
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/9

 Types of distributed systems (Ch. 1.3)
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Homework 0

 Research directions
 Serverless Computing
 Containerization
 Infrastructure-as-a-Service
 Others

 Chapter 2: Distributed System Architectures

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

1

2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.2

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.32

 (W 2019– 7.32)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.45

 (W 2019 – 5.92)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

MATERIAL / PACE

 Administrative scalability

 security, configuration, management polices
support/adapt as the system scales

 Example…

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

FEEDBACK FROM 1/9

3

4

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.3

 Scientists share equipment (often expensive) using a
computational GRID

 GRID provides global distributed system that federates
resources from several organizations local systems:
 Organization A: University of Washington

 Organization B: UC Berkeley

 Components within a distributed system can be trusted by
users within an organization (e.g. UW)

 Local system admins test and cer tified applications, and have
taken special measures to ensure systems cannot be
tampered with
 Users trust system admins to ensure security

 However trust does not expand across domain boundaries

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ADMINISTRATIVE SCALABILITY EXAMPLE

 WHAT IS ADMINISTRATIVE SCALABILIT Y IN THIS CONTEXT?
 (1) Distributed system must protect from malicious attacks

from new domains

 For example:
 Users from new domains may have only read access to file systems

 Facilities such as high-performance computers may not be made
available to unauthorized users

 (2) New domains must protect from malicious attacks from
the distributed system

 For example:
 Users in new domain downloading content from distributed system

must ensure safety of content

 E.g. web applets, etc.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

ADMIN SCALABILITY EXAMPLE - 2

5

6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.4

 Consider, how to police the distributed system as it grows to
encompass 2, 4, 10, 100, 1000 organizations?

 Can system admins keep up?

 Do traditional administrative polices and mechanism scale
with growth of the distributed system?

 One solution: peer-to-peer applications

 Objective: shift responsibility of policing the system to end
users

 End users, not administrators collaborate to keep the system
up and running

 Examples: Skype, Spotify, etc.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

ADMIN SCALABILITY EXAMPLE - 3

 False assumptions of distributed systems
 Common assumptions made by developers regarding

available infrastructure used to create distributed systems

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

7

8

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.5

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FALSE ASSUMPTIONS ABOUT
DISTRIBUTED SYSTEMS

 Can we record the lecture?

 YES!, certainly

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

FEEDBACK - 3

9

10

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.6

 HPC, Cluster, Grid, Cloud

 Distributed information systems
 Transactions
 Application Integration: Shared files, DBs, RPC, RMI,

Message-oriented middleware

 Pervasive Systems
 Ubiquitous computing systems
Mobile systems
 Sensor networks

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

TYPES OF DISTRIBUTED SYSTEMS

CH 1.3: TYPES OF
DISTRIBUTED SYSTEMS:

HPC, CLUSTER, GRID, CLOUD

L3.12

11

12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.7

 Super computers
 Huge multiprocessor system which shares RAM

 Technically “not distributed”

 Hardware all in one location

 High per formance distributed computing
 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Others

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD COMPUTING

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

13

14

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.8

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 I l lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Example: AWS Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

PUBLIC CLOUD COMPUTING

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

PUBLIC CLOUD COMPUTING - 2

m4.large ec2 virtual machine:
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour, 24 hrs/day,
30 days/month  $72.00/month

on-demand EC2 instance

AWS Lambda Function-as-a-Service (FaaS) w/o free tier:
2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3 (maybe?)
as 2,592,000 x 1-sec service calls
24 hrs/day, 30 days/month:

$130.14 (8GB = $347.04)

15

16

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.9

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability.

PaaS services built on highly available IaaS
resources

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

PAAS SERVICES IMPLEMENTATION

CH 1.3: TYPES OF
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L3.18

17

18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.10

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Led to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing

components
 Distributed transaction – Client wraps requests together, sends as

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Dif ferent systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

DISTRIBUTED INFORMATION SYSTEMS

 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

19

20

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.11

 Atomic: The transaction occurs indivisibly

 Consistent: Transaction does not create variant states across
nodes during slow updates (e.g. system variants)
 Replicas remain constant until all updated

 Two phase commit: data pushed first, then the commit

 Isolated: Transactions do not inter fere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed
with many sub-transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

TRANSACTIONS: ACID PROPERTIES

 Allow an application to access multiple DBs via a
transactional programming model

 TP monitor: coordinates commitment of sub-transactions
using a distr ibuted commit protocol (Ch. 8)

 Save application complexity from having to coordinate

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

TRANSACTION PROCESSING MONITOR

21

22

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.12

 Support application components direct communication with
each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – led to t ight coupling

 Client and server endpoints must be up and running

 Interfaces coupled to specific languages and not interoperable

 This led to evolution of: Message-oriented middleware (MOM)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

ENTERPRISE APPLICATION INTEGRATION

Publish and subscribe systems:
 Rabbit MQ, Apache Kafka, AWS SQS

Reduces tight coupling of RPC/RMI

Applications indicate interest for specific type(s)
of messages by sending requests to logical
contact points

Communication middleware delivers messages to
subscribing applications

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

MESSAGE-ORIENTED MIDDLEWARE

23

24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.13

 Integration via shared data files and transfers
 Shared data files (e.g. XML)

 Leads to file management challenges (concurrent updates, etc.)

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck
(l imited scalability)

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily of fline
later on, can receive messages

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

CH 1.3: TYPES OF
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L3.26

25

26

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.14

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless
computing, voice recognition, internet capabilities and AI
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

 Many sensors infer various aspects of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 TYPES OF PERVASIVE SYSTEMS:

 Ubiquitous computing systems

Mobile systems

 Sensor networks
January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L3.27

PERVASIVE SYSTEMS

 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic
actions and interactions

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PERVASIVE SYSTEM TYPE:

UBIQUITOUS COMPUTING SYSTEMS

27

28

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.15

Apple Watch

Amazon Echo Speaker

Amazon EchoDot (single speaker design)

Fitbit

Electronic Toll Systems

Smart Traffic Lights

Self Driving Cars

Home Automation

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

UBIQUITOUS COMPUTING SYSTEM
EXAMPLES

 Domestic ubiquitous computing environment example:

 Interconnect lighting and environmental controls with
personal biometric monitors woven into clothing so that
illumination and heating conditions in a room might be
modulated, continuously and imperceptibly

 IoT technology helps enable ubiquitous computing

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

UBIQUITOUS COMPUTING
SYSTEM EXAMPLE

29

30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.16

 Emphasis on mobile devices, e.g. smartphones, tablet
computers

 New devices: remote controls, pagers, active badges, car
equipment, various GPS-enabled devices,

 Devices move: where is the device?

 Changing location: leverage mobile adhoc network (MANET)

 MANET is an ad hoc network that can change locations and
configure itself on the fly. MANETs are mobile, they use
wireless connections to connect to various networks.

 VANET (Vehicular Ad Hoc Network), is a type of MANET that
allows vehicles to communicate with roadside equipment.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery -less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS

31

32

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.17

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous
power and network connection quality?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

33

34

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.18

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

SENSOR NETWORKS - 3

35

36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.19

 HPC, Cluster, Grid, Cloud

 Distributed information systems
 Transactions
 Application Integration: Shared files, DBs, RPC, RMI,

Message-oriented middleware

 Pervasive Systems
 Ubiquitous computing systems
Mobile systems
 Sensor networks

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

TYPES OF DISTRIBUTED SYSTEMS

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.38

37

38

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.20

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

CH. 2.1: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L3.40

39

40

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.21

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 The OO/component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Roll ing updates

● No data partitions ● Data partitioned or replicated

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

41

42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.22

 Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

ARCHITECTURAL BUILDING BLOCKS

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

ARCHITECTURAL STYLES

43

44

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.23

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

ARCHITECTURAL STYLES

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

45

46

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.24

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

47

48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.25

 Example: pure-layered organization

 Each layer of fers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers to reuse low
level implementation

 Abstractions make it easier to reuse existing layers which
already implement communication basics

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

COMMUNICATION-PROTOCOL STACKS

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

HOW A NETWORK PACKET IS BUILT

49

50

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.26

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

IP HEADER

51

52

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.27

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

COMMON APPLICATION LAYER
PROTOCOLS

53

54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.28

 Distributed application example: Internet search engine

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

APPLICATION LAYERING

55

56

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.29

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

ARCHITECTURAL STYLES

57

58

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.30

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

OBJECT-BASED
ARCHITECTURES - 2

59

60

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.31

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

DISTRIBUTED OBJECTS - 2

61

62

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.32

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

SERVICE ORIENTED ARCHITECTURE - 2

63

64

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.33

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

ARCHITECTURAL STYLES

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate

 Common
architecture

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

RESOURCE BASED ARCHITECTURES

65

66

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.34

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

67

68

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.35

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

EXAMPLE: AMAZON S3

69

70

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.36

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

REST - 2

L3.72

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

71

72

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.37

L3.73

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{

"name": "latitude",
"value":47.2529

},
{

"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

ARCHITECTURAL STYLES

73

74

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.38

 Enables separation between processing and coordination

 Types of coordination:

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.75

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

75

76

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.39

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

PUBLISH SUBSCRIBE ARCHITECTURES - 4

77

78

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.40

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.79

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.80

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

79

80

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.41

CH 2.2: MIDDLEWARE
ORGANIZATION

January 14, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.81

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands of f REST requests to system for
fulfil lment

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.82

MIDDLEWARE: WRAPPERS

81

82

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.42

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.83

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.84

MIDDLEWARE: INTERCEPTORS

83

84

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.43

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.85

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availabil ity

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiabil ity at runtime ?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.86

MODIFIABLE MIDDLEWARE

85

86

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.44

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.87

MIDDLEWARE: INTERCEPTORS - 2

QUESTIONS

January 14, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.88

87

88

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.45

EXTRA SLIDES

89

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.90

FEEDBACK – 9/28

89

90

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.46

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.91

FEEDBACK - 2

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profi ling, Measurement, Cloud System Data

Analytics
 Application per formance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

92

RESEARCH DIRECTIONS

91

92

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.47

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

93

