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OBJECTIVES

 Please classify your perspective on material covered in today’s 
class:

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.6

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.1
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MATERIAL / PACE

 With regards to  locking a key/value pair,  do you mean that I  have to  
prevent other nodes from sending in  a "del" command to  the 
t ransaction leader server node when the key/value pair is "locked"?
 For “del” command, leader sends ddel1 to every node

 Can the leader ensure other nodes don’t send a “ddel1” request?

 When a leader starts a transaction they start by locking the key, 
and sending "dput1" or "ddel1" to all known nodes. 

 If the leader receives a "ddel1" or "dput1" for the same key while it  
is locked, they reject it  (ABORT).  Sending ABORT to a leader 
cancels the second transaction across the distributed system.

 The original transaction continues to be processed.

 If every node acknowledges the “dput1/ddel1”, the leader proceeds 
to "dput2" or "ddel2“ to commit data changes to every node
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FEEDBACK FROM 2/27

 How does locking work in the two-phase commit protocol?

 The first phase establishes locks the key/value pair at every 
node

 Every node sends the transaction leader an ACK 
(acknowledgement message)

 If even just one node sends an ABORT, the leader will send 
dputabort (ddelabort) to all nodes to cancel the transaction

 The first phase causes the key/value pair to become globally 
locked across the distributed system once complete

 During the second phase, the transaction is committed (data 
changes are written) at every node.

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

FEEDBACK - 2

 One weakness in our protocol for assignment #2 is that we 
don't support aborting the transaction in the second phase.

 When the leader sends dput2 to every node, we assume that 
every node will successfully make the commit.

 How could the two-phase commit protocol be modif ied to 
abort a transaction that fails during dput2?
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FEEDBACK - 3
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 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method 

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic 
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically 
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking  = +15 pts (Static fi le 
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le 
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static 
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)
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SHORT-HAND-CODES FOR MEMBERSHIP 
TRACKING APPROACHES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)
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CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL
CLOCKS

L16.9

 In distributed systems, synchronizing to actual t ime may not be 
required…

 It may be sufficient for every node to simply agree on a current 
t ime  (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological 
and causal relationships in a distributed system

 Think counters .  .  .  

 Leslie Lamport [1978] seminal paper showed that absolute clock 
synchronization often is not required

 Processes simply need to agree on the order in which events occur
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LOGICAL CLOCKS

 Happens-before relation

 AB:  Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. .  .  

 If event A is the event of proc P1 sending a msg to a proc P2, 
and event B is the event of proc P2 receiving the msg, then 
AB is also true. . . 

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 AB, BC, therefore AC
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LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange 
messages, not even via third parties, then the sequence of 
XY vs. YX  can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events 
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never 
backward (decreasing)

 Corrections to time can be made by adding a positive value, 
but never by subtracting one
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LOGICAL CLOCKS – 3
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 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time
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LOGICAL CLOCKS - 4

 Events: 

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70
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LOGICAL CLOCKS

 Negative values not possible
 When a message is received, and the local clock is before the 

timestamp when then message was sent, the local clock is 
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message, 
receiving a message, some other internal event 
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci 

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j;  <40,i>  < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID 
J (winner) is greater than i, alphabetically 
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LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed
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TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1, m2) must be distributed,
to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 
Lamport clock timestamp

 In each queue, each message must be acknowledged by every 
process in the system before operations can be applied to the 
local database
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TOTAL-ORDERED MULTICASTING 
EXAMPLE

 Two messages (m1, m2) must be distributed,
to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 
Lamport clock timestamp

 In each queue, each message must be acknowledged by every 
process in the system before operations can be applied to the 
local database
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TOTAL-ORDERED MULTICASTING 
EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

13 14

15 16

17 18
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TOTAL-ORDERED MULTICASTING EXAMPLE
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TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

 Each message timestamped with local logical clock of sender
 Multicast messages are also received by the sender ( itself)
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered 
by timestamp

 Receiver multicasts acknowledgement of message receipt to 
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when 
message at the head of the queue has been acknowledged by 
every process in the system
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TOTAL-ORDERED MULTICASTING - 2

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement 
messages, allows for events to be “total ly” ordered in 
replicated event queues  

 Events can be applied “in order” to each (distributed) 
replicated state machine (RSM)
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TOTAL-ORDERED MULTICASTING - 3

 Lamport clocks don’t help to determine causal ordering of 
messages

 Vector clocks capture causal histories and can be used as an 
alternative

 But what is causality? …
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VECTOR CLOCKS

 Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A .

 When one event results from another, there is a causal 
relationship between the two events. 

 This is also referred to as cause and effect.
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WHAT IS CAUSALITY?

Proc 1

Proc 2

A         B        C

D                      E

m1

19 20

21 22

23 24
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 Disclaimer:

 Without knowing actual information contained in messages, it 
is not possible to state with certainty that there is a causal 
relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…
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CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is  sending m3 causally dependent on receiving m2?
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CAUSALITY - 3

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the 
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process
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VECTOR CLOCKS

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded 
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)
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VECTOR CLOCKS - 2

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the  
received message

 Pj learns how many events have occurred at other processes 
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 
message(s) to be sent…
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VECTOR CLOCKS - 3

 Local clock is underlined
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VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

25 26

27 28

29 30
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 P3 can’t determine if m4 may be causally dependent on m2
 Is  m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events
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VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:
 The sending of message m3 is causally dependent on the 

sending of message m1.
 The sending of message m2 is causally dependent on the 

sending of message m1.

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.
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VECTOR CLOCKS EXAMPLE - 5

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L16.35

 Coordinating access among distributed processes to a 
shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS
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 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid
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TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated 
around ring
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TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a 
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message 
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring
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TOKEN-RING CHALLENGES

Permission-based algorithms
 Processes must require permission from other processes 

before first acquiring access to the resource
 CONTRAST: Token-ring did not ask nodes for permission 

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 
resource(s)

 Manage mutual exclusion on a distributed system similar 
to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS - 3

 When resource not available, coordinator can block the 
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives
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CENTRALIZED MUTUAL EXCLUSION - 2
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 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost
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DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK ( if  the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. I f  node is  also waiting to access the resource: perform a 
timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership 
list of the distributed system
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DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of  confl ict, lowest t imestamp wins!
 Node 2 rejects its own request (1@) in favor of node 0 (8)
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DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource, 
it does not respond

 Lack of response can be confused with failure

 Possible Solution: When node receives request for 
resource it is accessing, always send a reply either 
granting or denying permission (ACK)

 Enables requester to determine when nodes have died
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node 
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement 
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed 
when a s imple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement
 If one node gets majority of acknowledges no other can
 Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes
 When memberships rarely change
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator      …(N coordinators)

 Accessing resource requires majority vote: 
total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give 
permission to access a resource (because it is busy) it will 
inform the requester
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DECENTRALIZED ALGORITHM
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 Assumption #2: When a coordinator crashes, it recovers 
quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 
permission to the shared resource, and on recovery it errantly 
grants permission again

 The Hope: if coordinator crashes, upon recovery , the node 
granted access to the resource has already f inished before the 
restored coordinator grants access again . . .
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DECENTRALIZED ALGORITHM - 2

 With 99.167% coordinator availability (30 sec downtime/hour) 
chance of violating correctness is  so low it can be neglected in 
comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to 
access resource, which requires time
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 
process can poll to gain access again with a random delay 
(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource, 
majority vote can lead to low resource utilization

 No one can achieve majority vote to obtain access to the 
shared resource

 Mimics elections where with too many candidates, where no 
one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4

 Which algorithm offers the best scalability to support 
distributed mutual exclusion in a large distributed 
system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is 
not available? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus to 
determine whether a node should be granted access to a 
resource? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW - 3
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 Which algorithm(s) have N points of failure, 
where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS REVIEW - 4 QUESTIONS
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