
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.1

Chapter 6 - Coordination

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment 2 - questions

 Feedback from 2/27

Chapter 6: Coordination

Chapter 6.2: Logical Clocks
Vector Clocks

Class Activity – Total Ordered Multicasting

Chapter 6.3: Distributed Mutual Exclusion

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

 Please classify your perspective on material covered in today’s
class:

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.6

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.1

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

MATERIAL / PACE

 With regards to locking a key/value pair, do you mean that I have to
prevent other nodes from sending in a "del" command to the
t ransaction leader server node when the key/value pair is "locked"?
 For “del” command, leader sends ddel1 to every node

 Can the leader ensure other nodes don’t send a “ddel1” request?

 When a leader starts a transaction they start by locking the key,
and sending "dput1" or "ddel1" to all known nodes.

 If the leader receives a "ddel1" or "dput1" for the same key while it
is locked, they reject it (ABORT). Sending ABORT to a leader
cancels the second transaction across the distributed system.

 The original transaction continues to be processed.

 If every node acknowledges the “dput1/ddel1”, the leader proceeds
to "dput2" or "ddel2“ to commit data changes to every node

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

FEEDBACK FROM 2/27

 How does locking work in the two-phase commit protocol?

 The first phase establishes locks the key/value pair at every
node

 Every node sends the transaction leader an ACK
(acknowledgement message)

 If even just one node sends an ABORT, the leader will send
dputabort (ddelabort) to all nodes to cancel the transaction

 The first phase causes the key/value pair to become globally
locked across the distributed system once complete

 During the second phase, the transaction is committed (data
changes are written) at every node.

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

FEEDBACK - 2

 One weakness in our protocol for assignment #2 is that we
don't support aborting the transaction in the second phase.

 When the leader sends dput2 to every node, we assume that
every node will successfully make the commit.

 How could the two-phase commit protocol be modif ied to
abort a transaction that fails during dput2?

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

FEEDBACK - 3

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.2

 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

SHORT-HAND-CODES FOR MEMBERSHIP
TRACKING APPROACHES

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL
CLOCKS

L16.9

 In distributed systems, synchronizing to actual t ime may not be
required…

 It may be sufficient for every node to simply agree on a current
t ime (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological
and causal relationships in a distributed system

 Think counters . . .

 Leslie Lamport [1978] seminal paper showed that absolute clock
synchronization often is not required

 Processes simply need to agree on the order in which events occur

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

LOGICAL CLOCKS

 Happens-before relation

 AB: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,
and event B is the event of proc P2 receiving the msg, then
AB is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 AB, BC, therefore AC

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange
messages, not even via third parties, then the sequence of
XY vs. YX can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never
backward (decreasing)

 Corrections to time can be made by adding a positive value,
but never by subtracting one

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

LOGICAL CLOCKS – 3

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.3

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

LOGICAL CLOCKS - 4

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

LOGICAL CLOCKS

 Negative values not possible
 When a message is received, and the local clock is before the

timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message,
receiving a message, some other internal event
Pi increments Ci: Ci Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID
J (winner) is greater than i, alphabetically

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1, m2) must be distributed,
to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the
Lamport clock timestamp

 In each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

TOTAL-ORDERED MULTICASTING
EXAMPLE

 Two messages (m1, m2) must be distributed,
to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the
Lamport clock timestamp

 In each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

TOTAL-ORDERED MULTICASTING
EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.4

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

 Each message timestamped with local logical clock of sender
 Multicast messages are also received by the sender (itself)
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

TOTAL-ORDERED MULTICASTING - 2

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “total ly” ordered in
replicated event queues

 Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

TOTAL-ORDERED MULTICASTING - 3

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 But what is causality? …

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A .

 When one event results from another, there is a causal
relationship between the two events.

 This is also referred to as cause and effect.

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.24

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.5

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

CAUSALITY - 3

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

VECTOR CLOCKS

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

VECTOR CLOCKS - 3

 Local clock is underlined

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.6

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:
 The sending of message m3 is causally dependent on the

sending of message m1.
 The sending of message m2 is causally dependent on the

sending of message m1.

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

VECTOR CLOCKS EXAMPLE - 5

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L16.35

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.7

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated
around ring

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

TOKEN-RING CHALLENGES

Permission-based algorithms
 Processes must require permission from other processes

before first acquiring access to the resource
 CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared
resource(s)

 Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS - 3

 When resource not available, coordinator can block the
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

CENTRALIZED MUTUAL EXCLUSION - 2

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.8

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. I f node is also waiting to access the resource: perform a
timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership
list of the distributed system

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of confl ict, lowest t imestamp wins!
 Node 2 rejects its own request (1@) in favor of node 0 (8)

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,
it does not respond

 Lack of response can be confused with failure

 Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

 Enables requester to determine when nodes have died

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

CHALLENGES WITH
DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a s imple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement
 If one node gets majority of acknowledges no other can
 Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes
 When memberships rarely change

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:
total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

DECENTRALIZED ALGORITHM

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.9

 Assumption #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

 The Hope: if coordinator crashes, upon recovery , the node
granted access to the resource has already f inished before the
restored coordinator grants access again . . .

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

DECENTRALIZED ALGORITHM - 2

 With 99.167% coordinator availability (30 sec downtime/hour)
chance of violating correctness is so low it can be neglected in
comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to
access resource, which requires time

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

 No one can achieve majority vote to obtain access to the
shared resource

 Mimics elections where with too many candidates, where no
one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

DECENTRALIZED ALGORITHM - 4

 Which algorithm offers the best scalability to support
distributed mutual exclusion in a large distributed
system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is
not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus to
determine whether a node should be granted access to a
resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 3

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

March 3, 2020

Slides by Wes J. Lloyd L16.10

 Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 4 QUESTIONS

March 3, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L16.56

55 56

