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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Assignment 2 - questions

 Feedback from 3/3

Chapter 6.2: Vector Clocks

Chapter 6.3: Distributed Mutual Exclusion

Class Activity – Causality and Vector Clocks

Chapter 6.4: Election Algorithms
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OBJECTIVES

 Please classify your perspective on material covered in today’s 
class:

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.6 ( - )

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.2 ( )
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MATERIAL / PACE
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FEEDBACK FROM 3/3

 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method 

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic 
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically 
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking  = +15 pts (Static fi le 
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le 
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static 
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)
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SHORT-HAND-CODES FOR MEMBERSHIP 
TRACKING APPROACHES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)
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CH. 6.2: LOGICAL
CLOCKS

L17.7

 Lamport clocks don’t help to determine causal ordering of 
messages

 Vector clocks capture causal histories and can be used as an 
alternative

 But what is causality? …
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VECTOR CLOCKS

 Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A .

 When one event results from another, there is a causal 
relationship between the two events. 

 This is also referred to as cause and effect.
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WHAT IS CAUSALITY?

Proc 1

Proc 2

A         B        C

D                      E

m1

 Disclaimer:

 Without knowing actual information contained in messages, it 
is not possible to state with certainty that there is a causal 
relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…
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CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is  sending m3 causally dependent on receiving m2?
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CAUSALITY - 3

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the 
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 5, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

VECTOR CLOCKS
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 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded 
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)
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VECTOR CLOCKS - 2

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the  
received message

 Pj learns how many events have occurred at other processes 
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 
message(s) to be sent…
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VECTOR CLOCKS - 3

 Local clock is underlined
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VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2
 Is  m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events
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VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:
 The sending of message m3 is causally dependent on the 

sending of message m1.
 The sending of message m2 is causally dependent on the 

sending of message m1.
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VECTOR CLOCKS EXAMPLE - 4
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 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.
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VECTOR CLOCKS EXAMPLE - 5

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L17.20

 Coordinating access among distributed processes to a 
shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid
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TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated 
around ring
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TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a 
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message 
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring
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TOKEN-RING CHALLENGES
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Permission-based algorithms
 Processes must require permission from other processes 

before first acquiring access to the resource
 CONTRAST: Token-ring did not ask nodes for permission 

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 
resource(s)

 Manage mutual exclusion on a distributed system similar 
to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS - 3

 When resource not available, coordinator can block the 
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives
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CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

March 5, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK ( if  the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. I f  node is  also waiting to access the resource: perform a 
timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership 
list of the distributed system
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DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of  confl ict, lowest t imestamp wins!
 Node 2 rejects its own request (1@) in favor of node 0 (8)
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DISTRIBUTED ALGORITHM - 3
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 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource, 
it does not respond

 Lack of response can be confused with failure

 Possible Solution: When node receives request for 
resource it is accessing, always send a reply either 
granting or denying permission (ACK)

 Enables requester to determine when nodes have died
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node 
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement 
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed 
when a s imple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement
 If one node gets majority of acknowledges no other can
 Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes
 When memberships rarely change
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator      …(N coordinators)

 Accessing resource requires majority vote: 
total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give 
permission to access a resource (because it is busy) it will 
inform the requester
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DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers 
quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 
permission to the shared resource, and on recovery it errantly 
grants permission again

 The Hope: if coordinator crashes, upon recovery , the node 
granted access to the resource has already f inished before the 
restored coordinator grants access again . . .
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DECENTRALIZED ALGORITHM - 2

 With 99.167% coordinator availability (30 sec downtime/hour) 
chance of violating correctness is  so low it can be neglected in 
comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to 
access resource, which requires time
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 
process can poll to gain access again with a random delay 
(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource, 
majority vote can lead to low resource utilization

 No one can achieve majority vote to obtain access to the 
shared resource

 Mimics elections where with too many candidates, where no 
one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4
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 Which algorithm offers the best scalability to support 
distributed mutual exclusion in a large distributed 
system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is 
not available? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus to 
determine whether a node should be granted access to a 
resource? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure, 
where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW - 4

CH. 6.4: ELECTION 
ALGORITHMS

L17.41

1

 Many distributed systems require one process to act as a 
coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements 

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a 
coordinator
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ELECTION ALGORITHMS
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 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest 
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems
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ELECTION ALGORITHMS

 When any process notices the coordinator is no longer 
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher 

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes 

coordinator
3. If a “higher-up” process answers (Pk+n), it will take over and 

run the election. Pk will quit sending ELECTION messages.
 When the higher numbered process receives an ELECTION 

message from a lower-numbered colleague, it responds 
with “OK”, indicating it’s alive, and it takes over the 
election.
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BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining 
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a 
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes 
back up, it holds an election, and ultimately takes over the 
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm
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BULLY ALGORITHM - 2
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BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4 
starts an election

[2] Process 5 and
6 respond

[3] Process 5 and 
6 each hold an 
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins 
and tells everyone

Note that node 7 has failed…

 Every node knows who is participating in the distributed 
system
 Each node has a group membership directory

 First process to notice the leader is offline launches a new 
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”
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BULLY ALGORITHM - 4

 Election algorithm based on a network of nodes in logical ring
 Does not use a token
 Any process (Pk) starts the election by noticing the coordinator 

is not functioning
1. Pk builds an election message, and sends to its successor in 

the ring
 If successor is down, successor is skipped
 Skips continue until a running process is found

2. When the election message is passed around, each node 
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own 
identifier in the active node l ist .  Message is changed to 
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator
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RING ALGORITHM
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 PROBLEM: Two nodes start election at the same time: P3 and P6

 P3  sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is an act ive node l ist

 Each node adds itself to the active node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the h ighest ID
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RING: MULTIPLE ELECTION EXAMPLE

 Assumptions made by traditional election algorithms not 
realistic for wireless environments:

 >>> Message passing is reliable

 >>> Topology of the network does not change

 A few protocols have been developed for elections in ad 
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes 
and partitioning networks.

 Best leader can be elected, rather than just a random one
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ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the e lection by sending an ELECTION 
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors,  but not to  parent

4. Node (R), receives message, designates (Q) as parent, and 
spreads ELECTION message to neighbors,  but not to  parent

5. Neighbors that have already selected a parent immediately 
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report 

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life 
and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and 
also indicates the most eligible node (based on battery & 
resource capacity)
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VASUDEVAN ET AL. WIRELESS ELECTION

Node [A] 
initiates election:
f i n d t he  h i ghest  c a pacit y

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then 
facilitates Node H
becoming leader
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WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique 
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the 
network partitions, and when nodes join and leave
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WIRELESS ELECTION - 3

 Large systems often require several nodes to serve as 
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must 
be low

2. Super peers should be evenly distributed across the 
overlay network (ensures proper load balancing, 
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes
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ELECTIONS FOR LARGE-SCALE SYSTEMS
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 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 Reserve first log2(N) bits for super-peer IDs
 m=number of bits of the identifier 
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per 

node
 Required number of super peers is 2(k – m) ▪ N, where N is 

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes
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ELECTIONS FOR DHT BASED SYSTEMS

 Given an overlay network, the idea is to position 
superpeers throughout the network so they are evenly 
disbursed 

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”.  Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay 
network
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SUPER PEERS IN 
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and 
force information across the network

 If forces acting on a node with a token exceed a threshold, 
token is moved away

 Once nodes hold token for awhile they become superpeers
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OVERLAY TOKEN DISTRIBUTION QUESTIONS
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