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OBJECTIVES

= Feedback from 3/5
= Assignment 2 - Questions
mThursday: Chapter 6.4: Election Algorithms

" Thursday: Final Exam Review
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MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class:

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.9 ({)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.9 (1)
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FEEDBACK FROM 3/5

= Assignment #2:
For inter-server communication for the two-phase commit
protocol, can we use RMI or UDP?

= We are thinking about using multicast to communicate and
get a response back for inter-server communication. We aren't
sure how to receive a response back from multicast.

= Or we were thinking about using RMI to remotely invoke a
method that checks current operations done on the other
servers.

= Any suggestions?
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FEEDBACK - 2

= Assignment #2:
For Inter-server communlicatlon for the two-phase commIt
protocol, can we use RMI or UDP?

= The idea is that the leader has a for-loop that iterates through
the nodes in the membership list and establishes a TCP
connection with each one at a time.

= An optimization is to use multiple threads to perform these
TCP connections in parallel.

= There is no extra credit for this.

= Don't use UDP. It's not reliable, and we need the two-phase
commit messages to be reliably exchanged.

= RMI could work, but the idea in assignment #2 is to use TCP
for the two-phase commit protocol.
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FEEDBACK - 3

= Assignment #2:

= We have a multl-threaded Implementation, but If multiple
nodes simultaneously receive requests then multiple nodes
are acting as a leader. Each leader would try to open a socket
with the other nodes in the network, and port in use error will
be thrown.

= How do we coordinate this?

= |f there is an error trying to establish the TCP connection, then
the leader should retry.
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FEEDBACK - 4

= Assignment #2:
= | saw you sald there are no extra points for multi-threading
TCP connectlons between the servers. There are 10 points In

the assignment description for "server threads". Is this just
meaning that the 10 points are if each server processes their

client requests with threads then?

= That's correct!
= Multi-threading the leader conversations with the nodes is a
nice-to-have from an efficiency standpoint,

® but it doesn't prevent the two-phase commit from working
correctly.
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FEEDBACK - 5

= How will dynamic membership tracking approaches be tested
for Assignment 2?

= A multi-node system will be set up, for example, with 3 nodes.
= A few transactions will be performed
= puta 123
= put b 456
= A new node will be added or deleted
= A few transactions will be performed
= put ¢ 789
= put d aaa
= The new node should have keys c,d but not a,b
= Deletes nodes should no longer be accessible
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FEEDBACK - 6

= Troubleshooting UDP Broadcast on Docker
= Try using local host
= Broadcast to the local subnet
= Use the first three numbers of the IP, replace the last with “0”
= Example: Docker container IP 172.17.0.2, broadcast IP “172.17.0.0”

= Does a new node joining the system need to learn the set of keys
from existing nodes?
= No, this is out of the scope of assignment 2

= |s there extra credit for implementing Docker swarm to have an
overlay network for assignment 2?
= Docker swarm instructions are provided for those interested in exploring
configuration of a Docker swarm cluster to test their key-value store
with nodes spanning multiple cloud VMs.
= This involves essentially configuration. There is no extra credit.
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SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

Include readme.txt or doc file with instructions in submission

Must document membership tracking method

= S-1: Static file membership tracking only = O pts

= T-1: TCP membership tracking only = +5 pts (should be dynamic

once servers point to membership server)

U-1: UDP membership tracking only = +10 pts (automatically

discovers nodes with no configuration)

= S+T-2: Static file + TCP membership tracking = +15 pts (Static file
is not reread to refresh membership during operation)

= S+U-2: Static file + UDP membership tracking = +15 pts (Static file
is not reread to refresh membership during operation)

= SD+U-2: Static file + UDP membership tracking = +20 pts (Static
file is periodically reread to refresh membership during operation)

= T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)
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CHAPTER 6 - COORDINATION

= 6.1 Clock Synchronization

= Physical clocks

= Clock synchronization algorithms
= 6.2 Logical clocks

= Lamport clocks

= Vector clocks
= 6.3 Mutual exclusion
= 6.4 Election algorithms

= 6.6 Distributed event matching (light)
® 6.7 Gossip-based coordination (light)
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VECTOR CLOCKS

= Lamport clocks don’t help to determine causal ordering of
messages

= Vector clocks capture causal histories and can be used as an
alternative

= But what is causality? ...
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WHAT IS CAUSALITY?

Proc 1
M1
D E

Proc 2 Py

= Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A.

= When one event results from another, there is a causal
relationship between the two events.

® This is also referred to as cause and effect.
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CAUSALITY - 2

= Disclalmer:

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

= Lamport/Vector clocks can help us suggest possible causality
= But we never know for sure...
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CAUSALITY - 3

= Consider the messag

= P2 receives m1, and subsequently sends m3

= Causality: Sending m3 may depend on what’s contained in m1
= P2 receives m2, receiving m2 is not related to receiving m1

= |s sending m3 causally dependent on recelving m2?
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VECTOR CLOCKS

= Vector clocks help keep track of causal history

= |f two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

= P sends messages to Q (event p3)

= Q previously performed event q1

= Q records arrival of message as q2

= Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

= Fortunately, can simply store history of last event,
as a vector clock > H(q2) = (3,2)
= Each entry corresponds to the last event at the process

TCSS558: Applied Distributed Computing [Winter 2020]
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VECTOR CLOCKS - 2

(1,0) (2,0) (3,0)

P, o
= Each process maintains a vector clock which
= Captures number of events at the local process (e.g. logical clock)
= Captures number of events at all other processes
= Causality is captured by:
= For each event at Pi, the vector clock (VC)) is incremented
= The msg is timestamped with VC;; and sending the msg is recorded
as a new event at P;

= P; adjusts its VC; choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCS$558: Applied Distributed Computing [Winter 2020]
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VECTOR CLOCKS - 3 VECTOR CLOCKS EXAMPLE

= Pj knows the # of events at Pi based on the timestamps of the = Local clock is underlined CAUSALITY
received message P (1,1.0) (2.1.0) [3.1,0) (4.1.0)

-

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

= These events “may be causally dependent”

= |In other words: they may have been necessary for the
message(s) to be sent...

@14 @32)
m, my my<my my>my, C
(2,1,0) (4,3,0) Yes No m2 may causally precede m4
TCSS558: Applied Distributed Computing [Winter 2020] TCSS558: Applied Distributed Computing [Winter 2020]
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VECTOR CLOCKS EXAMPLE - 2

VECTOR CLOCKS EXAMPLE - 3

: s (& p, 140
m, m, m, my 'ms me
P, (2,3,0) P, 0,1,1) o W,
©,1,0) 220) Y
m i
N P; & L 2
P, (0,0,1)

(231) (43.2)
m, m, my<m, my>m, Concluslon = Provide a vector clock label for unlabeled events
(4,1,0) (2,3,0) No No m2 and m4 may conflict
= P3 can’t determine if m4 may be causally dependent on m2
" |s m4 causally dependent on m3 ?

TCSS558: Applied Distributed Computing [Winter 2020]
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VECTOR CLOCKS EXAMPLE - 4 VECTOR CLOCKS EXAMPLE - 5

B (1,0,0) P, (1,0,0)
"2 m; m,
P, P, 0,1,1) o ¢
& * * P; & * i
(0,0,1) (0,0,1)
= TRUE/FALSE: = TRUE/FALSE:

" The sending of message m; is causally dependent on the = P, (1,0,0) and P; (0,0,1) may be concurrent events.
sending of message m,.

i | = P, (0,1,1) and P; (0,0,1) may be concurrent events.
= The sending of message m, is causally dependent on the OB (LA AP (041 )
sending of message m,. 1(1,0,0) and P, (0,1,1) may be concurrent events.
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Distributed
Mutual Exclusion
Algorithms

CH. 6.3: DISTRIBUTED
MUTUAL
EXCLUSION

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

= Coordinating access among distributed processes to a
shared resource requires DIstrlbuted Mutual Exclusion

= Algorithms in 6.3
= Token-ring algorithm

= Permission-based algorithms:

= Centralized algorithm
= Distributed algorithm (Ricart and Agrawala)

= Decentralized voting algorithm (Lin et al.)

TCS5558: Applied Distributed Computing [Winter 2020]
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TOKEN-BASED ALGORITHMS

= Mutual exclusion by passing a “token” between nodes

= Nodes often organized in ring

= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtaln lock

= Avoids deadlock: easy to avoid

L1827
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TOKEN-RING ALGORITHM

= Construct overlay network
= Establish logical ring among nodes

W Token
S
D«
= Single token circulated around the nodes of the network

= Node having token can access shared resource

= |f no node accesses resource, token is constantly circulated
around ring

TCS5558: Applied Distributed Computing [Winter 2020]
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TOKEN-RING CHALLENGES

If token is lost, token must be regenerated
= Problem: may accidentally circulate multiple tokens

Hard to determine if token is lost

= What is the difference between token being lost and a
node holding the token (lock) for a long time?

. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

=When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i Tacoma
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

=Permission-based algorithms

= Processes must require permission from other processes
before first acquiring access to the resource
= CONTRAST: Token-ring did not ask nodes for permission

= Centrallzed algorithm

= Elect a single leader node to coordinate access to shared
resource(s)

= Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system
= Nodes must all interact with leader to obtain “the lock”

TCS5558: Applied Distributed Computing [Winter 2020] 830
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CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator \/ No response from coordinator

R t
Request | [OK eaues Release d
/" No reply
Queueis e
/ empty
P, executes P, blocks P, finishes; P, executes

= When resource not available, coordinator can block the
requesting process, or respond with a reject message

= P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

= Requests granted permission fairly using FIFO queue
= Just three messages: (request, grant (OK), release)

TCS5558: Applied Distributed Computing [Winter 2020]
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CENTRALIZED MUTUAL EXCLUSION - 2

= |ssues

= Coordinator is a single point of failure

= Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable
= No difference between CRASH and Block (for a long time)

= Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Beneflts
= Simplicity:
Easy to implement compared to distributed alternatives

TCSS558: Applied Distributed Computing [Winter 2020]
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DISTRIBUTED ALGORITHM

= Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

= Package up resource request message (AKA Lock Request)
= Send to all nodes
= Include:

= Name of resource

= Process number

= Current (logical) time

= Assume messages are sent reliably
= No messages are lost

TCS5558: Applied Distributed Computing [Winter 2020]
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DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (If the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)

3. If node Is also walting to access the resource: perform a

timestamp comparison -
1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

= Requirement: every node must know the entire membership
list of the distributed system

TCSS558: Applied Distributed Computing [Winter 2020]
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DISTRIBUTED ALGORITHM - 3

= Node O and Node 2 simultaneously request access to resource
= Node O’s time stamp is lower (8) than Node 2 (12)

= Node 1 and Node 2 grant Node O access

= Node 1 is not interested in the resource, it OKs both requests

Accesses
resource

Oz O D=

OK resource

(b) (O]
= |In case of conflict, lowest timestamp wins!
= Node 2 rejects its own request (1@) in favor of node O (8)

‘ O ‘ TCsS558: Applied Distributed Computing [Winter 2020]
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CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
= Where N = Number of Nodes in the system

= No Reply Problem: When node is accessing the resource,
it does not respond

= Lack of response can be confused with fallure

= Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

= Enables requester to determine when nodes have died

TCS$558: Applied Distributed Computing [Winter 2020]
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CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node
must maintain full group membership
= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
= This approach may not scale on resource-constrained systems
= Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
= Presumably any one node locking the resource prevents agreement
= If one node gets majority of acknowledges no other can
= Requires every node to know size of system (# of nodes)

= Distributed algorithm for mutual exclusion works best for:
= Small groups of processes

= When memberships rarely change

TC55558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma
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DECENTRALIZED ALGORITHM

= Lin et al. [2004], decentralized voting algorithm
= Resource is replicated N times
= Each replica has its own coordinator ...(N coordinators)

= Accessing resource requires majority vote:
total votes (m) > N/2 coordinators

= Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

TCSS558: Applied Distributed Computing [Winter 2020]
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DECENTRALIZED ALGORITHM - 2

= Assumptlon #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

= Approach assumes coordinators reset arbitrarily at any time

= Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

= The Hope: if coordinator crashes, upon recovery, the node
granted access to the resource has already finished before the
restored coordinator grants access again . . .

TCS5558: Applied Distributed Computing [Winter 2020]
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DECENTRALIZED ALGORITHM - 3

= With 99.167% coordinator availability (30 sec downtime/hour)
chance of violating correctness is so low it can be neglected in
comparison to other types of failure

= Leverages fact that a new node must obtain a majority vote to
access resource, which requires time

N | m p Violation N | m P Violation
8 | 5 | 3sec/hour | <101 8 | 5 | 30 secthour | < 1010
8 | 6 | 3sec/hour | <101 8 | 6 | 30sec/hour | <10~ 11
16 | 9 [ 3secthour [ < 107% 16 | 9 | 30 sec’hour | < 10°T8
16 | 12 | 3sec/hour | < 10736 16 | 12 | 30 sec/hour | <10~2
32 [ 17 | 3sec/hour | <102 32| 17 | 30 sec/hour | < 10~
32 | 24 | 8 sec/hour | <1073 32 | 24 | 30 sec/hour | < 10~%

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

TCSS558: Applied Distributed Computing [Winter 2020]
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DECENTRALIZED ALGORITHM - 4

= Back-off Polllng Approach for permission-denled:

= |f permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

= Node waits for a random amount, retries...

= |f too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

= No one can achleve majorlity vote to obtaln access to the
shared resource

= Mimics elections where with too many candidates, where no
one candidate can get >50% of the total vote

= Problem Solution detailed in [Lin et al. 2014]

TCS5558: Applied Distributed Computing [Winter 2020]
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

= Which algorithm offers the best scalability to support
distributed mutual exclusion in a large distributed
system?

= (A) Token-ring algorithm

= (B) Centralized algorithm

= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCS$558: Applied Distributed Computing [Winter 2020]
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

= Which algorithm(s) involve blocking when a resource is
not available?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCSS558: Applied Distributed Computing [Winter 2020]
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

= Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

March 10, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of
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ELECTION ALGORITHMS

= Many distributed systems require one process to act as a
coordinator, initiator, or provide some special role

= Generally any node (or process) can take on the role
= In some situations there are special requirements
= Resource requirements: compute power, network capacity
= Data: access to certain data/information

= Assumption:
= Every node has access to a “node directory”
= Process/node ID, IP address, port, etc.
= Node directory may not know “current” node availability

= Goal of election: at conclusion all nodes agree on a
coordinator

March 10, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of
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DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 3

= Which algorithm(s) involve arriving at a consensus to
determine whether a node should be granted access to a
resource?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCS5558: Applied Distributed Computing [Winter 2020]

WELE 0 AT Sehoalor T TRy T

=

44

CH. 6.4: ELECTION
ALGORITHMS

46

ELECTION ALGORITHMS

= Consider a distributed system with N processes (or nodes)
= Every process has an identifier id(P)

= Election algorithms attempt to locate the highest
numbered process to designate as coordinator

= Algorithms:

= Bully algorithm

= Ring algorithm

= Elections in wireless environments
= Elections in large-scale systems

TCS5558: Applied Distributed Computing [Winter 2020]
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BULLY ALGORITHM

= When any process notices the coordinator is no longer
responding to requests, it initiates an election
" Process P, initiates an election as follows:
1. P,sends an ELECTION message to all processes with higher
process IDs (Py.q, Pyi2, - Pn.1)
2. If no one responds, P, wins the election and becomes
coordinator
3. If a “higher-up” process answers (P.,), it will take over and
run the election. P, will quit sending ELECTION messages.
= When the higher numbered process receives an ELECTION
message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

TCS5558: Applied Distributed Computing [Winter 2020]
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BULLY ALGORITHM - 3

[1] Process 4
starts an election

[4] Process 6 tells
Process 5 to stop

[2] Process 5 and

6 respond @ e

[5] Process 6 wins
and tells everyone

[3] Process 5 and
6 each hold an @ @
election ®

TCSS558: Applied Distributed Computing [Winter 2020]
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RING ALGORITHM

= Election algorithm based on a network of nodes in logical ring
= Does not use a token

= Any process (P,) starts the election by noticing the coordinator
is not functioning

1. Py builds an election message, and sends to its successor in
the ring

= If successor is down, successor is skipped
= Skips continue until a running process is found

2. When the election message is passed around, each node

adds its ID to a separate active node list

3. When electlon message returns to P,, P, recognizes its own

identifier in the actlve node llst. Message is changed to
COORDINATOR and “elected(P,)” message is circulated.

= Second message announces P, is the NEW coordinator

TCS5558: Applied Distributed Computing [Winter 2020]
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BULLY ALGORITHM - 2

= The higher numbered process then holds an election with only
higher numbered processes (nodes).

= Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

= The coordinator announces victory by sending all processes a
message stating it is starting as the coordinator.

= |f a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

= The process with the “biggest” ID in town always wins.

= Hence the name, bully algorithm

TCSS558: Applied Distributed Computing [Winter 2020]
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BULLY ALGORITHM - 4

= Every node knows who is participating in the distributed
system

= Each node has a group membership directory

= First process to notice the leader is offline launches a new
election

® GOAL: Find the highest number node that is running
= Loop over the nodes until the highest numbered node is found

= May require multiple election rounds

= Highest numbered node is always the “BULLY”

TCSS558: Applied Distributed Computing [Winter 2020]
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RING: MULTIPLE ELECTION EXAMPLE

60.1] 60.12] [6.0.1.23]

M 3456011 (3456012

iB.4560] [6.0.12,34]
/ e 14581
| —

] [60.12.34.5

L

= PROBLEM: Two nodes start election at the same time: P and Pg
= P, sends ELECT(P;) message, P, sends ELECT(Pg) message
= Pzand Pgboth circulate ELECTION messages at the same time
= Also circulated with ELECT message is an actlve node list
= Each node adds itself to the actlve node lIst
= Each node votes for the highest numbered candidate
Pg wins the election because it’s the candidate with the highest ID
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ELECTIONS WITH WIRELESS NETWORKS

= Assumptions made by traditional election algorithms not
realistic for wireless environments:

= >>> Message passing is reliable
= >>> Topology of the network does not change

= A few protocols have been developed for elections in ad
hoc wireless networks

= Vasudevan et al. [2004] solution handles failing nodes
and partitioning networks.

= Best leader can be elected, rather than just a random one

March 10, 2020
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VASUDEVAN ET AL. WIRELESS ELECTION

1. Any node (source) (P) starts the electlon by sending an ELECTION
message to immediate neighbors (any nodes in range)
2. Receiving node (Q) designates sender (P) as parent
3. (Q) Spreads election message to neighbors, but not to parent
4. Node (R), receives message, designates (Q) as parent, and
spreads ELECTION message to neighbors, but not to parent
5. Neighbors that have already selected a parent immediately
respond to R.
= If all neighbors already have a parent, R is a leaf-node and will report
back to Q quickly.
= When reporting back to Q, R includes metadata regarding battery life
and resource capacity
6. Q eventually acknowledges the ELECTION message sent by P, and
also indicates the most eligible node (based on battery &
resource capacity)

TCSS558: Applied Distributed Computing [Winter 2020]
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Node [A]
initiates election:
find the highest capacity|

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then
facilitates Node H
becoming leader

WIRELESS ELECTION - 2

SOURCE NODE: [A]

March 10, 2020
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WIRELESS ELECTION - 3

= When multiple elections are initiated, nodes only join one

= Source node tags its ELECTION message with unique
identifier, to uniquely identify the election.

= With minor adjustments protocol can operate when the
network partitions, and when nodes join and leave
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ELECTIONS FOR LARGE-SCALE SYSTEMS

= Large systems often require several nodes to serve as

coordinators/leaders

= These nodes are considered “super peers”
= Super peers must meet operational requirements:

il

28

Network latency from normal nodes to super peers must
be low

Super peers should be evenly distributed across the
overlay network (ensures proper load balancing,
availability)

. Must maintain set ratio of super peers to normal nodes
. Super peers must not serve too many normal nodes
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ELECTIONS FOR DHT BASED SYSTEMS

= DHT-based systems use a bit-string to identify nodes

= Basic Idea: Reserve fraction of ID space for super peers

= Reserve first log,(N) bits for super-peer IDs

" m=number of bits of the identifier

= k=# of nodes each node is responsible for (Chord system)

= Example:

= For a system with m=8 bit identifier, and k=3 keys per
node

= Required number of super peers is 2k-™*N, where N is
the number of nodes
=In this case N=32

= Only 1 super peer Is requlred for every 32 nodes
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SUPER PEERS IN
AN M-DIMENSIONAL SPACE

= Given an overlay network, the idea is to position
superpeers throughout the network so they are evenly
disbursed

= Use tokens:

= Give N tokens to N randomly chosen nodes

= No node can hold more than (1) token

= Tokens are “repelling force”. Other tokens move away
= All tokens exert the same repelling force

= This automates token distribution across an overlay
network

March 10, 2020 L1861
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OVERLAY TOKEN DISTRIBUTION

= Gossping protocol is used to disseminate token location and
force information across the network

= |f forces acting on a node with a token exceed a threshold,
token is moved away

= Once nodes hold token for awhile they become superpeers

A

B
C}\ Token-holding node
Repulsion "R

force of Aon C O Normal node

Resulting movement by which
the token at C is passed to another node
Node D will become token holder —0O b
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QUESTIONS
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RESEARCH DIRECTIONS
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CEEET I School of Engineering and Technology, University of Washington -

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

= Meetings on Wednesdays from 12 (12:30) to 1:30pm
= MDS 202
= MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (laaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.
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DIRECTIONAL GOSSIPING

= Taking network topology into account can help

= When gossiping, nodes connected to only a few other
nodes are more likely to be contacted

‘ March 10, 2020 TCS5558: Applied Distributed Computing [Winter 2020] .

School of Engineering and Technology, University of Washington - Tacoma

67

ADAPTED REFERENCE MODEL

Application protocol
Application | |@---mmmommmmm oo «
. Middleware protocol
Middleware < > «
I I
Operating - Host-to-host protocol Combines network
system and transport

Physical/Link-level protocol

Hardware < > Physical and
Data link
Network
TCSS558: Applied Distributed Computing [Winter 2020]
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CHORD SYSTEM - 2

= Keys have m-bits

" m=3 Index points to
0+29 1 Keys:
= Always pass query 0+21 3 5,6
for key k to index ~_ o+2? 0
= 6‘\_\‘—mﬁms to

3 3
// \
/ S 0
= Example: key (k=7) V 6 2]

= Query arrives at (0) \

= 0: > (index=4, pass 5 3 —
to 0), key 7 is - nd i

adjacent

in the finger table = p
that is not greater /7 = %\ 3| 3 Keys:
than k L T 1

Index points to
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LANGUAGE BASED SUPPORT

= Leads to simpler application development

= Helps with providing access transparency
= Differences in data representation, and how object is
accessed
= Inter-language parameter passing issues resolved:
- just 1 language

= Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java
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CHORD SYSTEM - FINGER TABLE

= Each node keeps maintains a finger table with m entries
= m is the number of bits in the hash key
= Distance of the entries increases exponentially
= Contents of each node’s finger table:
for i=0 to m-1
finger table entry for node n:
index: n+2i 2 points to: n+2' mod 2™
= The first entry of finger table is the node's immediate
successor (an extra successor field is not needed).
= Each time a node looks up a key k, it passes the query to the
closest node to k in the finger table that is not greater than k
= With finger tables, the number of nodes contacted to find a
successor in an N-node network is O(log N).
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CHORD SYSTEM - 2

= Example (k=7)
= Query arrives at (1)
= 1: - (index=5, pass
to 0), key 7 is
adjacent
= Query arrives at (3)
= 1: > (index=7, pass / R 7

to 0), key 7 is b
adjacent | 1 |
- o
\ /
= Example (k=6) s 1/ — | 4 0 Keys:
4 s 0 2
S 7] o
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