
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/16

 Homework 0 – networking review

 Chapter 2.1: Architectural Styles

 Class Activity 2 – Rearchitecting Distributed Systems

 Chapter 2.2: Middleware organization

 Research directions overview

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

 Please classify your perspective on material covered in today’s
class (19 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.05

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.24

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

MATERIAL / PACE

Stateful vs. Stateless Server Designs
STATEFUL: server maintains
client-specific state
 Requests from specific

clients routed to specific
servers holding state

 Keeping state information at
server reduces size of
messages, allows server to
respond more quickly:
cl ient data already at server

 Cached client data provides
speedup

 Less scalable
 Less fault tolerant (single

pt. of failure- clients limited
to specific server)

STATELESS: Server maintains no
state information regarding
cl ient accesses
 Requests must contain all

required data:
no memory of c l ient

 Better fault tolerance: server
can crash, no state data to
loose

 Where requests are processed
DOES NOT MATTER !

 More flexible load balancing
 Better scalabil ity
 Coding stateless server is

simpler

FEEDBACK FROM 1/16:
WHAT DOES “STATELESS” MEAN?

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.4

 Should we apply for “starter account” with $100
credits, or normal AWS account with $75 credits?
 Only AWS Educate accounts available via the

GitHub Student Developer pack or AWS Educate
provide ANY credits =(
 These accounts no longer require a credit card!

 A Normal AWS account only has free tier access, and no
credits, but requires a credit card
 These accounts have no service restrictions

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 2

 Haproxy requires network path to all tomcat docker containers
 If haproxy can’t reach server, routing FAILS

 Scenario 1 – Use VM Public IPs

 Configure VM's public IP address and port number in
haproxy.cfg

 Network traffic is routed out to internet and to public IP

 Goes through AWS firewall (e.g. security group)

 When traffic reaches VM, docker port forwarding rule routes to
container

 Ports need to be opened in AWS security group so traffic is
allowed to pass from internet to the VM
 E.g. 8081, 8082, 8083, etc.

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

ASSIGNMENT 0 - NETWORKING

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.2

 Scenario 2 - Use VM Private IPs

 Alternate to using VM's public IP

 Network traffic does not need to go out to the internet.
Doesn't leave the VM.

 VM knows its own private IP address (this is observed when
typing ifconfig command)

 Traffic not routed through network gateway

 VM see this traffic as local traffic.

 Ports probably don’t need to be opened in AWS security group

 Requests never leave VM to go through AWS firewall

 Approach is more efficient as network traffic has fewer
routing hops

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

ASSIGNMENT 0: NETWORKING - 2

 Scenario 3 – Use Docker container IPs

 Use internal Docker container IP addresses

 These IPs are assigned when containers are created

 IPs will vary depending on order of container creation

 Must "shell" into container to check what the IP's are

 Can be done with the following command sequence:

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

ASSIGNMENT 0: NETWORKING - 3

$ s u d o d o c ke r r u n - p 8 0 8 0: 8080 - d - - r m t o m c a t1

5 6 a 8 e 9964fe b93 8fc 8e 0bd 9af0 f3a3483e3ca 42fb6a42 8855895c001 8bab 4d96

$ s u d o d o c ke r p s - a
C O N T A I N E R I D I M A G E C O M M A N D C R E A T E D S T A T U S P O R T S N A M E S

5 6 a 8 e 9 9 6 4 f e b t o m c a t 1 " / e n t r y p o i n t _ t o m c a t . … " 2 s e c o n d s a g o U p 2 s e c o n d s 0 . 0 . 0 . 0 : 8 0 8 0 - > 8 0 8 0 / t c p
z e a l o u s _ k a r e

U S E T H I S C O M MA ND T O S H E LL I N S I DE A D O C KER C O N TA INER O N T H E H O S T

$ s u d o d o c ke r e x ec - i t 5 6 a 8e9 964fe b b a s h

r o o t@56a 8e 9964fe b: /# a p t u p d a te

H i t :1 h t t p: //a rc h ive .ubu ntu.com /u bun tu b i o n ic I n R e le a se

. . . O u t p ut t r u n cated f o r b r e v i t y

r o o t@56a 8e 9964fe b: /# a p t i n s t a l l n e t - too ls

T h e f o l lowi ng N E W p a c k age s w i l l b e i n s t a l led :

n et - too ls

. . . O u t p ut t r u n cated f o r b r e v i t y

C H EC K T H E D O C KER C O N TA I NER'S I N T E RNA L I P A D D RE SS

r o o t@56a 8e 9964fe b: /# i f c onf ig

e t h 0 : f l a gs=4163<UP,B ROA DC AS T,RUNNI NG,MU LTIC AS T> m tu 1 5 0 0

i n e t 17 2 .17.0 .2 n etm a sk 2 5 5 .255 .0 .0 b roa dca st 17 2 . 17.255. 255

e the r 0 2 : 42 :ac :11: 00 :02 t xque u e len 0 (E th e rnet)

R X p a c ke ts 9 5 b yt es 2 0 2196 (2 0 2.1 K B)

R X e r r o r s 0 d r oppe d 0 o verrun s 0 f r am e 0

T X p a c k ets 9 2 b y te s 71 1 1 (7. 1 K B)

T X e r r or s 0 d rop pe d 0 o v e rrun s 0 c a r r ie r 0 c o l l i s ions 0

 "ifconfig" command run inside container provides internal
IP address

 Command can be installed via the "net-tools" package

 Installation can be added to the Dockerfile

 Drawback to using container IP is that all containers must
reside on the same VM (host)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

ASSIGNMENT 0: NETWORKING - 4

 NETWORK IP PERFORMANCE TESTING

 Possible to use "ping" to show how routing via public IP is
slower than a private IP or localhost address

 Need to open all ICMP rules in security group
 Pings to the public IP appear about 5x slower

 DO NOT route Amazon VM to VM network traffic using
public IPs
 DATA egress charges apply:
 First GB outbound transfer is free
 9 cent/GB transfer for next 9.999 TB

 Example: network performance testing with iPerf

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

ASSIGNMENT 0: NETWORKING - 5

P I N G F R O M E C 2 V M T O E C 2 V M P U B L IC I P
$ p i n g 1 8 . 217.177. 3
P I N G 1 8 . 217.177.3 (1 8 . 217.177.3) 5 6 (8 4) b y t e s o f d a t a .
6 4 b y te s f r o m 1 8 . 217.177.3 : i c m p_se q= 1 t t l = 63 t i m e = 0. 147 m s
6 4 b y te s f r o m 1 8 . 217.177.3 : i c m p_se q= 2 t t l = 63 t i m e = 0. 151 m s
6 4 b y te s f r o m 1 8 . 217.177.3 : i c m p_se q= 3 t t l = 63 t i m e = 0. 155 m s
6 4 b y te s f r o m 1 8 . 217.177.3 : i c m p_se q= 4 t t l = 63 t i m e = 0. 145 m s
- - - 1 8 . 217. 177. 3 p i ng s t a t i st i c s - - -
4 p a c k ets t r a nsm it te d , 4 r e ce iv e d , 0 % p a ck e t l o s s , t i m e 3 0 57m s
r t t m i n/av g/m ax/m dev = 0 . 1 45 /0 .1 49 /0. 15 5/0 . 01 2 m s

P I N G F R O M E C 2 V M T O L O C ALHO ST
u b u ntu@ i p -17 2- 31 - 14 -1 94 :~ /doc ke r_ tomc at$ p i ng l o c alho st
P I N G l o c al host (1 2 7. 0. 0. 1) 5 6 (8 4) b y te s o f d a t a .
6 4 b y te s f r o m l o ca l ho st (1 2 7. 0. 0. 1) : i c m p_se q=1 t t l = 64 t i m e = 0. 027 m s
6 4 b y te s f r o m l o ca l ho st (1 2 7. 0. 0. 1) : i c m p_se q=2 t t l = 64 t i m e = 0. 039 m s
6 4 b y te s f r o m l o ca l ho st (1 2 7. 0. 0. 1) : i c m p_se q=3 t t l = 64 t i m e = 0. 037 m s
6 4 b y te s f r o m l o ca l ho st (1 2 7. 0. 0. 1) : i c m p_se q=4 t t l = 64 t i m e = 0. 036 m s
- - - l o c a lho st p i ng s t a t i st i cs - - -
4 p a c k ets t r a nsm it te d , 4 r e ce iv e d , 0 % p a ck e t l o s s , t i m e 3 0 6 5 m s
r t t m i n/av g/m ax/m dev = 0 . 0 27/0 . 03 4/0 . 03 9/0 . 00 8 m s

P I N G F R O M E C 2 V M T O E C 2 V M P R I VATE I P
u b u ntu@ i p -17 2- 31 - 14 -1 94 :~ /doc ke r_ tomc at$ p i ng 172 . 31 .1 4. 19 4
P I N G 17 2 . 31 .14 .1 94 (17 2 . 31 .14 .19 4) 5 6 (84) b y te s o f d a t a .
6 4 b y te s f r o m 17 2 . 31 . 14 .1 94 : i c m p_se q=1 t t l = 64 t i m e = 0. 031 m s
6 4 b y te s f r o m 17 2 . 31 . 14 .1 94 : i c m p_se q=2 t t l = 64 t i m e = 0. 033 m s
6 4 b y te s f r o m 17 2 . 31 . 14 .1 94 : i c m p_se q=3 t t l = 64 t i m e = 0. 032 m s
6 4 b y te s f r o m 17 2 . 31 . 14 .1 94 : i c m p_se q=4 t t l = 64 t i m e = 0. 034 m s

P I N G F R O M E C 2 V M T O C O N TAI N ER I N TER NAL I P O N E C 2 V M
$ p i n g 17 2 . 17. 0. 2
P I N G 17 2 . 17. 0. 2 (17 2 . 17. 0 .2) 5 6 (84) b y te s o f d a t a .
6 4 b y te s f r o m 17 2 .17. 0. 2: i c m p_s eq=1 t t l = 64 t i m e =0 .042 m s
6 4 b y te s f r o m 17 2 .17. 0. 2: i c m p_s eq=2 t t l = 64 t i m e =0 .038 m s
6 4 b y te s f r o m 17 2 .17. 0. 2: i c m p_s eq=3 t t l = 64 t i m e =0 .039 m s
6 4 b y te s f r o m 17 2 .17. 0. 2: i c m p_s eq=4 t t l = 64 t i m e =0 .040 m s

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.3

 Helpful Tool - -> telnet
 "telnet" command provides tool that can test the

connectivity to any IP address / port

 Command is already part of Linux, but needs to be
installed in a Docker container

apt install telnet

 Command to test if container can access IP / port
telnet 172.17.0.2 8080

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

ASSIGNMENT 0: NETWORKING - 6

 When there is a network path, telnet establishs an interactive
connection:

telnet 172.17.0.2 8080

Trying 172.17.0.2...

Connected to 172.17.0.2.

Escape character is '^]’.

 CAN escape by typing CTRL - right bracket ("] ")

 When no network path exists, telnet simply hangs forever

 Can be killed using key-sequence, CTRL-C (to cancel)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

ASSIGNMENT 0: NETWORKING - 7

CH. 2.1:
ARCHITECTURAL

STYLES

L5.15

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.16

ARCHITECTURAL STYLES

 Consider how architectural style may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.17

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

ARCHITECTURAL STYLES

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.4

 Motivation:
 Increasing number of services available online
 Each with specific protocol(s), methods of interfacing
 Connecting services w/ different TCP/IP protocols
 integration nightmare
 Need for specialized client for each service that speaks the

application protocol “language”…

 Need standardization of interfaces
 Make services/components more pluggable
 Easier to adopt and

integrate
 Common

architecture

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

POST Modify a resource by transferring a new state (C)reate

GET Retrieve state of a resource in some format (R)ead

PUT Create a new resource (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

REST - 2

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.5

L5.25

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

L5.26

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.28

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.29

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.30

PUBLISH SUBSCRIBE ARCHITECTURES - 3

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.6

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
ARCHITECTURAL

STYLES

L5.32

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.33

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

CH 2.2: MIDDLEWARE
ORGANIZATION

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.34

Relies on two important design patterns:

Wrappers

 Interceptors

Both help achieve the goal of openness

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

MIDDLEWARE ORGANIZATION

 Wrappers (also called adapters)
 WHY?: Interfaces available from legacy software may not be

sufficient for all new applications to use
 WHAT: Special “frontend” components that provide interfaces for

clients
 Interface wrappers transform client requests to “implementation”

(i.e. legacy software) at the component-level
 Can then provide modern service interfaces for legacy code/systems
 Components encapsulate (i.e. abstract) dependencies to meet all

preconditions to operate and host legacy code
 Interfaces parameterize legacy functions, abstract environment

configuration (i.e. make into black box)

 Contributes towards system OPENNESS
 Example: Amazon S3: S3 HTTP REST interface
 GET/PUT/DELETE/POST: requests handed off for fulfillment

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.36

MIDDLEWARE: WRAPPERS

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.7

 Inter-application communication
 Applications may provide unique interface for

every client application

 Scalability suffers
 N applications  O(N2) wrappers

 ALTERNATE: Use a Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.37

MIDDLEWARE: WRAPPERS - 2

clients
 Interceptor

Software construct, breaks flow of control, allows
other application code to be executed

 Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting
the distribution and/or replication
 Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B
 Interceptors route calls to object B regardless of location
January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L5.38

MIDDLEWARE: INTERCEPTORS

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.39

MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local interface matching Object B to
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.40

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

MODIFIABLE MIDDLEWARE

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.42

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 21, 2020

Slides by Wes J. Lloyd L5.8

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.43

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP QUESTIONS

January 21, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.44

EXTRA SLIDES

45

43 44

45

