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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/16

 Homework 0 – networking review

 Chapter 2.1: Architectural Styles

 Class Activity 2 – Rearchitecting Distributed Systems

 Chapter 2.2: Middleware organization

 Research directions overview
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OBJECTIVES

 Please classify your perspective on material covered in today’s 
class (19 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.05

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.24
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MATERIAL / PACE

Stateful vs. Stateless Server Designs
STATEFUL: server maintains 
client-specific state
 Requests from specific 

clients routed to specific 
servers holding state

 Keeping state information at 
server reduces size of 
messages, allows server to 
respond more quickly: 
cl ient data already at server

 Cached client data provides 
speedup

 Less scalable
 Less fault tolerant (single 

pt. of failure- clients limited 
to specific server)

STATELESS: Server maintains no 
state information regarding 
cl ient accesses
 Requests must contain all 

required data: 
no memory of  c l ient

 Better fault tolerance: server 
can crash, no  state data to  
loose

 Where requests are processed 
DOES NOT MATTER !

 More flexible load balancing
 Better scalabil ity
 Coding stateless server is 

simpler

FEEDBACK FROM 1/16:
WHAT DOES “STATELESS” MEAN?
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 Should we apply for “starter account” with $100 
credits, or normal AWS account with $75 credits?
 Only AWS Educate accounts available via the 

GitHub Student Developer pack or AWS Educate 
provide ANY credits  =(
 These accounts no longer require a credit card!

 A Normal AWS account only has free tier access, and no 
credits, but requires a credit card
 These accounts have no service restrictions
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FEEDBACK - 2

 Haproxy requires network path to all tomcat docker containers 
 If haproxy can’t reach server, routing FAILS

 Scenario 1 – Use VM Public IPs

 Configure VM's public IP address and port number in 
haproxy.cfg

 Network traffic is routed out to internet and to public IP

 Goes through AWS firewall (e.g. security group)

 When traffic reaches VM, docker port forwarding rule routes to 
container

 Ports need to be opened in AWS security group so traffic is 
allowed to pass from internet to the VM
 E.g. 8081, 8082, 8083, etc.
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ASSIGNMENT 0 - NETWORKING
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 Scenario 2 - Use VM Private IPs

 Alternate to using VM's public IP

 Network traffic does not need to go out to the internet.  
Doesn't leave the VM.

 VM knows its own private IP address (this is observed when 
typing ifconfig command)

 Traffic not routed through network gateway 

 VM see this traffic as local traffic.

 Ports probably don’t need to be opened in AWS security group

 Requests never leave VM to go through AWS firewall

 Approach is more efficient as network traffic has fewer 
routing hops
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ASSIGNMENT 0: NETWORKING - 2

 Scenario 3 – Use Docker container IPs

 Use internal Docker container IP addresses

 These IPs are assigned when containers are created

 IPs will vary depending on order of container creation

 Must "shell" into container to check what the IP's are

 Can be done with the following command sequence:
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ASSIGNMENT 0: NETWORKING - 3

$  s u d o d o c ke r  r u n  - p  8 0 8 0: 8080  - d  - - r m  t o m c a t1

5 6 a 8 e 9964fe b93 8fc 8e 0bd 9af0 f3a3483e3ca 42fb6a42 8855895c001 8bab 4d96

$  s u d o d o c ke r  p s - a
C O N T A I N E R  I D         I M A G E                C O M M A N D                   C R E A T E D              S T A T U S               P O R T S                N A M E S

5 6 a 8 e 9 9 6 4 f e b         t o m c a t 1              " / e n t r y p o i n t _ t o m c a t . … "    2  s e c o n d s  a g o        U p  2  s e c o n d s         0 . 0 . 0 . 0 : 8 0 8 0 - > 8 0 8 0 / t c p
z e a l o u s _ k a r e

#  U S E  T H I S  C O M MA ND T O  S H E LL  I N S I DE A  D O C KER C O N TA INER  O N  T H E  H O S T

$  s u d o d o c ke r  e x ec - i t  5 6 a 8e9 964fe b b a s h

r o o t@56a 8e 9964fe b: /#  a p t  u p d a te

H i t :1  h t t p: //a rc h ive .ubu ntu.com /u bun tu  b i o n ic  I n R e le a se

.  .  .  O u t p ut  t r u n cated f o r  b r e v i t y

r o o t@56a 8e 9964fe b: /#  a p t  i n s t a l l  n e t - too ls

T h e  f o l lowi ng  N E W  p a c k age s  w i l l  b e  i n s t a l led :

n et - too ls

.  .  .  O u t p ut  t r u n cated f o r  b r e v i t y

#  C H EC K  T H E  D O C KER C O N TA I NER'S  I N T E RNA L  I P  A D D RE SS

r o o t@56a 8e 9964fe b: /#  i f c onf ig

e t h 0 :  f l a gs=4163<UP,B ROA DC AS T,RUNNI NG,MU LTIC AS T>  m tu 1 5 0 0

i n e t 17 2 .17.0 .2   n etm a sk  2 5 5 .255 .0 .0   b roa dca st  17 2 . 17.255. 255

e the r  0 2 : 42 :ac :11: 00 :02  t xque u e len 0   ( E th e rnet )

R X p a c ke ts  9 5   b yt es  2 0 2196 ( 2 0 2.1  K B )

R X e r r o r s  0   d r oppe d  0   o verrun s 0   f r am e  0

T X  p a c k ets  9 2   b y te s  71 1 1 ( 7. 1  K B )

T X  e r r or s  0   d rop pe d 0  o v e rrun s 0   c a r r ie r  0   c o l l i s ions  0

 "ifconfig" command run inside container provides internal 
IP address

 Command can be installed via the "net-tools" package

 Installation can be added to the Dockerfile

 Drawback to using container IP is that all containers must 
reside on the same VM (host)
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ASSIGNMENT 0: NETWORKING - 4

 NETWORK IP PERFORMANCE TESTING 

 Possible to use "ping" to show how routing via public IP is 
slower than a private IP or localhost address

 Need to open all ICMP rules in security group
 Pings to the public IP appear about 5x slower

 DO NOT route Amazon VM to VM network traffic using 
public IPs
 DATA egress charges apply: 
 First GB outbound transfer is free
 9 cent/GB transfer for next 9.999 TB

 Example: network performance testing with iPerf
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ASSIGNMENT 0: NETWORKING - 5

#  P I N G  F R O M  E C 2  V M  T O  E C 2  V M  P U B L IC  I P
$  p i n g  1 8 . 217.177. 3
P I N G 1 8 . 217.177.3  ( 1 8 . 217.177.3 )  5 6 (8 4 )  b y t e s  o f  d a t a .
6 4  b y te s  f r o m  1 8 . 217.177.3 :  i c m p_se q= 1 t t l = 63  t i m e = 0. 147  m s
6 4  b y te s  f r o m  1 8 . 217.177.3 :  i c m p_se q= 2 t t l = 63  t i m e = 0. 151  m s
6 4  b y te s  f r o m  1 8 . 217.177.3 :  i c m p_se q= 3 t t l = 63  t i m e = 0. 155 m s
6 4  b y te s  f r o m  1 8 . 217.177.3 :  i c m p_se q= 4 t t l = 63  t i m e = 0. 145 m s
- - - 1 8 . 217. 177. 3 p i ng  s t a t i st i c s  - - -
4  p a c k ets  t r a nsm it te d ,  4  r e ce iv e d ,  0 %  p a ck e t  l o s s ,  t i m e  3 0 57m s
r t t m i n/av g/m ax/m dev =  0 . 1 45 /0 .1 49 /0. 15 5/0 . 01 2 m s

#  P I N G  F R O M  E C 2  V M  T O  L O C ALHO ST
u b u ntu@ i p -17 2- 31 - 14 -1 94 :~ /doc ke r_ tomc at$  p i ng  l o c alho st
P I N G l o c al host  ( 1 2 7. 0. 0. 1)  5 6 (8 4)  b y te s  o f  d a t a .
6 4  b y te s  f r o m  l o ca l ho st  ( 1 2 7. 0. 0. 1) :  i c m p_se q=1  t t l = 64  t i m e = 0. 027  m s
6 4  b y te s  f r o m  l o ca l ho st  ( 1 2 7. 0. 0. 1) :  i c m p_se q=2  t t l = 64  t i m e = 0. 039 m s
6 4  b y te s  f r o m  l o ca l ho st  ( 1 2 7. 0. 0. 1) :  i c m p_se q=3  t t l = 64  t i m e = 0. 037  m s
6 4  b y te s  f r o m  l o ca l ho st  ( 1 2 7. 0. 0. 1) :  i c m p_se q=4  t t l = 64  t i m e = 0. 036 m s
- - - l o c a lho st  p i ng  s t a t i st i cs  - - -
4  p a c k ets  t r a nsm it te d ,  4  r e ce iv e d ,  0 %  p a ck e t  l o s s ,  t i m e  3 0 6 5 m s
r t t m i n/av g/m ax/m dev =  0 . 0 27/0 . 03 4/0 . 03 9/0 . 00 8 m s

#  P I N G  F R O M  E C 2  V M  T O  E C 2  V M  P R I VATE  I P
u b u ntu@ i p -17 2- 31 - 14 -1 94 :~ /doc ke r_ tomc at$  p i ng  172 . 31 .1 4. 19 4
P I N G 17 2 . 31 .14 .1 94  ( 17 2 . 31 .14 .19 4)  5 6 ( 84)  b y te s  o f  d a t a .
6 4  b y te s  f r o m  17 2 . 31 . 14 .1 94 :  i c m p_se q=1 t t l = 64 t i m e = 0. 031  m s
6 4  b y te s  f r o m  17 2 . 31 . 14 .1 94 :  i c m p_se q=2 t t l = 64 t i m e = 0. 033  m s
6 4  b y te s  f r o m  17 2 . 31 . 14 .1 94 :  i c m p_se q=3 t t l = 64 t i m e = 0. 032  m s
6 4  b y te s  f r o m  17 2 . 31 . 14 .1 94 :  i c m p_se q=4 t t l = 64 t i m e = 0. 034  m s

#  P I N G  F R O M  E C 2  V M  T O  C O N TAI N ER I N TER NAL  I P  O N  E C 2  V M
$  p i n g  17 2 . 17. 0. 2
P I N G 17 2 . 17. 0. 2 ( 17 2 . 17. 0 .2 )  5 6 (84 )  b y te s  o f  d a t a .
6 4  b y te s  f r o m  17 2 .17. 0. 2:  i c m p_s eq=1  t t l = 64 t i m e =0 .042  m s
6 4  b y te s  f r o m  17 2 .17. 0. 2:  i c m p_s eq=2  t t l = 64 t i m e =0 .038  m s
6 4  b y te s  f r o m  17 2 .17. 0. 2:  i c m p_s eq=3  t t l = 64 t i m e =0 .039  m s
6 4  b y te s  f r o m  17 2 .17. 0. 2:  i c m p_s eq=4  t t l = 64 t i m e =0 .040  m s
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 Helpful Tool - -> telnet
 "telnet" command provides tool that can test the 

connectivity to any IP address / port

 Command is already part of Linux, but needs to be 
installed in a Docker container

# apt install telnet

 Command to test if container can access IP / port
# telnet 172.17.0.2 8080
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ASSIGNMENT 0: NETWORKING - 6

 When there is a network path, telnet establishs an interactive 
connection:

# telnet 172.17.0.2 8080  

Trying 172.17.0.2...

Connected to 172.17.0.2.

Escape character is '^]’.

 CAN escape by typing CTRL - right bracket    (" ] ")

 When no network path exists, telnet simply hangs forever

 Can be killed using key-sequence, CTRL-C  (to cancel)
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ASSIGNMENT 0: NETWORKING - 7

CH. 2.1: 
ARCHITECTURAL

STYLES

L5.15

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Consider how architectural style may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 
TO CONSIDER

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

ARCHITECTURAL STYLES
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 Motivation:
 Increasing number of services available online
 Each with specific protocol(s), methods of interfacing
 Connecting services w/ different TCP/IP protocols 
 integration nightmare
 Need for specialized client for each service that speaks the 

application protocol “language”…

 Need standardization of interfaces
 Make services/components more pluggable
 Easier to adopt and

integrate 
 Common 

architecture

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP 

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution
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REST SERVICES

 An ASCII-based request/reply protocol for transferring 
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body
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HYPERTEXT TRANSPORT PROTOCOL (HTTP)
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REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

POST Modify a resource by transferring a new state (C)reate

GET Retrieve state of a resource in some format (R)ead

PUT Create a new resource (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing 
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations 
(SDK for Python)

 SDKs for other languages
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EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined 
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text, 
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

REST - 2
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// WSDL Service Definition 
<?xml version="1.0" encoding="UTF-8"?> 
<definitions  name ="DayOfWeek"  
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.xmlsoap.org/wsdl/">  
<message name="DayOfWeekInput"> 
<part name="date" type="xsd:date"/> 

</message> 
<message name="DayOfWeekResponse"> 
<part name="dayOfWeek" type="xsd:string"/> 

</message> 
<portType name="DayOfWeekPortType"> 
<operation name="GetDayOfWeek"> 
<input message="tns:DayOfWeekInput"/> 
<output message="tns:DayOfWeekResponse"/> 

</operation> 
</portType> 
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType"> 
<soap:binding style="document"  
transport="http://schemas.xmlsoap.org/soap/http"/> 

<operation name="GetDayOfWeek"> 
<soap:operation soapAction="getdayofweek"/> 
<input> 
<soap:body use="encoded"  
namespace="http://www.roguewave.com/soapworx/examples"  
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</input> 
<output> 
<soap:body use="encoded"  
namespace="http://www.roguewave.com/soapworx/examples"   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</output> 
</operation> 

</binding> 
<service name="DayOfWeekService" > 
<documentation> 
Returns the day-of-week name for a given date 

</documentation> 
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding"> 
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/> 

</port> 
</service> 

</definitions> 

L5.26

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:
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PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled 
(dependent on name)

Direct
Explicit synchronous 
service call

Mailbox
Asynchronous by 
name (address)

Referentially 
decoupled
(name not required)

Event-based
Event notices 
published to shared 
bus, w/o addressing

Shared data space
Processes write tuples 
to a shared data 
space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know 
about each other explicitly

 Processes:

Publish: a notification 
describing an event

Subscribe: to receive 
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus
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PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples 

(subscribe)

 When tuples are added, 
subscribers are notified of 
matches

 Key characteristic: 
Processes have no explicit 
reference to each other
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PUBLISH SUBSCRIBE ARCHITECTURES - 3
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 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil  
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of  a publish-and-
subscribe system?
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PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
ARCHITECTURAL 

STYLES

L5.32

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 
TO CONSIDER

CH 2.2: MIDDLEWARE
ORGANIZATION
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Relies on two important design patterns:

Wrappers

 Interceptors

Both help achieve the goal of openness
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MIDDLEWARE ORGANIZATION

 Wrappers (also called adapters)
 WHY?: Interfaces available from legacy software may not be 

sufficient for all new applications to use
 WHAT: Special “frontend” components that provide interfaces for 

clients
 Interface wrappers transform client requests to “implementation”

(i.e. legacy software) at the component-level
 Can then provide modern service interfaces for legacy code/systems
 Components encapsulate (i.e. abstract) dependencies to meet all 

preconditions to operate and host legacy code
 Interfaces parameterize legacy functions, abstract environment 

configuration (i.e. make into black box)

 Contributes towards system OPENNESS
 Example: Amazon S3: S3 HTTP REST interface
 GET/PUT/DELETE/POST: requests handed off for fulfillment
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MIDDLEWARE: WRAPPERS
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 Inter-application communication
 Applications may provide unique interface for

every client application

 Scalability suffers
 N applications  O(N2) wrappers

 ALTERNATE: Use a Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate 
with the broker
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clients
 Interceptor

Software construct, breaks flow of control, allows 
other application code to be executed

 Interceptors send calls to other servers, or to ALL 
servers that replicate an object while abstracting 
the distribution and/or replication
 Used to enable remote procedure calls (RPC), remote 

method invocation (RMI)

Object A calls method belonging to object B
 Interceptors route calls to object B regardless of location
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MIDDLEWARE: INTERCEPTORS

Request-level 
interceptor 
transforms: 
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level 
interceptor in 
middleware 
sends message 
through OS 
(TCP/IP socket) 
to transfer data: 
send(B,”doit”,val)

Non-intercepted:
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If object is local

 MIDDLEWARE: Provides local interface matching Object B to 
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by 
request-level interceptor

 “Generic object invocation” is transformed into a message by 
message-level interceptor and sent over Object A’s network to 
Object B

 Interception automatically routes calls to all object replicas
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 It should be possible to modify middleware without loss of 
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime 
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support 
modifiability at runtime ?
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MODIFIABLE MIDDLEWARE

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.42

37 38

39 40

41 42



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.8

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.
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CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP QUESTIONS
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