
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/14

 Homework 0

 Chapter 2: Distributed System Architectures

 Research directions
 Serverless Computing
 Containerization
 Infrastructure-as-a-Service
 Others

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES

 Please classify your perspective on material covered in today’s
class (8 respondents, some missing?):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.25

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.5

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

MATERIAL / PACE

 Can ppt be uploaded before class?

Will try to accommodate

 There may be minor changes made after initial posting

 Questions from 1/14?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK FROM 1/14

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

 HPC, Cluster, Grid, Cloud

 Distributed information systems
 Feature transactions (all –or- nothing)
 Feature Application Integration methods:

Shared files, DBs, RPC, RMI, Message-oriented middleware

 Pervasive Systems
 Ubiquitous computing systems
Mobile systems
 Sensor networks

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

TYPES OF DISTRIBUTED SYSTEMS

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.2

 Classify the fo l lowing types of distributed systems:

 Web search engine

 Assisted living home monitoring system for elderly

 Ecommerce websites: e.g. eBay, Amazon

 Wikipedia: online encyclopedia

 Amazon Elastic Compute Cloud (EC2)

 Massively multiplayer online games (MMOG)

 Seismic monitoring network: warning system for earthquakes

 Worldwide Large Hadron Collider (LHC) Computing Grid

 Hospital health informatics and records system

 Canvas: web based learning environment

 Modern automobile with self-driving features

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

EXAMPLES OF DISTRIBUTED SYSTEMS

 Centralized:

 Decentralized:

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

WHAT ARE SOME TRADEOFFS FOR CENTRALIZED VS.
DECENTRALIZED DATA STORAGE?
EXAMPLE: SENSOR NETWORKS

CH. 2.1:
ARCHITECTURAL

STYLES

L4.9

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 The OO/component abstractions
 The “idealists” view of the system

 Physical – how it really exists
 The “realist” view of the system

 Middleware
 Helps separate application from platforms
 Helps organize and assemble distributed components
 Helps components communicate
 Enables system to be extended
 Supports replication within the distributed system
 Provides “realization” of the architecture

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partitioned or replicated

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

 COMPONENT: modular unit with well-defined, required,
and provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 CONNECTOR: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

ARCHITECTURAL BUILDING BLOCKS

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.3

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

ARCHITECTURAL STYLES

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

ARCHITECTURAL STYLES

 Consider how architectural style may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Consider an architecture with 5 layers

 Does a client interacting with “Layer 5” of the
distributed system need to be concerned with
details regarding the implementation of lower
layers (layers 1, 2, 3, 4) ?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

LAYERED ARCHITECTURES - 3

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.4

 Example: pure-layered organization

 Each layer offers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

New services can be built atop of existing
layers to reuse lower level implementation(s)

 Abstractions make it easier to reuse existing layers which
already implement communication basics

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

COMMUNICATION-PROTOCOL STACKS

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

HOW A NETWORK PACKET IS BUILT

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

IP HEADER

 TCP (layer 4) provides easy to use API
 API supports:

 setup, tear down of connection(s)
 sending and receiving of messages

 TCP preserves ordering of transferred data
 TCP detects and corrects lost data

 But TCP is “protocol” agnostic
 A protocol is a language of messages exchanged to enable

communication
 Application layer communication is programming language agnostic
 Code can be written in many programming languages to “speak” the

“language” of a custom protocol known as an
APPLICATION PROTOCOL

 What should the application protocol say?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

COMMON APPLICATION LAYER
PROTOCOLS

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.5

 Distributed application example: Internet search engine

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

ARCHITECTURAL STYLES

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

OBJECT-BASED
ARCHITECTURES - 2

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.6

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

DISTRIBUTED OBJECTS

 A counterintuitive feature is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference …. (does this make sense?)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

DISTRIBUTED OBJECTS - 2

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared
vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

SERVICE ORIENTED ARCHITECTURE - 2

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

ARCHITECTURAL STYLES

 Motivation:
 Increasing number of services available online
 Each with specific protocol(s), methods of interfacing
 Connecting services w/ different TCP/IP protocols
 integration nightmare
 Need for specialized client for each service that speaks the

application protocol “language”…

 Need standardization of interfaces
 Make services/components more pluggable
 Easier to adopt and

integrate
 Common

architecture

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

RESOURCE BASED ARCHITECTURES

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.7

Representational State Transfer (REST)

Built on HTTP

Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

REST - 2

L4.42

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.8

L4.43

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

PUBLISH SUBSCRIBE ARCHITECTURES - 4

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.9

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.49

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.51

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

CH 2.2: MIDDLEWARE
ORGANIZATION

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.53

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for
fulfillment

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

MIDDLEWARE: WRAPPERS

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.10

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.57

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

MODIFIABLE MIDDLEWARE

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.59

MIDDLEWARE: INTERCEPTORS - 2 QUESTIONS

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.60

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.11

EXTRA SLIDES

61

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.62

FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

FEEDBACK - 2

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profiling, Measurement, Cloud System Data

Analytics
 Application performance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

64

RESEARCH DIRECTIONS

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

61 62

63 64

65

