
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/9

 Types of distributed systems (Ch. 1.3)
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Homework 0

 Research directions
 Serverless Computing
 Containerization
 Infrastructure-as-a-Service
 Others

 Chapter 2: Distributed System Architectures

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

1

2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.2

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.32

 (W 2019– 7.32)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.45

 (W 2019 – 5.92)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

MATERIAL / PACE

 Administrative scalability

 security, configuration, management polices
support/adapt as the system scales

 Example…

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

FEEDBACK FROM 1/9

3

4

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.3

 Scientists share equipment (often expensive) using a
computational GRID

 GRID provides global distributed system that federates
resources from several organizations local systems:
 Organization A: University of Washington

 Organization B: UC Berkeley

 Components within a distributed system can be trusted by
users within an organization (e.g. UW)

 Local system admins test and cer tified applications, and have
taken special measures to ensure systems cannot be
tampered with
 Users trust system admins to ensure security

 However trust does not expand across domain boundaries

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ADMINISTRATIVE SCALABILITY EXAMPLE

 WHAT IS ADMINISTRATIVE SCALABILIT Y IN THIS CONTEXT?
 (1) Distributed system must protect from malicious attacks

from new domains

 For example:
 Users from new domains may have only read access to file systems

 Facilities such as high-performance computers may not be made
available to unauthorized users

 (2) New domains must protect from malicious attacks from
the distributed system

 For example:
 Users in new domain downloading content from distributed system

must ensure safety of content

 E.g. web applets, etc.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

ADMIN SCALABILITY EXAMPLE - 2

5

6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.4

 Consider, how to police the distributed system as it grows to
encompass 2, 4, 10, 100, 1000 organizations?

 Can system admins keep up?

 Do traditional administrative polices and mechanism scale
with growth of the distributed system?

 One solution: peer-to-peer applications

 Objective: shift responsibility of policing the system to end
users

 End users, not administrators collaborate to keep the system
up and running

 Examples: Skype, Spotify, etc.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

ADMIN SCALABILITY EXAMPLE - 3

 False assumptions of distributed systems
 Common assumptions made by developers regarding

available infrastructure used to create distributed systems

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

7

8

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.5

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FALSE ASSUMPTIONS ABOUT
DISTRIBUTED SYSTEMS

 Can we record the lecture?

 YES!, certainly

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

FEEDBACK - 3

9

10

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.6

 HPC, Cluster, Grid, Cloud

 Distributed information systems
 Transactions
 Application Integration: Shared files, DBs, RPC, RMI,

Message-oriented middleware

 Pervasive Systems
 Ubiquitous computing systems
Mobile systems
 Sensor networks

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

TYPES OF DISTRIBUTED SYSTEMS

CH 1.3: TYPES OF
DISTRIBUTED SYSTEMS:

HPC, CLUSTER, GRID, CLOUD

L3.12

11

12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.7

 Super computers
 Huge multiprocessor system which shares RAM

 Technically “not distributed”

 Hardware all in one location

 High per formance distributed computing
 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Others

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD COMPUTING

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

13

14

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.8

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 I l lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Example: AWS Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

PUBLIC CLOUD COMPUTING

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

PUBLIC CLOUD COMPUTING - 2

m4.large ec2 virtual machine:
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour, 24 hrs/day,
30 days/month $72.00/month

on-demand EC2 instance

AWS Lambda Function-as-a-Service (FaaS) w/o free tier:
2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3 (maybe?)
as 2,592,000 x 1-sec service calls
24 hrs/day, 30 days/month:

$130.14 (8GB = $347.04)

15

16

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.9

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability.

PaaS services built on highly available IaaS
resources

January 14, 2020 TCSS 558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

PAAS SERVICES IMPLEMENTATION

CH 1.3: TYPES OF
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L3.18

17

18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.10

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Led to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing

components
 Distributed transaction – Client wraps requests together, sends as

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Dif ferent systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

DISTRIBUTED INFORMATION SYSTEMS

 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

19

20

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.11

 Atomic: The transaction occurs indivisibly

 Consistent: Transaction does not create variant states across
nodes during slow updates (e.g. system variants)
 Replicas remain constant until all updated

 Two phase commit: data pushed first, then the commit

 Isolated: Transactions do not inter fere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed
with many sub-transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

TRANSACTIONS: ACID PROPERTIES

 Allow an application to access multiple DBs via a
transactional programming model

 TP monitor: coordinates commitment of sub-transactions
using a distr ibuted commit protocol (Ch. 8)

 Save application complexity from having to coordinate

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

TRANSACTION PROCESSING MONITOR

21

22

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.12

 Support application components direct communication with
each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – led to t ight coupling

 Client and server endpoints must be up and running

 Interfaces coupled to specific languages and not interoperable

 This led to evolution of: Message-oriented middleware (MOM)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

ENTERPRISE APPLICATION INTEGRATION

Publish and subscribe systems:
 Rabbit MQ, Apache Kafka, AWS SQS

Reduces tight coupling of RPC/RMI

Applications indicate interest for specific type(s)
of messages by sending requests to logical
contact points

Communication middleware delivers messages to
subscribing applications

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

MESSAGE-ORIENTED MIDDLEWARE

23

24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.13

 Integration via shared data files and transfers
 Shared data files (e.g. XML)

 Leads to file management challenges (concurrent updates, etc.)

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck
(l imited scalability)

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily of fline
later on, can receive messages

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

CH 1.3: TYPES OF
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L3.26

25

26

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.14

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless
computing, voice recognition, internet capabilities and AI
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

 Many sensors infer various aspects of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 TYPES OF PERVASIVE SYSTEMS:

 Ubiquitous computing systems

Mobile systems

 Sensor networks
January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L3.27

PERVASIVE SYSTEMS

 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic
actions and interactions

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PERVASIVE SYSTEM TYPE:

UBIQUITOUS COMPUTING SYSTEMS

27

28

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.15

Apple Watch

Amazon Echo Speaker

Amazon EchoDot (single speaker design)

Fitbit

Electronic Toll Systems

Smart Traffic Lights

Self Driving Cars

Home Automation

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

UBIQUITOUS COMPUTING SYSTEM
EXAMPLES

 Domestic ubiquitous computing environment example:

 Interconnect lighting and environmental controls with
personal biometric monitors woven into clothing so that
illumination and heating conditions in a room might be
modulated, continuously and imperceptibly

 IoT technology helps enable ubiquitous computing

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

UBIQUITOUS COMPUTING
SYSTEM EXAMPLE

29

30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.16

 Emphasis on mobile devices, e.g. smartphones, tablet
computers

 New devices: remote controls, pagers, active badges, car
equipment, various GPS-enabled devices,

 Devices move: where is the device?

 Changing location: leverage mobile adhoc network (MANET)

 MANET is an ad hoc network that can change locations and
configure itself on the fly. MANETs are mobile, they use
wireless connections to connect to various networks.

 VANET (Vehicular Ad Hoc Network), is a type of MANET that
allows vehicles to communicate with roadside equipment.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery -less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS

31

32

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.17

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous
power and network connection quality?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

33

34

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.18

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

SENSOR NETWORKS - 3

35

36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.19

 HPC, Cluster, Grid, Cloud

 Distributed information systems
 Transactions
 Application Integration: Shared files, DBs, RPC, RMI,

Message-oriented middleware

 Pervasive Systems
 Ubiquitous computing systems
Mobile systems
 Sensor networks

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

TYPES OF DISTRIBUTED SYSTEMS

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.38

37

38

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.20

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

CH. 2.1: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L3.40

39

40

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.21

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 The OO/component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Roll ing updates

● No data partitions ● Data partitioned or replicated

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

41

42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.22

 Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

ARCHITECTURAL BUILDING BLOCKS

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

ARCHITECTURAL STYLES

43

44

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.23

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

ARCHITECTURAL STYLES

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

45

46

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.24

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

47

48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.25

 Example: pure-layered organization

 Each layer of fers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers to reuse low
level implementation

 Abstractions make it easier to reuse existing layers which
already implement communication basics

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

COMMUNICATION-PROTOCOL STACKS

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

HOW A NETWORK PACKET IS BUILT

49

50

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.26

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

IP HEADER

51

52

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.27

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

COMMON APPLICATION LAYER
PROTOCOLS

53

54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.28

 Distributed application example: Internet search engine

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

APPLICATION LAYERING

55

56

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.29

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

ARCHITECTURAL STYLES

57

58

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.30

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

OBJECT-BASED
ARCHITECTURES - 2

59

60

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.31

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

DISTRIBUTED OBJECTS - 2

61

62

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.32

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

SERVICE ORIENTED ARCHITECTURE - 2

63

64

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.33

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

ARCHITECTURAL STYLES

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate

 Common
architecture

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

RESOURCE BASED ARCHITECTURES

65

66

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.34

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

67

68

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.35

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

EXAMPLE: AMAZON S3

69

70

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.36

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

REST - 2

L3.72

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

71

72

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.37

L3.73

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{

"name": "latitude",
"value":47.2529

},
{

"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

ARCHITECTURAL STYLES

73

74

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.38

 Enables separation between processing and coordination

 Types of coordination:

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.75

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

75

76

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.39

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

PUBLISH SUBSCRIBE ARCHITECTURES - 4

77

78

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.40

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.79

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.80

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

79

80

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.41

CH 2.2: MIDDLEWARE
ORGANIZATION

January 14, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.81

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands of f REST requests to system for
fulfil lment

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.82

MIDDLEWARE: WRAPPERS

81

82

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.42

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.83

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.84

MIDDLEWARE: INTERCEPTORS

83

84

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.43

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.85

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availabil ity

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiabil ity at runtime ?

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.86

MODIFIABLE MIDDLEWARE

85

86

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.44

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.87

MIDDLEWARE: INTERCEPTORS - 2

QUESTIONS

January 14, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.88

87

88

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.45

EXTRA SLIDES

89

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.90

FEEDBACK – 9/28

89

90

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.46

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.91

FEEDBACK - 2

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profi ling, Measurement, Cloud System Data

Analytics
 Application per formance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 14, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

92

RESEARCH DIRECTIONS

91

92

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

January 14, 2020

Slides by Wes J. Lloyd L3.47

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

93

