
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/14

 Homework 0

 Chapter 2: Distributed System Architectures

 Research directions
 Serverless Computing
 Containerization
 Infrastructure-as-a-Service
 Others

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES

 Please classify your perspective on material covered in today’s
class (8 respondents, some missing?):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.25

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.5

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

MATERIAL / PACE

 Can ppt be uploaded before class?

Will try to accommodate

 There may be minor changes made after initial posting

 Questions from 1/14?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK FROM 1/14

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

 HPC, Cluster, Grid, Cloud

 Distributed information systems
 Feature transactions (all –or- nothing)
 Feature Application Integration methods:

Shared files, DBs, RPC, RMI, Message-oriented middleware

 Pervasive Systems
 Ubiquitous computing systems
Mobile systems
 Sensor networks

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

TYPES OF DISTRIBUTED SYSTEMS

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.2

 Classify the fo l lowing types of distributed systems:

 Web search engine

 Assisted living home monitoring system for elderly

 Ecommerce websites: e.g. eBay, Amazon

 Wikipedia: online encyclopedia

 Amazon Elastic Compute Cloud (EC2)

 Massively multiplayer online games (MMOG)

 Seismic monitoring network: warning system for earthquakes

 Worldwide Large Hadron Collider (LHC) Computing Grid

 Hospital health informatics and records system

 Canvas: web based learning environment

 Modern automobile with self-driving features

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

EXAMPLES OF DISTRIBUTED SYSTEMS

 Centralized:

 Decentralized:

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

WHAT ARE SOME TRADEOFFS FOR CENTRALIZED VS.
DECENTRALIZED DATA STORAGE?
EXAMPLE: SENSOR NETWORKS

CH. 2.1:
ARCHITECTURAL

STYLES

L4.9

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 The OO/component abstractions
 The “idealists” view of the system

 Physical – how it really exists
 The “realist” view of the system

 Middleware
 Helps separate application from platforms
 Helps organize and assemble distributed components
 Helps components communicate
 Enables system to be extended
 Supports replication within the distributed system
 Provides “realization” of the architecture

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partitioned or replicated

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

 COMPONENT: modular unit with well-defined, required,
and provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 CONNECTOR: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

ARCHITECTURAL BUILDING BLOCKS

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.3

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

ARCHITECTURAL STYLES

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

ARCHITECTURAL STYLES

 Consider how architectural style may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Consider an architecture with 5 layers

 Does a client interacting with “Layer 5” of the
distributed system need to be concerned with
details regarding the implementation of lower
layers (layers 1, 2, 3, 4) ?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

LAYERED ARCHITECTURES - 3

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.4

 Example: pure-layered organization

 Each layer offers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

New services can be built atop of existing
layers to reuse lower level implementation(s)

 Abstractions make it easier to reuse existing layers which
already implement communication basics

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

COMMUNICATION-PROTOCOL STACKS

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

HOW A NETWORK PACKET IS BUILT

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

IP HEADER

 TCP (layer 4) provides easy to use API
 API supports:

 setup, tear down of connection(s)
 sending and receiving of messages

 TCP preserves ordering of transferred data
 TCP detects and corrects lost data

 But TCP is “protocol” agnostic
 A protocol is a language of messages exchanged to enable

communication
 Application layer communication is programming language agnostic
 Code can be written in many programming languages to “speak” the

“language” of a custom protocol known as an
APPLICATION PROTOCOL

 What should the application protocol say?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

COMMON APPLICATION LAYER
PROTOCOLS

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.5

 Distributed application example: Internet search engine

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

ARCHITECTURAL STYLES

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

OBJECT-BASED
ARCHITECTURES - 2

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.6

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

DISTRIBUTED OBJECTS

 A counterintuitive feature is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference …. (does this make sense?)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

DISTRIBUTED OBJECTS - 2

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared
vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

SERVICE ORIENTED ARCHITECTURE - 2

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

ARCHITECTURAL STYLES

 Motivation:
 Increasing number of services available online
 Each with specific protocol(s), methods of interfacing
 Connecting services w/ different TCP/IP protocols
 integration nightmare
 Need for specialized client for each service that speaks the

application protocol “language”…

 Need standardization of interfaces
 Make services/components more pluggable
 Easier to adopt and

integrate
 Common

architecture

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

RESOURCE BASED ARCHITECTURES

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.7

Representational State Transfer (REST)

Built on HTTP

Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

REST - 2

L4.42

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.8

L4.43

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

PUBLISH SUBSCRIBE ARCHITECTURES - 4

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.9

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.49

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.51

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

CH 2.2: MIDDLEWARE
ORGANIZATION

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.53

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for
fulfillment

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

MIDDLEWARE: WRAPPERS

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.10

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.57

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

MODIFIABLE MIDDLEWARE

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.59

MIDDLEWARE: INTERCEPTORS - 2 QUESTIONS

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.60

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 16, 2020

Slides by Wes J. Lloyd L4.11

EXTRA SLIDES

61

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.62

FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

FEEDBACK - 2

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profiling, Measurement, Cloud System Data

Analytics
 Application performance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 16, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

64

RESEARCH DIRECTIONS

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

61 62

63 64

65

