address (this is observed when
typing ifconfig command)

 Traffic not routed through network gateway

 VM see this traffic as local traf fic.

 Ports probably don’t need to be opened in AWS security group

 Requests never leave VM to go through AWS firewall

 Approach is more efficient as network traffic has fewer
routing hops

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

ASSIGNMENT 0: NETWORKING - 2

 Scenario 3 – Use Docker container IPs

 Use internal Docker container IP addresses

 These IPs are assigned when containers are created

 IPs will vary depending on order of container creation

 Must "shell" into container to check what the IP's are

 Can be done with the following command sequence:

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

ASSIGNMENT 0: NETWORKING - 3

7

8

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.5

$ s u d o d o c k er r u n - p 8 0 8 0 :808 0 - d - - r m t o m ca t 1

5 6 a 8 e 99 64feb9 38fc8e 0bd9 af0 f3a 3483 e3 ca42 fb6a 428 8558 95c 001 8ba b4d 96

$ s u d o d o c k er p s - a
C O N T A I N E R I D I M A G E C O M M A N D C R E A T E D S T A T U S P O R T S N A M E S

5 6 a 8 e 9 9 6 4 f e b t o m c a t 1 " / e n t r y p o i n t _ t o m c a t . … " 2 s e c o n d s a g o U p 2 s e c o n d s 0 . 0 . 0 . 0 : 8 0 8 0 - > 8 0 8 0 / t c p
z e a l o u s _ k a r e

U S E T H I S C O M M A ND TO S H E L L I N S ID E A D O C K ER C O N TA INER O N T H E H O S T

$ s u d o d o c k er ex e c - i t 5 6 a 8 e 9964 fe b b a s h

r o ot@ 56a 8e 996 4fe b :/# a p t u p d a te

H i t :1 h t t p :// a rch ive .ubunt u .co m /ubunt u b i o n ic In Re l e as e

. . . O u t put t r u nca ted fo r b r ev i ty

r o o t@ 56a 8e 996 4fe b :/# a p t i n s t a l l n e t - to o l s

T h e fo l lowin g N E W p a c k a ges w i l l b e i n s t a l le d :

n e t - too ls

. . . O u t put t r u nca ted fo r b r ev i ty

C H E C K T H E D O C K ER C O N TA INER 'S I N T ER N AL I P A D D R ESS

r o ot@ 56a 8e 996 4fe b :/# i f co n f ig

e t h 0 : f l a g s=4163<U P,BROAD C AST,RUNN IN G,MU LTIC AS T> m t u 1 5 0 0

i n et 17 2 .17. 0 . 2 n e t ma s k 2 5 5 . 255 .0 .0 b ro a dca st 17 2 . 17.2 55 .255

e t he r 0 2 : 4 2 :a c :11: 0 0 :02 t xque ue len 0 (E t h e rnet)

R X p a c k et s 9 5 by te s 2 0 21 96 (2 0 2.1 K B)

R X e r r o r s 0 d ro ppe d 0 ov er r uns 0 f r am e 0

T X p a c ket s 9 2 by tes 71 1 1 (7. 1 K B)

T X e r r o r s 0 d rop ped 0 ov e r run s 0 c a rr ie r 0 c o l l i s ion s 0

 "ifconfig" command run inside container provides internal
IP address

 Command can be installed via the "net-tools" package

 Installation can be added to the Dockerfile

 Drawback to using container IP is that all containers must
reside on the same VM (host)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

ASSIGNMENT 0: NETWORKING - 4

9

10

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.6

 NETWORK IP PERFORMANCE TESTING

 Possible to use "ping" to show how routing via public IP is
slower than a private IP or localhost address

 Need to open all ICMP rules in security group
 Pings to the public IP appear about 5x slower

 DO NOT route Amazon VM to VM network traffic using
public IPs
 DATA egress charges apply:
 First GB outbound transfer is free
 9 cent/GB transfer for next 9.999 TB

 Example: network performance testing with iPerf

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

ASSIGNMENT 0: NETWORKING - 5

P I N G F R O M E C 2 V M T O E C 2 V M P U B L I C I P
$ p i n g 1 8 . 217. 177. 3
P I N G 1 8 . 217.177. 3 (1 8 . 217. 177. 3) 5 6 (8 4) b y t e s o f d a t a .
6 4 b y t e s f r o m 1 8 . 217.177. 3 : i c m p_ s e q =1 t t l = 6 3 t i m e = 0. 147 m s
6 4 b y t e s f r o m 1 8 . 217.177. 3 : i c m p_ s e q =2 t t l = 6 3 t i m e = 0. 1 51 m s
6 4 b y t e s f r o m 1 8 . 217.177. 3 : i c m p_ s e q =3 t t l = 6 3 t i m e = 0. 1 55 m s
6 4 b y t e s f r o m 1 8 . 217.177. 3 : i c m p_ s e q =4 t t l = 6 3 t i m e = 0. 14 5 m s
- - - 1 8 . 217.177. 3 p i n g s t a t i s t i cs - - -
4 p a c ke ts t r a n s m i t te d , 4 r e c e i v e d , 0 % p a c ke t l o s s , t i m e 3 0 57 m s
r t t m i n / av g / m a x / m d e v = 0 . 1 45 / 0 .1 49 / 0 . 1 55 / 0 .01 2 m s

P I N G F R O M E C 2 V M T O L O C A L HO S T
u b u nt u@ i p - 17 2 - 31 - 14 - 19 4 : ~/ d o cke r _ to m ca t$ p i n g l o c a l h os t
P I N G l o ca l h o s t (1 27. 0 . 0 . 1) 5 6 (8 4) b y t e s o f d a t a .
6 4 b y t e s f r o m l o ca l h o s t (1 27. 0 . 0 . 1) : i c m p _ se q = 1 t t l = 6 4 t i m e = 0 . 0 27 m s
6 4 b y t e s f r o m l o ca l h o s t (1 27. 0 . 0 . 1) : i c m p _ se q = 2 t t l = 6 4 t i m e = 0 . 0 39 m s
6 4 b y t e s f r o m l o ca l h o s t (1 27. 0 . 0 . 1) : i c m p _ se q = 3 t t l = 6 4 t i m e = 0 . 0 37 m s
6 4 b y t e s f r o m l o ca l h o s t (1 27. 0 . 0 . 1) : i c m p _ se q = 4 t t l = 6 4 t i m e = 0 . 0 36 m s
- - - l o ca l ho st p i n g s t a t i s t i c s - - -
4 p a c ke ts t r a n s m i t te d , 4 r e c e i v e d , 0 % p a c ke t l o s s , t i m e 3 0 6 5 m s
r t t m i n / av g / m a x / m d e v = 0 . 0 27 / 0 . 03 4 /0 . 0 39 / 0. 0 0 8 m s

P I N G F R O M E C 2 V M T O E C 2 V M P R I VAT E I P
u b u nt u@ i p - 17 2 - 31 - 14 - 19 4 : ~/ d o cke r _ to m ca t$ p i n g 17 2 . 31 . 14 .1 9 4
P I N G 17 2 . 31 .1 4 . 1 94 (17 2 . 31 . 14 .1 9 4) 5 6 (8 4) b y te s o f d a t a .
6 4 b y t e s f r o m 17 2 . 31 .1 4. 1 94 : i c m p _ s e q = 1 t t l = 6 4 t i m e = 0 . 031 m s
6 4 b y t e s f r o m 17 2 . 31 .1 4. 1 94 : i c m p _ s e q = 2 t t l = 6 4 t i m e = 0 . 03 3 m s
6 4 b y t e s f r o m 17 2 . 31 .1 4. 1 94 : i c m p _ s e q = 3 t t l = 6 4 t i m e = 0 . 03 2 m s
6 4 b y t e s f r o m 17 2 . 31 .1 4. 1 94 : i c m p _ s e q = 4 t t l = 6 4 t i m e = 0 . 03 4 m s

P I N G F R O M E C 2 V M T O C O N TA I N E R I N T E R NA L I P O N E C 2 V M
$ p i n g 17 2 . 17. 0 . 2
P I N G 17 2 .17. 0 . 2 (17 2 . 17. 0 . 2) 5 6 (8 4) b y t e s o f d a t a .
6 4 b y t e s f r o m 17 2 .17. 0 . 2 : i c m p _ s e q = 1 t t l = 6 4 t i m e = 0 . 0 42 m s
6 4 b y t e s f r o m 17 2 .17. 0 . 2 : i c m p _ s e q = 2 t t l = 6 4 t i m e = 0 . 0 38 m s
6 4 b y t e s f r o m 17 2 .17. 0 . 2 : i c m p _ s e q = 3 t t l = 6 4 t i m e = 0 . 0 39 m s
6 4 b y t e s f r o m 17 2 .17. 0 . 2 : i c m p _ s e q = 4 t t l = 6 4 t i m e = 0 . 0 40 m s

11

12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.7

 Helpful Tool - -> telnet
 "telnet" command provides tool that can test the

connectivity to any IP address / port

 Command is already part of Linux, but needs to be
installed in a Docker container

apt install telnet

 Command to test if container can access IP / port
telnet 172.17.0.2 8080

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

ASSIGNMENT 0: NETWORKING - 6

 When there is a network path, telnet establishs an interactive
connection:

telnet 172.17.0.2 8080

Trying 172.17.0.2...

Connected to 172.17.0.2.

Escape character is '^]’.

 CAN escape by typing CTRL - right bracket ("] ")

 When no network path exists, telnet simply hangs forever

 Can be kil led using key-sequence, CTRL-C (to cancel)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

ASSIGNMENT 0: NETWORKING - 7

13

14

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.8

CH. 2.1:
ARCHITECTURAL

STYLES

L5.15

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.16

ARCHITECTURAL STYLES

15

16

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.9

 Consider how architectural style may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.17

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

ARCHITECTURAL STYLES

17

18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.10

 Motivation:
 Increasing number of services available online
 Each with specific protocol(s), methods of interfacing
 Connecting services w/ different TCP/IP protocols
 integration nightmare
 Need for specialized client for each service that speaks the

application protocol “language”…

 Need standardization of inter faces
 Make services/components more pluggable
 Easier to adopt and

integrate
 Common

architecture

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

REST SERVICES

19

20

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.11

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

POST Modify a resource by transferring a new state (C)reate

GET Retrieve state of a resource in some format (R)ead

PUT Create a new resource (U)pdate

DELETE Delete a resource (D)elete

21

22

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.12

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

REST - 2

23

24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.13

L5.25

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

L5.26

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{

"name": "latitude",
"value":47.2529

},
{

"name": "longitude",
"value":-122.4443

}
]

}

25

26

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.14

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.28

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Publish and subscribe architectures

27

28

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.15

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.29

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.30

PUBLISH SUBSCRIBE ARCHITECTURES - 3

29

30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.16

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
ARCHITECTURAL

STYLES

L5.32

31

32

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.17

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.33

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

CH 2.2: MIDDLEWARE
ORGANIZATION

January 21, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.34

33

34

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.18

Relies on two important design patterns:

Wrappers

 Interceptors

Both help achieve the goal of openness

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

MIDDLEWARE ORGANIZATION

 Wrappers (also called adapters)
 WHY?: Interfaces available from legacy software may not be

sufficient for all new applications to use
 WHAT: Special “frontend” components that provide interfaces for

clients
 Interface wrappers transform client requests to “implementation”

(i.e. legacy software) at the component-level
 Can then provide modern service interfaces for legacy code/systems
 Components encapsulate (i.e. abstract) dependencies to meet all

preconditions to operate and host legacy code
 Interfaces parameterize legacy functions, abstract environment

configuration (i.e. make into black box)

 Contributes towards system OPENNESS
 Example: Amazon S3: S3 HTTP REST interface
 GET/PUT/DELETE/POST: requests handed off for fulfi llment

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.36

MIDDLEWARE: WRAPPERS

35

36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.19

 Inter-application communication
 Applications may provide unique interface for

every client application

 Scalability suffers
 N applications O(N2) wrappers

 ALTERNATE: Use a Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.37

MIDDLEWARE: WRAPPERS - 2

clients

 Interceptor

Software construct, breaks flow of control, allows
other application code to be executed

 Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting
the distribution and/or replication
 Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B
 Interceptors route calls to object B regardless of location
January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L5.38

MIDDLEWARE: INTERCEPTORS

37

38

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.20

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.39

MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.40

MIDDLEWARE INTERCEPTION - METHOD

39

40

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.21

 It should be possible to modify middleware without loss of
availabil ity

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiabil ity at runtime ?

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

MODIFIABLE MIDDLEWARE

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.42

41

42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.22

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.43

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

QUESTIONS

January 21, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.44

43

44

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.23

EXTRA SLIDES

45

45

