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 Feedback from email

Assignment 2 - questions

Chapter 6.4: Election Algorithms

 Final Exam Practice Questions
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OBJECTIVES

 Please classify your perspective on material covered in today’s 
class:

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.6 ( - )

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.2 ( )
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MATERIAL / PACE

 The arguments for ddelabort are <key, value> while for ddel1 
and ddel2 it  is  only <key>. 
Why? 
Can we implement ddelabort only with one argument <key>?

 As ddelabort and ddel1 and ddel2 are all internal messages 
within the two-phase commit protocol.

 Internal messages can be implemented with the format of 
your choice.  These commands aren’t directly invoked in client 
tests. 
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QUESTIONS FROM EMAIL

 Similarly for  dput1, the required action is  to check whether 
the given key is locked, otherwise obtain a lock on it.  
Can dput1 work with only 1 argument? ( just the key)

 For dput1 if you wanted to not pass the value, that would be 
fine, as long as the value is passed in dput2.  Again, these are 
internal messages. 

 I think in my implementation I simply included the key/value 
pairs for all of the messages even when they are redundant.
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EMAIL QUESTIONS - 2

 The assignments states that the membership list  at the local 
server should be refreshed every 10s. 
Will  this have high network overhead when a large # of  nodes 
are considered?

 Only updating the membership list on demand is more 
efficient, however, for a small system (e.g. 2-5 nodes), 
overhead from 10-second polling won't be an issue

 UDP discovery may not work to pull updates when a command 
occurs because it relies on nodes broadcasting that they are 
online.
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EMAIL QUESTIONS - 3
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 What about only retrieving the current members list  when a 
del or  put command is received?  This decreases network 
overhead, but may slow the response t ime of  the server. Is 
this approach a good idea?

 A drawback for updating for every transaction is that for large 
parallel test files (100s-1000s of transactions), this creates A 
LOT of overhead to update the membership list for each 
transaction during a time when the system is very busy.
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EMAIL QUESTIONS - 4

 I  have programmed al l  operations for 1 at tempt otherwise they fai l.  
This assumes that the nodes and the network are highly available.  
Is th is acceptable? Do we need to  re try requests (e .g.  dput1/ddel1)   
i f  no  ACK/NACK is received from other nodes ?

 When the transaction leader sends "dput1" or "ddel1",  it  may be a 
good idea to implement a retry.   The server's socket may not be 
available (e.g.  single-threaded) producing an IO Exception. 

 By implementing retry (e.g. 10 attempts),  this can prevent failure.  

 If the servers are multi- threaded, they may never BLOCK or 
generate IO errors.   

 Best bet is to try some parallel testing of your nodes to determine 
if this is a problem using concurrent transactions.

 Can add a "&" at the end of each line in test scripts to submit 
individual requests in parallel .
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EMAIL QUESTIONS - 5

 Can you please clarify the number of node deployments to be 
tested for the node discovery methods? I  assume it  should be 
as per rubric, i .e , 2,3 and 5 node deployments on a s ingle 
docker host.

 Yes, 2, 3, and 5 node deployments on a single docker host.

 Expect a test where an initial system is setup, some data is 
committed, a new node(s) is added, and additional data is 
committed.  New nodes do not replicate the old data.

 There are tests mentioned on page 4 for the Docker Swarm 
deployment.  Once involves 10 containers.  Are these 
required?

 No, this is part of the optional activity of setting up a Docker 
swarm cluster.
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ADDITIONAL EMAIL QUESTIONS

 When a new node is  added in the network, the key value store 
is  not replicated in the new server. I f  we give a del command 
for key which is  not available on the new node, should it sti l l 
issue del commands to other old nodes?

 supporting this is out of scope for assignment 2
 this will l ikely not be tested

 I f  some failure occurs af ter acquiring the lock, and the lock 
was not released, should we maintain a t imer and force 
release the locks. Can this scenario be skipped for 
assignment 2?

 supporting this is out of scope for assignment 2
 can we assume nodes do not fail, updates work, therefore no 

lock should be held forever
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CHAT QUESTIONS

 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method 

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic 
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically 
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking  = +15 pts (Static fi le 
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le 
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static 
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)
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SHORT-HAND-CODES FOR MEMBERSHIP 
TRACKING APPROACHES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms
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CHAPTER 6 - COORDINATION
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CH. 6.4: ELECTION 
ALGORITHMS

L19.13

1

 Many distributed systems require one process to act as a 
coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements 

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a 
coordinator
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ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest 
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems
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ELECTION ALGORITHMS

 When any process notices the coordinator is no longer 
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher 

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes 

coordinator
3. If a “higher-up” process answers (Pk+n), it will take over and 

run the election. Pk will quit sending ELECTION messages.
 When the higher numbered process receives an ELECTION 

message from a lower-numbered colleague, it responds 
with “OK”, indicating it’s alive, and it takes over the 
election.
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BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining 
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a 
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes 
back up, it holds an election, and ultimately takes over the 
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm
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BULLY ALGORITHM - 2
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BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4 
starts an election

[2] Process 5 and
6 respond

[3] Process 5 and 
6 each hold an 
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins 
and tells everyone

Note that node 7 has failed…
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 Every node knows who is participating in the distributed 
system
 Each node has a group membership directory

 First process to notice the leader is offline launches a new 
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”
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BULLY ALGORITHM - 4

 Election algorithm based on a network of nodes in logical ring
 Does not use a token
 Any process (Pk) starts the election by noticing the coordinator 

is not functioning
 Objective  identify node w/ highest ID to become coordinator
1. Pk builds an election message, sends to successor in the ring
 If successor is down, successor is skipped
 Skips continue until a running process is found

2. When the election message is passed around, each node 
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own 
identifier in the active node l ist .  Message is changed to 
COORDINATOR and “elected(Phighest)” message is circulated.
 Second message announces Phighest is the NEW coordinator
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RING ALGORITHM

 PROBLEM: Two nodes start election at the same time: P3 and P6

 P3  sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is an act ive node l ist

 Each node adds itself to the active node l ist

 Each node coordinating election votes for candidate w/ highest ID

 P6 wins the election because it ’s the candidate with the h ighest ID
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RING: MULTIPLE ELECTION EXAMPLE

 Assumptions made by traditional election algorithms 
are not realistic for wireless environments:

 >>> Message passing is reliable

 >>> Topology of the network does not change

 A few protocols have been developed for elections in ad 
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes 
and partitioning networks.

 Elect best leader, rather than just a random one
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ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the e lection by sending an ELECTION 
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors,  but not to  parent

4. Node (R), receives message, designates (Q) as parent, and 
spreads ELECTION message to neighbors,  but not to  parent

5. Neighbors that have already selected a parent immediately 
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report 

back to Q quickly.

 When reporting back to Q, R includes metadata on battery l ife and 
resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and 
also indicates the most eligible node (based on battery & 
resource capacity)
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VASUDEVAN ET AL. WIRELESS ELECTION

Node [A] 
initiates election:
f i nd t h e  h i ghest  ca paci ty

Capacity value is 
in the bubble

Election messages
propagated to all
nodes

Each node reports
to its parent,  node
with best capacity

Node [A] then 
facilitates Node H
becoming leader
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WIRELESS ELECTION - 2
SOURCE NODE: [A]
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 When multiple elections are initiated, nodes only join 
election initiated by the source node with the highest 
identifier value
 Nodes stop participating in any others

 Source node tags its ELECTION message with it’s unique 
identifier (e.g. a), to uniquely identify the election.

 With minor adjustments protocol can operate when the 
network partitions, and when nodes join and leave
 See Vasudevan et al. 2004
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WIRELESS ELECTION - 3

 Large systems often require several nodes to serve as 
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must 
be low

2. Super peers should be evenly distributed across the 
overlay network (ensures proper load balancing, 
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes
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ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 Reserve first log2(N) bits for super-peer IDs
 m=number of bits of the identifier 
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per 

node
 Required number of super peers is 2(k – m) ▪ N, where N is 

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes
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ELECTIONS FOR DHT BASED SYSTEMS

 Given an overlay network, the idea is to position 
superpeers throughout the network so they are evenly 
disbursed 

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”.  Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay 
network
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SUPER PEERS IN 
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and 
force information across the network

 If forces acting on a node with a token exceeds a threshold, 
token is moved away

 Once nodes hold token for awhile they become superpeers
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OVERLAY TOKEN DISTRIBUTION

FIVE MINUTE BREAK
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PRACTICE QUESTIONS
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 For a multi-tiered architecture describe the differences 
between a vertical distribution and a horizontal distribution of 
components (Lecture 6)?  

 >>Address specifically implications of these distributions for 
scalabil ity of distributed systems.
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QUESTION 1: 
MULTI-TIERED ARCHITECTURE

 Consider a traditional centralized server architecture where 
many client nodes communicate with a single server node. 

 Consider the four design goals of distributed systems from 
Chapter 1: Resource sharing, Distribution Transparency, 
Openness, and Scalability.  

 Describe challenges with ensuring these design goals when 
adopting a centralized server architecture.

 >> Consider citing an example if helpful.
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QUESTION 2: 
CENTRALIZED SERVER ARCHITECTURE

 Describe two communication differences between a traditional 
connection oriented client/server architecture, and a 
publish/subscribe architecture where clients and servers 
communicate by interacting with tuples in a shared data 
space.
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QUESTION 3: 
ARCHITECTURE DIFFERENCES

 Fourteen nodes communicate using an unstructured peer-to-
peer network using random walks.  The head node pictured at 
the top of the graph for this network receives a client request 
to retrieve a data element.  Starting at the head node using 
message flooding without a specified time-to-live (TTL), how 
many messages are sent to locate the data item?
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QUESTION 4: 
UNSTRUCTURED PEER-TO-PEER NETWORK

 Using a random walk beginning at the head node at the top of the 
graph where only one walk per level is performed without a 
specified t ime-to- live (TTL), how many nodes wil l  be visited?  

 Given this number of node visitations, and considering that the 
data element is not replicated in the network as it  exists at only 
one node, what is the probabil ity (in %) that the data element wil l 
be found?

March 12, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.36

QUESTION 4 (2):
UNSTRUCTURED PEER-TO-PEER NETWORK
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 If we perform two parallel walks without a TTL, what is the 
worst-case probability (in %) of finding the data element?  

 For this scenario, what is the best-case probability (in %) of 
finding the data element?
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QUESTION 4 (3):
UNSTRUCTURED PEER-TO-PEER NETWORK

 List one advantage, and one disadvantage for centralized 
distributed mutual exclusion:

 Advantage: Disadvantage:
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QUESTION 5: 
DISTRIBUTED MUTUAL EXCLUSION

 Give a short description of each time tracking approach 
in a distributed system.  Give one example for when/why 
each tracking approach may be used:

 NTP:

 Berkeley:

 Lamport Clocks:

 Vector Clocks:
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QUESTION 6: 
TIME MANIA 

 In the figure, an overlay network provides connectivity among the 
nodes: A , B,  C,  D, and E.

 The overlay network is implemented using “underlying” networks.  
In this case, the underlying network consists of a series of routers: 
Ra, Rb, Rc, Rd, and Re.  Network “Weights” are assigned to each of 
the l inks between the routers indicating approximate 
communication delay.   For example, the communication delay 
between Ra and Rb is 7 units,  whereas the communication delay 
between node A and Ra is just 1 unit .
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QUESTION 7:
OVERLAY NETWORKS

 When nodes communicate using the overlay network, they 
must route messages via (by way of) the “overlay” links.  
In the diagram above, there are overlay links between: A → B, 
B → E, E → D, and D → C.
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QUESTION 7:
OVERLAY NETWORKS

 (A) What is the network delay when routing a message using 
the overlay network from node D to B? _______________units

 (B) What is the network delay when sending this same 
message from node D to B via the most efficient path using 
the underlying network?                      _______________  units
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QUESTION 7:
OVERLAY NETWORKS
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 (C) Network “Stretch” is the ratio of the overlay network delay 
to the underlying network delay.  For this example, what is the 
network stretch? _______________units
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QUESTION 7:
OVERLAY NETWORKS

 In the Network Time Protocol, node A is a client that 
communicates with node B, which is an NTP server.  The 
communication propagation delay is estimated with the 
formula:

 (a) What key assumption is made about the propagation delay 
between A and B?
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QUESTION 8:
SYNCHRONIZATION

 (b) When NTP is used to synchronize clocks of client 
computers, when client clocks are ahead of the NTP server 
due to clock skew, why do clients never set their local clock(s) 
backwards to match the time of the NTP server?
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QUESTION 8:
SYNCHRONIZATION QUESTIONS
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