
TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.1

Introduction - II

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

DEMOGRAPHICS
SURVEY

SURVEY LINK AT:
http://faculty.washington.edu/wlloyd

/courses/tcss558/announcements.html

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.2

 Course demographics survey

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:
 Resource sharing / availability

 Distribution transparency

 Openness

 Scalability

 Activity: Design goals of distributed systems (1/9)

 Research directions

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.3

OBJECTIVES

 Daily Course Feedback: 25 respondents

 Perspective on material from class:
 6.68 (Equal New and Review (5) Mostly New to Me (10))

 Pace of class:
 5.58 (Just Right (5) – Fast (10))

 Do we get to choose partners for project(s)?
 Yes

 Also option to work independently

 Will we have the same members for project(s)?
 If so chosen

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.4

FEEDBACK FROM 1/7

 Location transparency

 Users can not tell where an object is physically located

 The server location is ABSTRACTED from users

 URLs and URIs help do this: these are logical names

 Relocation transparency

 Entire website or server may be moved by distributed
system at any time

Movement may be related to server maintenance, etc.

 Users should not be able to tell

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.5

UNCLEAR POINTS:

 Migration transparency

 Feature of distributed systems: support for mobile
processes

 A user process begins on one server, migrates to another
to reduce network latency

 Example: video/audio stream to mobile device

 live audio stream initially streams from one server, and is
switched to another as mobile device moves

 i.e. driving from Seattle to Portland on Interstate 5

 Process migrates to minimize latency over changing
networks

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.6

FEEDBACK - 3

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.2

 Failure transparency

 A server (or entire distributed system) that provides a
(web)service to a client fails while actively in use

 The user does not notice, but continues to use the service

 The system recovers from failure with no loss of data

 Performance loss is ok – user does not identify the
slowdown as being associated with a failure

 User maintains confidence in the distributed system (or
service)

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 4

 Failure recovery:

 Arguably the most difficult to provide

 Distributed systems with replication are designed to be
able to withstand the loss 1 or more nodes

 Consensus protocols (Ch. 8) are used to converse among
remaining nodes to determine which has the most up-to-
date version of the data

 New nodes can replace failed nodes, and data is
replicated to them

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.8

FAILURE TRANSPARENCY

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.9

SYSTEM ARCHITECTURES

Single
Central Node

Redundant
Root Node

Fully
Distributed

Hierarchy hard
to determine

DNS
Topology

Central
Actor

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.10

SYSTEM ARCHITECTURES

Single
Central Node

Redundant
Root Node

Fully
Distributed

Hierarchy hard
to determine

DNS
Topology

Central
Actor

Consider implications for:
• State tracking
• Membership tracking
• Authentication

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.11

SYSTEM ARCHITECTURES

Single
Central Node

Redundant
Root Node

Fully
Distributed

Hierarchy hard
to determine

DNS
Topology

Central
Actor

Consider implications for:
• State tracking
• Membership tracking
• Authentication

How much data needs to be replicated
across nodes?

communication overhead

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.12

SYSTEM ARCHITECTURES

Single
Central Node

Redundant
Root Node

Fully
Distributed

Hierarchy hard
to determine

DNS
Topology

Central
Actor

Consider implications for:
• State tracking
• Membership tracking
• Authentication

How much data needs to be replicated
across nodes?

communication overhead

How can nodes be authorized to modify
data, perform actions?

does every node need to agree?

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.3

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.13

SYSTEM ARCHITECTURES

Single
Central Node

Redundant
Root Node

Fully
Distributed

Hierarchy hard
to determine

DNS
Topology

Central
Actor

Consider implications for:
• State tracking
• Membership tracking
• Authentication

Where is the data?
how do we find it?

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.14

SYSTEM ARCHITECTURES

Single
Central Node

Redundant
Root Node

Fully
Distributed

Hierarchy hard
to determine

DNS
Topology

Central
Actor

Consider implications for:
• State tracking
• Membership tracking
• Authentication

Where is the data?
how do we find it?

How is distributed system membership
tracked?

 Definition:

 A collection of autonomous computing elements that
appears to users as a single coherent system.

 How nodes collaborate / communicate is key

 Nodes

 Autonomous computing elements

 Implemented as hardware or software processes

 Single coherent system

 Users and applications perceive a single system

 Nodes collaborate, and provide “abstraction”
January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

Institute of Technology, University of Washington - Tacoma
L2.15

WHAT IS A DISTRIBUTED SYSTEM?

#1: Collection of autonomous computing elements
Node synchronization
 data replication, transactional states

Node coordination
 group membership, authentication

Overlay networks – enable node connectivity
 communication

#2: Single coherent system

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.16

CHARACTERISTICS OF
DISTRIBUTED SYSTEMS - 1

Accessibility: support for sharing resources

Distribution transparency

Openness: avoiding vendor lock-in

Scalability

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.17

DESIGN GOALS
OF DISTRIBUTED SYSTEMS

 Easy for users (and applications) to share remote resources
 Storage, compute, networks, services, peripherals, …

 Field programmable arrays (FPGAs) “as a service”:

 https://aws.amazon.com/ec2/instance-types/f1/

 Nearly any resource can be shared

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.18

ACCESSIBILITY: RESOURCE SHARING

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.4

 In distributed systems, aspects of the implementation are
hidden from users

 End users can simply use / consume the resource (or system)
without worrying about the implementation details

 Technology aspects required to implement the distribution are
abstracted from end users

 The distribution is transparent to end users.
 End users are not aware of certain mechanisms that do not

appear in the distributed system because transparency
confines details into layer(s) below the one users interact
with. (abstraction through layered architectures)

 Users perceive the system as a single entity even though it’s
implementation is spread across a collection of devices.

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.19

DISTRIBUTION TRANSPARENCY

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.20

DISTRIBUTION TRANSPARENCY - 2

 Types of distribution transparency

 Object is a resource or a process

Transparency Description

Access Hide differences in data representation and how an object is
accessed.

Location Hide where an object is located

Relocation Hide that an object may be moved to another location while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency Hide than an object may be shared by several independent users

Failure Hide the failure and recovery of an object

 Why would we want location t ransparency?
 Uniform resource locator (URL) …

 Where is it?

 Relocation t ransparency:

 Cloud application is moved from one server to another

 Initiated by the distributed system, possibly for maintenance

 Users should not notice

 Migration t ransparency:

 Feature offered by distributed systems

 User processes may move to new servers with no loss of availabil ity
 e.g. mobile phone client streaming audio while driving on highway

 Server providing live stream audio to client changes to minimize latency

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.21

DISTRIBUTION TRANSPARENCY - 3

 Replication transparency:

 Hide the fact that several copies of a resource exist

 What if a user is aware of, or has to interact with the copies?

 Reasons for replication:

 Increase availability

 Improve performance

 Fault tolerance: a replica can take over when another fails

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.22

DISTRIBUTION TRANSPARENCY - 4

 Concurrency transparency:

 Concurrent use of any resource requires synchronization via
locking

 Transactions can be used

 Fai lure transparency:

 Masking failures is one of the hardest issues in dist. systems

 How do we tell the difference between a failed process and a
very slow one?

 When do we need to “fail over” to a replica?

 Subject of chapter 8…

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.23

DISTRIBUTION TRANSPARENCY - 5

 Full distribution transparency may be impractical

 Communication latencies cannot be hidden

 Completely hiding failures of networks and nodes is
impossible

 Difference between slow computer and failing one

 Transactions: did operation complete before crash?

 Full transparency will lead to slower performance:
 Performance vs. transparency tradeoff

 Synchronizing replicas with a master requires time

 Immediately commit writes in fear of device failure

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.24

DEGREES OF DISTRIBUTION
TRANSPARENCY

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.5

 Abstracting location when user desires to interact
intentionally with local resources / systems

 Exposing the distribution may be good:
 Location-based-services (find nearby friends)

 Help a user understand what’s going on

 When a server doesn’t respond for a long time – is it far away?

 Users in different times zones?

 Can you think of examples where distribution is not
hidden?
 Eventual consistency

 Many online systems no longer update instantaneously

 Users are getting accustomed to delays
January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

Institute of Technology, University of Washington - Tacoma
L2.25

DEGREES OF DISTRIBUTION
TRANSPARENCY - 2

 System with components that are easily used by, or integrated
into other systems

 Key aspects of openness:
 Interoperability, portability, extensibility

 Interfaces: provide general syntax and semantics to interact
with distributed components

 Services expose interfaces: functions, parameters, return
values

 Semantics: describe what the services do
 Often informally specified (via documentation)

 General interfaces enable alternate component
implementations

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.26

OPENNESS

 Interoperability: ability for components from separate
systems to work together (different vendors?)

 Though implementation of a common interface

 How could we measure interoperability of components?

 Portability: degree that an application developed for
distributed system A can be executed without
modification on distributed system B

 How could we evaluate portability of a component?

 What percentage of portability is expected?

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma

L2.27

OPENNESS - 2

 Extensible: easy to reconfigure, add, remove, replace
components from different developers

 Example: replace the underlying file system of a distributed
system

 To be open, we would like to separate policy from mechanism

 Policy may change

 Mechanism is the technological implementation

 Avoid coupling policy and mechanism

 Enables flexibility
 Similar to separation of concerns, modular/OO design principle

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

OPENNESS - 3

 Example: web browser caching

 Mechanism: browser provides facility for storing documents
 Policy: Users decide which documents, for how long, …

 Goal: Enable users to set policies dynamically
 For example: browser may allow separate component plugin

to specify policies

 Tradeoff: management complexity vs. policy flexibility
 Static policies are inflexible, but are easy to manage as

features are barely revealed.

 AWS Lambda (Function-as-a-Service) abstracts configuration
polices from the user resulting in management simplicity

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

SEPARATING POLICY FROM MECHANISM

Which of the following designs is more open?

 Acme software corporation hosts a set of public weather web
services (e.g. web service API)

 DESIGN A: API is implemented using MS .NET Remoting

 .NET Remoting is a mechanism for communicating between
objects which are not in the same process. It is a generic
system for different applications to communicate with one
another. .NET objects are exposed to remote processes, thus
allowing inter process communication. The applications can
be located on the same computer, different computers on the
same network, or on computers across separate networks.

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

OPENNESS EXAMPLE

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.6

 DESIGN B: API is implemented using Java RMI

 The Java Remote Method Invocation (RMI) is a Java API that
performs remote method invocation to allow Java objects to
be distributed across different Java program instances on the
same or different computers. RMI is the Java equivalent of C
remote procedure calls, which includes support for transfer of
serialized Java classes and distributed garbage-collection.

 DESIGN C: API is implemented as HTTP/RESTful web interface

 A RESTful API is an API that uses HTTP requests to GET, PUT,
POST and DELETE data. RESTful APIs are referred to as a
RESTful web services

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

OPENNESS EXAMPLE - 2

 Size scalability: distributed system can grow easily without
impacting performance
 Supports adding new users, processes, resources

 Geographical scalability: users and resources may be
dispersed, but communication delays are negligible

 Administrative scalabil ity: Policies are scalable as the
distributed system grows to support more users… (security,
configuration management policies are agile enough to deal
with growth) Goal: have administratively scalable systems !

 Most systems only account for size scalability

 One solution is to operate multiple parallel independent nodes

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

TYPES OF SCALABILITY

Centralized architectures have limitations

At some point a single central
coordinator/arbitrator node can’t keep up
Centralized server: limited CPU, disk, network capacity

Scaling requires surmounting bottlenecks

Lloyd W, Pa l l icka ra S, Dav id O , Lyon J , A r abi M, Ro jas K . Mig rat io n of m ul t i - t ie r appl icat io ns
to inf rast ruc ture - as -a - se r v ic e c louds : A n inve st ig at io n using ke rne l -b ase d vi r tual m ac h ine s.
InGr id Com put ing (GR ID) , 2011 12th IEEE/AC M Inte rna t ional Conf erenc e on 2011 Sep 21 (pp.
137 -144) . IEEE .

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

SIZE SCALABILITY

 Nodes dispersed by great distances

 Communication is slower, less reliable

 Bandwidth may be constrained

 How do you support synchronous communication?

 Latencies may be higher

 Synchronous communication may be too slow and timeout

WAN links can be unreliable

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

GEOGRAPHIC SCALABILITY

 Conflicting policies regarding usage (payment),
management, and security

 How do you manage security for multiple, discrete data
centers?

 Grid computing: how can resources be shared across
disparate systems at different domains, etc. ?

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

ADMINISTRATIVE SCALABILITY

 Hide communication latencies
 Use asynchronous communication to do other work and hide latency

 Remote server runs in parallel in the background – client not locked

 Separate event handler captures return response from server

 Hide latency by moving key press validation to client:

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

APPROACHES TO SCALING

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] Institute of Technology, UW-Tacoma

January 9, 2020

Slides by Wes J. Lloyd L2.7

 Partitioning data and computations across machines

 Just one copy
 Where is the copy?

 Move computations to the client
 Thin client thick client

 Edge, fog, cloud….

 Decentralized naming services (DNS)

 Decentralized information services (WWW)

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

APPROACHES TO SCALING - 2

Replication and caching – make copies of data
available at different machines

Replicated file servers and databases

Mirrored web sites

Web caches (in browsers and proxies)

 File caches (at server and client)

 LOAD BALANCER (or proxy server)
Commonly used to distribute user requests to nodes of

a distributed system

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

APPROACHES TO SCALING - 3

 Having multiple copies leads to inconsistency
(cached or replicated)

 Modifying one copy invalidates all of the others

 Keeping copies consistent requires global synchronization

 Global-synchronization prohibits large-scale up
 Best to synchronize just a few copies or synchronization latency

becomes too long, entire system slows down!

 Consider how synchronization t ime increases with system size

 Can these inconsistencies be tolerated?

1. Current temperature and wind speed from weather.com

2. Bank account balance – for a read only statement

3. Bank account balance – for a transfer/withdrawal
transaction
January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L2.39

PROBLEMS WITH REPLICATION

Developing a distributed system is a formidable
task

Many issues to consider:

Reliable networks do not exist

Networked communication is inherently insecure

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

DEVELOPING DISTRIBUTED SYSTEMS

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

FALSE ASSUMPTIONS ABOUT
DISTRIBUTED SYSTEMS QUESTIONS

January 9, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
Institute of Technology, University of Washington - Tacoma L2.42

37 38

39 40

41 42

