
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.1

Chapter 4 – Communication
Chapter 6 - Coordination

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment 2 - questions

 Feedback from 2/25

Chapter 4.4: Multicast Communication

Chapter 6: Coordination

Chapter 6.1: Clock Synchronization

Chapter 6.2: Logical Clocks

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OBJECTIVES

 Please classify your perspective on material covered in today’s
class (8 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.875

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.5

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

MATERIAL / PACE

What is client polling?

 Types of asynchronous RPC:

 Client polling
 Client (using separate thread) continually polls server for result

 When making an asynchronous RPC call, create a separate
thread that is dedicated to querying the server if it has the
result.

 Polling will repeatedly query the server at repeating intervals
(e.g. every 10 seconds) to see if the result is available

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

FEEDBACK FROM 2/25

 Assignment #2

 A server takes a port number and a membership server por t?
Can you describe the di f ference of these 2 por t numbers?

 For the TCP membership server option:
 # New TCP server startup CLI:

 java -jar GenericNode.jar ts <listen-port>
<membership-server-IP>

 You may use a HARD CODED port for the membership server
For example: por t 4410.

 To deploy, f irst launch the membership server (single-node TCP key-
value store) to listen on a special por t (e.g. 4410).

 If using Docker check membership server’s IP address

 When launching all nodes include the membership-server IP address
 If not using docker, just specify “localhost” - nodes assume port 4410

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

FEEDBACK - 2

 In-progress transactions should be written to a data structure
that is synchronized to prevent concurrent writes to the same
key.

 Only one transaction, can change a given key, at a time

 Will all server nodes need access to this data structure?

 Every server node maintains its own data structure that stores
key-value pairs

 The two-phase commit protocol is used to synchronize key-
pairs to every node’s data local store

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK - 3

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.2

 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

SHORT-HAND-CODES FOR MEMBERSHIP
TRACKING APPROACHES

CH. 4 COMMUNICATION

L15.8

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

Apache Act i veMQ

CH. 4.4: MULTICAST
COMMUNICATION

L15.10

 For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a
deterministic topology

 Schlosser et al [2002] – offer simple and efficient
broadcasting scheme that relies on keeping track of neighbors
per dimension

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

MESSAGE FLOODING

 Hypercube Broadcast
 N(1001) starts the network broadcast
 N(1001) neighbors {0001,1000,1011,1101}
 N(1001) Sends message to all neighbors
 >>Edge Labels (which bit is changed?, 1st, 2nd, 3 rd, 4 th…)
 Edge to 0001 – labeled 1 – change the 1st bit
 Edge to 1000 – labeled 4 – change the 4th bit
 Edge to 1011 – labeled 3 – change the 3rd bit
 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension
 Node 1101 receives message on edge labeled 2
 Broadcast msg is only forwarded on higher valued edges (>2)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

MESSAGE
FLOODING - 2

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.3

 Hypercube: forward msg along edges with higher dimension
 Node(1101)–neighbors {0101,1100,1001,1111}
 Node (1101) - incoming broadcast edge = 2
 Label Edges:
 Edge to 0101 – labeled 1 – change the 1st bit
 Edge to 1100 – labeled 4 – change the 4th bit *<FORWARD>*
 Edge to 1001 – labeled 2 – change the 2nd bit
 Edge to 1111 – labeled 3 – change the 3rd bit *<FORWARD>*
 N(1101) broadcast – forward only to N(1100) and N(1111)
 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions of hypercube

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

 Goal: “infect” all nodes with new information as fast as
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the
network to propagate the network

Complete set of nodes is known to each member

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

EPIDEMIC PROTOCOLS

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 PUSH: P only pushes its own updates to Q
 PULL: P only pulls in new updates from Q
 T WO-WAY: P and Q send updates to each other

(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

ANTI ENTROPY DISSEMINATION MODEL
FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received
msg m after the ith round.

 For pull, push, and push-pull
based approaches:

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

ANTI ENTROPY EFFECTIVENESS

10,000 nodes

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.4

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another
node

 Node P may loose interest in spreading the rumor with
probability = pstop, let’s say 20% . . . (or 0.20)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

RUMOR SPREADING

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P stops propagating when finding
a node already having the message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required
for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds
the death certificate for Item X

 Node P will recirculate the death certificate across the
network for Item X

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

DEATH CERTIFICATE EXAMPLE

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities

in the distributed system

 Encapsulates synchronization

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

CHAPTER 6 - COORDINATION

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.5

 Synchronization challenges begin with t ime:

 How can we synchronize computers, so they all agree on
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it
is often sufficient to only agree on a relative ordering of
events

 E.g. not actual time

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordination problems:
 Aggregation
 Peer sampling
 Overlay construction

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

COORDINATION - 3

CH. 6.1: CLOCK
SYNCHRONIZATION

L15.27

 Example:

 “make” is used to compile source files into binary object and
executable files

 As an optimization, make only compiles files when the “last
modified time” of source files is more recent than object and
executables

 Consider if files are on a shared disk of a distributed system
where there is no agreement on time

 Consider if the program has 1,000 source files

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

CLOCK SYNCHRONIZATION

 Updates from different machines, may have clocks set to
different times

 Make becomes confused with which files to recompile

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

TIME SYNCHRONIZATION PROBLEM
FOR DISTRIBUTED SYSTEMS

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60

times a second, or another frequency to track time

1960s ERA radio crystal

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.6

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly different rates

 Time differences accumulate as clocks
drift forward or backward slightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant

transitions of the non-radioactive caesium-133 atom
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to

coordination issues
 Operating systems may translate to show local time

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

UNIVERSAL COORDINATED TIME

How do we synchronize computer clocks with
real-world clocks?

How do we synchronize computer clocks with
each other?

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time
accuracy to 50ns

 Time servers: Server computers with UTC receivers that
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock dri ft: clocks on different machines gradually become
out of sync due to crystal imperfections, temperature
differences, etc.

 Clock dri ft rate: typical is 31.5s per year

 Maximum clock dri ft rate (): clock specifications include one
February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L15.34

CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions,
after time t after synchronization, they may be 2 apart.

 - clock drift rate, - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of
time for servers

 Leverage distributed network
of time servers

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

NETWORK TIME PROTOCOL

Atomic
clocks

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.7

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

NTP - 2

 Cannot set clocks backwards (recall “make” file example)
 Instead, temporarily slow the progress of time to allow fast

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of time until synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp start)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

NTP - 3

 Berkeley time daemon server actively polls network to
determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks
to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization
 Address resource constraints: limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to
adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider t ime spent waiting in
NIC for message to send
 Wireless network resource contention may force wait before message

even can be sent

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

CLOCK SYNCHRONIZATION
IN WIRELESS NETWORKS

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate
mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently
synchronizing clocks to save energy

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

REFERENCE BROADCAST
SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drift apart

 Averages become less precise

 Elson et al. propose using standard linear regression to
predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear
regression to continuously refine a formula with coefficients
to predict time offsets:

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

REFERENCE BROADCAST
SYNCHRONIZATION (RBS) - 2

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.8

CH. 6.2: LOGICAL
CLOCKS

L15.43

 In distributed systems, synchronizing to actual t ime may not be
required…

 It may be sufficient for every node to simply agree on a current
t ime (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological
and causal relationships in a distributed system

 Think counters . . .

 Leslie Lamport [1978] seminal paper showed that absolute clock
synchronization often is not required

 Processes simply need to agree on the order in which events occur

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

LOGICAL CLOCKS

 Happens-before relation

 AB: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,
and event B is the event of proc P2 receiving the msg, then
AB is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 AB, BC, therefore AC

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange
messages, not even via third parties, then the sequence of
XY vs. YX can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never
backward (decreasing)

 Corrections to time can be made by adding a positive value,
but never by subtracting one

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

LOGICAL CLOCKS - 4

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

LOGICAL CLOCKS

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.9

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message,
receiving a message, some other internal event
Pi increments Ci: Ci Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1, m2) must be distributed,
to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the
lamport clock timestamp

 In each queue, each message must acknowledged by every
process in the system before operations can be applied to the
local database

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

TOTAL-ORDERED MULTICASTING
EXAMPLE

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

 Each message timestamped with local logical clock of sender
 Multicast message is conceptually “sent” to the sender (itself)
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

TOTAL-ORDERED MULTICASTING - 2

 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “total ly” ordered in
replicated event queues

 Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

TOTAL-ORDERED MULTICASTING - 3

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.10

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 What is causality?

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

VECTOR CLOCKS

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

WHAT IS CAUSALITY?

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock H(q2) = (3,2)

 Each entry corresponds to the last event at the process

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

VECTOR CLOCKS

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

VECTOR CLOCKS - 3

 Local clock is underlined

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 27, 2020

Slides by Wes J. Lloyd L15.11

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

VECTOR CLOCKS - 4

QUESTIONS

February 27, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.63

61 62

63

