
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.1

Chapter 6 - Coordination

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from email

Assignment 2 - questions

Chapter 6.4: Election Algorithms

 Final Exam Practice Questions

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.2

OBJECTIVES

 Please classify your perspective on material covered in today’s
class:

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.6 (-)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.2 ()

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.3

MATERIAL / PACE

 The arguments for ddelabort are <key, value> while for ddel1
and ddel2 it is only <key>.
Why?
Can we implement ddelabort only with one argument <key>?

 As ddelabort and ddel1 and ddel2 are all internal messages
within the two-phase commit protocol.

 Internal messages can be implemented with the format of
your choice. These commands aren’t directly invoked in client
tests.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.4

QUESTIONS FROM EMAIL

 Similarly for dput1, the required action is to check whether
the given key is locked, otherwise obtain a lock on it.
Can dput1 work with only 1 argument? (just the key)

 For dput1 if you wanted to not pass the value, that would be
fine, as long as the value is passed in dput2. Again, these are
internal messages.

 I think in my implementation I simply included the key/value
pairs for all of the messages even when they are redundant.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.5

EMAIL QUESTIONS - 2

 The assignments states that the membership list at the local
server should be refreshed every 10s.
Will this have high network overhead when a large # of nodes
are considered?

 Only updating the membership list on demand is more
efficient, however, for a small system (e.g. 2-5 nodes),
overhead from 10-second polling won't be an issue

 UDP discovery may not work to pull updates when a command
occurs because it relies on nodes broadcasting that they are
online.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.6

EMAIL QUESTIONS - 3

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.2

 What about only retrieving the current members list when a
del or put command is received? This decreases network
overhead, but may slow the response t ime of the server. Is
this approach a good idea?

 A drawback for updating for every transaction is that for large
parallel test files (100s-1000s of transactions), this creates A
LOT of overhead to update the membership list for each
transaction during a time when the system is very busy.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.7

EMAIL QUESTIONS - 4

 I have programmed al l operations for 1 at tempt otherwise they fai l.
This assumes that the nodes and the network are highly available.
Is th is acceptable? Do we need to re try requests (e .g. dput1/ddel1)
i f no ACK/NACK is received from other nodes ?

 When the transaction leader sends "dput1" or "ddel1", it may be a
good idea to implement a retry. The server's socket may not be
available (e.g. single-threaded) producing an IO Exception.

 By implementing retry (e.g. 10 attempts), this can prevent failure.

 If the servers are multi- threaded, they may never BLOCK or
generate IO errors.

 Best bet is to try some parallel testing of your nodes to determine
if this is a problem using concurrent transactions.

 Can add a "&" at the end of each line in test scripts to submit
individual requests in parallel .

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.8

EMAIL QUESTIONS - 5

 Can you please clarify the number of node deployments to be
tested for the node discovery methods? I assume it should be
as per rubric, i .e , 2,3 and 5 node deployments on a s ingle
docker host.

 Yes, 2, 3, and 5 node deployments on a single docker host.

 Expect a test where an initial system is setup, some data is
committed, a new node(s) is added, and additional data is
committed. New nodes do not replicate the old data.

 There are tests mentioned on page 4 for the Docker Swarm
deployment. Once involves 10 containers. Are these
required?

 No, this is part of the optional activity of setting up a Docker
swarm cluster.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.9

ADDITIONAL EMAIL QUESTIONS

 When a new node is added in the network, the key value store
is not replicated in the new server. I f we give a del command
for key which is not available on the new node, should it sti l l
issue del commands to other old nodes?

 supporting this is out of scope for assignment 2
 this will l ikely not be tested

 I f some failure occurs af ter acquiring the lock, and the lock
was not released, should we maintain a t imer and force
release the locks. Can this scenario be skipped for
assignment 2?

 supporting this is out of scope for assignment 2
 can we assume nodes do not fail, updates work, therefore no

lock should be held forever

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.10

CHAT QUESTIONS

 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.11

SHORT-HAND-CODES FOR MEMBERSHIP
TRACKING APPROACHES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.12

CHAPTER 6 - COORDINATION

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.3

CH. 6.4: ELECTION
ALGORITHMS

L19.13

1

 Many distributed systems require one process to act as a
coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a
coordinator

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.14

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.15

ELECTION ALGORITHMS

 When any process notices the coordinator is no longer
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes

coordinator
3. If a “higher-up” process answers (Pk+n), it will take over and

run the election. Pk will quit sending ELECTION messages.
 When the higher numbered process receives an ELECTION

message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.16

BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.17

BULLY ALGORITHM - 2

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.18

BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4
starts an election

[2] Process 5 and
6 respond

[3] Process 5 and
6 each hold an
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins
and tells everyone

Note that node 7 has failed…

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.4

 Every node knows who is participating in the distributed
system
 Each node has a group membership directory

 First process to notice the leader is offline launches a new
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.19

BULLY ALGORITHM - 4

 Election algorithm based on a network of nodes in logical ring
 Does not use a token
 Any process (Pk) starts the election by noticing the coordinator

is not functioning
 Objective  identify node w/ highest ID to become coordinator
1. Pk builds an election message, sends to successor in the ring
 If successor is down, successor is skipped
 Skips continue until a running process is found

2. When the election message is passed around, each node
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own
identifier in the active node l ist . Message is changed to
COORDINATOR and “elected(Phighest)” message is circulated.
 Second message announces Phighest is the NEW coordinator

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.20

RING ALGORITHM

 PROBLEM: Two nodes start election at the same time: P3 and P6

 P3 sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is an act ive node l ist

 Each node adds itself to the active node l ist

 Each node coordinating election votes for candidate w/ highest ID

 P6 wins the election because it ’s the candidate with the h ighest ID

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.21

RING: MULTIPLE ELECTION EXAMPLE

 Assumptions made by traditional election algorithms
are not realistic for wireless environments:

 >>> Message passing is reliable

 >>> Topology of the network does not change

 A few protocols have been developed for elections in ad
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes
and partitioning networks.

 Elect best leader, rather than just a random one

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.22

ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the e lection by sending an ELECTION
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors, but not to parent

4. Node (R), receives message, designates (Q) as parent, and
spreads ELECTION message to neighbors, but not to parent

5. Neighbors that have already selected a parent immediately
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report

back to Q quickly.

 When reporting back to Q, R includes metadata on battery l ife and
resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and
also indicates the most eligible node (based on battery &
resource capacity)
March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L19.23

VASUDEVAN ET AL. WIRELESS ELECTION

Node [A]
initiates election:
f i nd t h e h i ghest ca paci ty

Capacity value is
in the bubble

Election messages
propagated to all
nodes

Each node reports
to its parent, node
with best capacity

Node [A] then
facilitates Node H
becoming leader

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.24

WIRELESS ELECTION - 2
SOURCE NODE: [A]

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.5

 When multiple elections are initiated, nodes only join
election initiated by the source node with the highest
identifier value
 Nodes stop participating in any others

 Source node tags its ELECTION message with it’s unique
identifier (e.g. a), to uniquely identify the election.

 With minor adjustments protocol can operate when the
network partitions, and when nodes join and leave
 See Vasudevan et al. 2004

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.25

WIRELESS ELECTION - 3

 Large systems often require several nodes to serve as
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must
be low

2. Super peers should be evenly distributed across the
overlay network (ensures proper load balancing,
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.26

ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 Reserve first log2(N) bits for super-peer IDs
 m=number of bits of the identifier
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per

node
 Required number of super peers is 2(k – m) ▪ N, where N is

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.27

ELECTIONS FOR DHT BASED SYSTEMS

 Given an overlay network, the idea is to position
superpeers throughout the network so they are evenly
disbursed

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”. Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay
network

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.28

SUPER PEERS IN
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and
force information across the network

 If forces acting on a node with a token exceeds a threshold,
token is moved away

 Once nodes hold token for awhile they become superpeers

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.29

OVERLAY TOKEN DISTRIBUTION

FIVE MINUTE BREAK

30

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.6

PRACTICE QUESTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L19.31

 For a multi-tiered architecture describe the differences
between a vertical distribution and a horizontal distribution of
components (Lecture 6)?

 >>Address specifically implications of these distributions for
scalabil ity of distributed systems.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.32

QUESTION 1:
MULTI-TIERED ARCHITECTURE

 Consider a traditional centralized server architecture where
many client nodes communicate with a single server node.

 Consider the four design goals of distributed systems from
Chapter 1: Resource sharing, Distribution Transparency,
Openness, and Scalability.

 Describe challenges with ensuring these design goals when
adopting a centralized server architecture.

 >> Consider citing an example if helpful.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.33

QUESTION 2:
CENTRALIZED SERVER ARCHITECTURE

 Describe two communication differences between a traditional
connection oriented client/server architecture, and a
publish/subscribe architecture where clients and servers
communicate by interacting with tuples in a shared data
space.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.34

QUESTION 3:
ARCHITECTURE DIFFERENCES

 Fourteen nodes communicate using an unstructured peer-to-
peer network using random walks. The head node pictured at
the top of the graph for this network receives a client request
to retrieve a data element. Starting at the head node using
message flooding without a specified time-to-live (TTL), how
many messages are sent to locate the data item?

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.35

QUESTION 4:
UNSTRUCTURED PEER-TO-PEER NETWORK

 Using a random walk beginning at the head node at the top of the
graph where only one walk per level is performed without a
specified t ime-to- live (TTL), how many nodes wil l be visited?

 Given this number of node visitations, and considering that the
data element is not replicated in the network as it exists at only
one node, what is the probabil ity (in %) that the data element wil l
be found?

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.36

QUESTION 4 (2):
UNSTRUCTURED PEER-TO-PEER NETWORK

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.7

 If we perform two parallel walks without a TTL, what is the
worst-case probability (in %) of finding the data element?

 For this scenario, what is the best-case probability (in %) of
finding the data element?

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.37

QUESTION 4 (3):
UNSTRUCTURED PEER-TO-PEER NETWORK

 List one advantage, and one disadvantage for centralized
distributed mutual exclusion:

 Advantage: Disadvantage:

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.38

QUESTION 5:
DISTRIBUTED MUTUAL EXCLUSION

 Give a short description of each time tracking approach
in a distributed system. Give one example for when/why
each tracking approach may be used:

 NTP:

 Berkeley:

 Lamport Clocks:

 Vector Clocks:

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.39

QUESTION 6:
TIME MANIA

 In the figure, an overlay network provides connectivity among the
nodes: A , B, C, D, and E.

 The overlay network is implemented using “underlying” networks.
In this case, the underlying network consists of a series of routers:
Ra, Rb, Rc, Rd, and Re. Network “Weights” are assigned to each of
the l inks between the routers indicating approximate
communication delay. For example, the communication delay
between Ra and Rb is 7 units, whereas the communication delay
between node A and Ra is just 1 unit .

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.40

QUESTION 7:
OVERLAY NETWORKS

 When nodes communicate using the overlay network, they
must route messages via (by way of) the “overlay” links.
In the diagram above, there are overlay links between: A → B,
B → E, E → D, and D → C.

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.41

QUESTION 7:
OVERLAY NETWORKS

 (A) What is the network delay when routing a message using
the overlay network from node D to B? _______________units

 (B) What is the network delay when sending this same
message from node D to B via the most efficient path using
the underlying network? _______________ units

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.42

QUESTION 7:
OVERLAY NETWORKS

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 12, 2020

Slides by Wes J. Lloyd L19.8

 (C) Network “Stretch” is the ratio of the overlay network delay
to the underlying network delay. For this example, what is the
network stretch? _______________units

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.43

QUESTION 7:
OVERLAY NETWORKS

 In the Network Time Protocol, node A is a client that
communicates with node B, which is an NTP server. The
communication propagation delay is estimated with the
formula:

 (a) What key assumption is made about the propagation delay
between A and B?

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.44

QUESTION 8:
SYNCHRONIZATION

 (b) When NTP is used to synchronize clocks of client
computers, when client clocks are ahead of the NTP server
due to clock skew, why do clients never set their local clock(s)
backwards to match the time of the NTP server?

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.45

QUESTION 8:
SYNCHRONIZATION QUESTIONS

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L19.46

43 44

45 46

