TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Chapter 4 - Processes

Wes J. Lloyd

School of Engineering
and Technology

University of Washington - Tacoma

February 20, 2020

OBJECTIVES

= Midterm Review
mAssignment 1 - questions
" Feedback from 2/13

= Chapter 4: Communication
= Chapter 4.1: Foundations

= Chapter 4.2: Remote Procedure Call

= Chapter 4.3: Message Oriented Communication

TCS5558: Applied Distributed Computing [Winter 2020]

(e AL, Y Sehoalor T TRy T

32

MATERIAL / PACE

class (7 respondents):

= Average - 5.14

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.14

= 1-mostly review, 5-equal new/review, 10-mostly new

= Please classify your perspective on material covered in today’s

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i

‘ February 20, 2020

Tacoma

uss

FEEDBACK FROM 2/13

February 20, 2020 TCSS558: Applied Distributed Computing [_Wilmher zluzu])

School of Engineeri

Tacoma

36

|
N

CH: 4.

Slides by Wes J. Lloyd

CHAPTER 4

® 4.1 Foundations
= Protocols
= Types of communication
= 4.2 Remote procedure call

Reviews and builds on
content from Ch. 2/3

= 4.3 Message-oriented communication
= Socket communication
= Messaging libraries
= Message-Passing Interface (MPI)
= Message-queueing systems
= Examples
® 4.4 Multicast communication
= Flooding-based multicasting
= Gossip-based data dissemination

February 20, 2020

TCS5558: Applied Distributed Computing [Winter 2020]

School of Tacoma

[EENY

L13.1

TCSS 558: Applied Distributed Computing February 20, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

LAYERED PROTOCOLS

= Distributed systems lack shared memory

= All distributed system communication
is based on sending and receiving low-level messages

"P>Q
el UM EREEE |
CH. 4:1: FOUNDATIONS

| &l

= Open Systems Interconnection Reference Model
(0SI Model)

= Open systems communicate with any other open system
= Standards govern format, contents, meaning of messages
= Formalization of rules forms a communlcatlon protocol

us.10

TCsS558: Applied Distributed Computing [Winter 2020]
‘ (e AL, Y e BT e o Ty f T

LAYERED PROTOCOLS: OSI MODEL MIDDLEWARE PROTOCOLS

Data link layer header

Network layer header = Middleware is reused by many applications
Tr I ‘head
’“"ZZZZO??;;LELQ, = Provide needed functions applications are built and
Presentation layer header depend upon
r Application layer header
[TTTTT1 Message [Data link = For example: communication frameworks/libraries
I | layer trailer|

= Middleware offer many general-purpose protocols
= Functionality is reusable by MANY applications

Bits that actually appear on the network

= Each OSI layer contributes overhead bits to the message
= Middleware protocol examples:
= Authentlcatlon protocols: supports granting users and

" Receiver strips off headers as the message goes up the 0SI processes access to authorized resources
model stack:

= Layers append data to front (and maybe end) of the message

= Doesn’t fit as an “application specific” protocol

physical 2 data-link = network = transport = application = Considered a “Middleware protocol”

TCsS558: Applied Distributed Computing [Winter 2020]
‘ (e A, Y Sehosl of Engineerng and Technoleay)University or Washi Tecoma

[EERES [EEREY

TCsS558: Applied Distributed Computing [Winter 2020]
‘ (L 2 20 SehooloiEr sineers K holomUnnersty f Tacoms

11 12

MIDDLEWARE PROTOCOLS - 2 MIDDLEWARE PROTOCOLS - 3
| Producer | [Producer | Producer
= Distributed commilt protocols = Message queuelng services
= Coordinate a group of processes (nodes) = Support synchronization of data Kafka Cluster
= Facilitate all nodes carrying out a particular operation streams
= Or abort transaction = Transfer real-time data
= Provides distributed atomicity (all-or-nothing) operations = Distributed and scalable

implementation

.
Consumer | [Gonsumer Consumer

= Distributed locking protocols

= Protect a resource from simultaneous access from . .
multiple nodes = Multicast services

= Scale communication to thousands of

Remote procedure call i
* Remote procedure call receivers spread across the Internet

= One of the oldest middleware protocols

[EERE] [EER7)

TCsS558: Applied Distributed Computing [Winter 2020]
‘ (1 2 20 Sehoo[ofErsineers K holosyUniersity q Tacoma

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (R, Y Sehodl of Engineerng and Technolosy University o Washi Tacoma

13 14

Slides by Wes J. Lloyd L13.2

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 20, 2020

MIDDLEWARE PROTOCOLS - 3

[Producer | Producer | | Producer |

= Message queuelng services

/

KEY: middleware protocols offer functionality to satisfy the
software requirements of many applications

Middleware functions are general, application-independent
in nature

Middleware protocol functions are so commonly needed
they are offered in reusable frameworks / libraries

[EERE]

February 20, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

TYPES OF COMMUNICATION

= Persistent communication

= Message submitted for transmission is stored by communication
middleware as long as it takes to deliver it

= Example: email system (SMTP)
= Receiver can be offline when message sent
= Temporal decoupling (delayed message delivery)

= Transient communication
= Message stored by middleware only as long as sender/receiver
applications are running
= If recipient is not active, message is dropped
= Transport level protocols typically are transient (no msg storage)

= What 0S| protocol level is the SMTP Protocol?

TCS5558: Applied Distributed Computing [Winter 2020]

School of Technology, Tacoma e

February 20, 2020

15

16

TYPES OF COMMUNICATION - 2

= Asynchronous communication
= Client does not block, continues doing other work
= Synchronous communication
= Client blocks and waits
= Three types of blocking
1. Until middleware notifies it will take over delivering request
2. Sender may block until request has been delivered
3. Sender waits until request is processed and result is returned

= Persistence + synchronization (blocking)
= Common scheme for message-queueing systems
= Block until message delivered to queue

= Conslder each type of blocklng (1, 2, 3). Are these modes

connectionless (UDP)? connection-oriented (TCP)?
February 20, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
R7eith School of Engineeri Technology, University i

113,17

Tacoma

COIPX, Y, D) Cient
Sanpxv2)

Return (P)

17

18

RPC - REMOTE PROCEDURE CALL

= In a nutshell,
= Allow programs to call procedures on other machines

= Process on machine A calls procedure on machine B

= Calling process on machline A is suspended

= Execution of the called procedure takes place on machine B
= Data transported from caller (A) to provider (B) and back (A).

= No message passing is visible to the programmer

= Distributlon transparency: make remote procedure call look
like a local one

" newlist = append(data, dbList)

L1319

February 20, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

RPC - 2

= Transparency enabled with client and server “stubs”

= Client has “stub” implementation of the server-side function
= Interface exactly same as server side

= But client DOES NOT HAVE THE IMPLEMENTATION

= Client stub: packs parameters into message, sends request to
server. Call blocks and waits for reply

Wait for result

Client

= Server stub: transforms incoming

- Call remote. Ret
request into local procedure call procedins: o
= Blocks to wait for reply
Request Reply

= Server stub unpacks request,
calls server procedure
= It’s as if the routine were called locally

Calllocal procedure Time — 3
and return results

TCS5558: Applied Distributed Computing [Winter 2020]

School of Technology, University of Tacoma L0

February 20, 2020

19

Slides by Wes J. Lloyd

20

L13.3

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 20, 2020

RPC - 3

= Server packs procedure results and sends back to client.
= Client “request” call unblocks and data is unpacked

= Client can’t tell method was called remotely over the
network... except for network latency...

= Call abstraction enables clients to invoke functions in
alternate languages, on different machines

= Differences are handled by the RPC “framework”

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L

‘ February 20, 2020

RPC STEPS

. Client procedure calls client stub

. Client stub builds message and calls 0S

. Client’s OS send message to remote 0S

. Server OS gives message to server stub

. Server stub unpacks parameters, calls server

. Server performs work, returns results to server-side stub
. Server stub packs results in messages, calls server 0S

. Server OS sends message to client’s 0S

© 00 N O O s WN PR

. Client’s OS delivers message to client stub
10.Client stub unpacks result, returns to client

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 20, 2020 132 ‘

21

22

PARAMETER PASSING

= STUBS: take parameters, pack into a message, send across
network

= Parameter marshaling:

" newlist = append(data, dbList)

= Two parameters must be sent over network and correctly
interpreted

= Message is transferred as a series of bytes
= Data is serialized into a “stream” of bytes
= Must understand how to unmarshal (unserialize) data

= Processor architectures vary with how bytes are numbered:
Intel (right->left), older ARM (left>right)

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L

‘ February 20, 2020

RPC: BYTE ORDERING

= Big-Endian: write bytes left to right (ARM)
= Little-endian: write bytes right to left (Intel)
= Networks: typically transfer data in Big-Endian form

= Solution: transform data to machine/network independent

format

= Marshaling/unmarshaling: BIG-ENDIAN Memory
transform data to neutral ~Joo]o1]o2]oa]oa]os]0s 07]
format @ o+ 042 0+3 o+l a5 06 047

LITTLE-ENDIAN Mem

ory
---‘07‘06‘05‘M‘03|02‘01‘00‘---

a+l a+2 a+3 atd a+5 a+6 a+7

TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L2

‘ February 20, 2020

23

RPC: PASS-BY-REFERENCE

® Passing by value is straightforward

= Passing by reference is challenging

= Pointers only make sense on local machine owning the data
= Memory space of client and server are different

= Solutions to RPC pass-by-reference:
1. Forbid pointers altogether
2. Replace pass-by-reference with pass-by-value
= Requires transferring entire object/array data over network
= Read-only optimlzatlon: don’t return data if unchanged on server
3. Passing global references

= Example: file handle to file accessible by client and server
via shared file system

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L

February 20, 2020

25

Slides by Wes J. Lloyd

24

RPC: DEVELOPMENT SUPPORT

= Let developer specify which routines will be called
remotely
= Automate client/server side stub generation for these
routines

= Embed remote procedure call mechanism into the
programming language
=E.g. Java RMI

TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma a2

‘ February 20, 2020

26

L13.4

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 20, 2020

STUB GENERATION

words _—»

®"void func(char x; float y; int z[5])
= 1-byte character transmits with 3-padded bytes
= Float sent as whole word (4-bytes)

= Array as group of words, proceed by word describing
length

= Client stub must package data in specific format
= Server stub must receive and unpackage in specific format

= Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

= RPC clients/servers: must agree on protocol
=TCP? UDP?

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L2

‘ February 20, 2020

27

LANGUAGE BASED SUPPORT

= Leads to simpler application development

= Helps with providing access transparency
= Differences in data representation, and how object is
accessed
= Inter-language parameter passing issues resolved:
- just 1 language

= Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (L 2 20 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome

29

RPC VARIATIONS - 2

= What are tradeoffs for synchronous vs. asynchronous
procedure calls?

= For a local program
= For a distributed program (system)

= Use cases for asynchronous procedure calls
= Long running jobs allow client to perform alternate work
in background (in parallel)
= Client may need to make multiple service calls to multiple
server backends at the same time...

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (1 2 20 Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms

STUB GENERATION - 2

= Interfaces are specified using an Interface Definition
Language (IDL)

= Interface specifications in IDL are used to generate language
specific stubs

= |IDL is compiled into client and server-side stubs

® Much of the plumbing for RPC involves maintaining
boilerplate-code

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (e AL, Y e A BT e e o R P T

[EEE

28

RPC VARIATIONS

= RPC: client typically blocks until reply is returned
= Strict blocking unnecessary when there is no result

= Asynchronous RPCs
= When no result, server can immediately send reply

Client/server sy RPC Client/server asy RPC

Client Wait for result Client Wait for acceptance

Call remote Retum Call remote Retumn

procedure from call procedure from call

Request Reply Request Accept request
Server ~ Call local procedure ~ Time —» Server Call local procedure ~ Time —
and retur results
TCSS558: Applied Distributed Computing [Winter 2020]

‘ EEBan/2022020 ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma 330

30

TYPES OF ASYNCHRONOUS RPC

= Deferred synchronous RPC
= Server performs CALLBACK to client
= Client, upon making call, spawns separate thread which blocks and

waits for call Wait for Callback tg client
Client acceptance
Call remote Return
procedure fromcall Retum
results
Accept
Request request
= One-way RPCs Server Call local procedure Time —»

= Client does not walt for any server acknowledgement - it just goes...

= Cllent polling
= Client (using separate thread) continually polls server for result

‘ February 20, 2020 TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L

31

Slides by Wes J. Lloyd

32

TCSS 558: Applied Distributed Computing February 20, 2020

[Winter 2020] School of Engineering and Technology,
UW-Tacoma

RPC EXAMPLE: DISTRIBUTED

MULTICAST RPC COMPUTING ENVIRONMENT (DCE)

= Send RPC request simultaneously to group of servers = DCE: basis for Microsoft’s distributed computing object model
. .) (DCOM)
|}
AR i Al PIe SeRvers Be Invelied = Used in Samba, cross-platform file and print sharing via RPC
= Middleware system - provides layer of abstraction between 0S
and distributed applications
= Designed for Unix, ported to all major operating systems

= Consideration:
Does the client need all results or just one?

= Use cases:
= Fault tolerance - wait for just one L] Iqsta_ll DCE midt!Iew_are on set of heterogeneous machines -
erver CallTocal procedure distributed applications can then access shared resources to:
" Replicate execution - verify A \ = Mount a windows file system on Linux
results, use first result / \/Ca“mmmem = Share a printer connected to a Windows server
= Divide and conquer - multiple [l = Uses client/server model
RPC calls work in parallel on catremore \ ’/ = All communication via RPC
different parts of dataset, \ / = DCE daemon tracks participating machines, ports
client aggregates results Iserver Calllocal procedure_Time —»
February 20, 2020 ;:er‘zif:;ApgliedD_is(ribut?dci?‘r;z;;jng[_Win(_e,rZOZO] _ Tcoma a3 February 20, 2020 ;ﬁzzlsi;»xpp_liedl?ismbu(edCompu(ing[_Wim_erzuzu] _ Tacoms -

33 34

EXTRA: DCE - CLIENT/SERVER DEVELOPMENT

DCE CLIENT-TO-SERVER BINDING

1. Create Interface definition language (IDL) files
= IDL files contain Globally unique identifier (GUID)

Directory
server ; ; .
- 2. Register service = GUIDs must match: client and server compare GUIDs to

3. Look up server
Client machine Servermeching verify proper versions of the distributed object

Treciory machine

5. DoRPC = 128-bit binary number
2. Next, add names of remote procs and params to IDL
4. Ask for port
3. Then compile the IDL files
G - — Compiler generates:
erver name comes from directory server I .
Y = Header file (interface.h in C)
= Server port comes from DCE daemon « Client stub
= DCE daemon has a well known port # client already knows
=Server stub

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri iversi i

[EEES

February 20, 2020 Tacoma

L1335

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i Tacoma

February 20, 2020

35 36

Gonnectors

EXTRA: DCE - BINDING CLIENT TO SERVER

= For a client to call a server, server must be registered
= Java: uses RMI registry
= Client process to search for RMI server:

1. Locate the server’s host machine .

2. Locate the server (i.e. process) on the host CH o 4'3 - M ESSAG E-
= Client must discover the server’s RPC port OR I ENTED
= DCE daemon: maintains table of (server,port) pairs COM M U N I CATION

= When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server
that tracks DCE servers

Apache ActiveMQ

11337

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University i Tacoma

February 20, 2020

37 38

Slides by Wes J. Lloyd L13.6

TCSS 558: Applied Distributed Computing February 20, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

SOCKETS SOCKETS - 2

= Communication end point = Servers execute 15t - 4 operations (socket, bind, listen, accept)
= Applications can read / write data to = Methods refer to C API functions
= Analogous to file streams for 1/0, but network streams = Mappings across different libraries will vary (e.g. Java)

socket Create a new communication end point socket Create a new communication end point

bind Attach local address to socket (IP / port) bind Attach local address to socket (IP / port)

listen Tell 0S what max # of pending connection requests should be listen Tell OS what max # of di tion should be

accept Block caller until a connection request arrives accept Block caller until a connection request arrives

connect Actively attempt to establish a connection connect Actively attempt to establish a connection

send Send some data over the connection send Send some data over the connection

receive Receive some data over the connection receive Receive some data over the connection

close Release the connection close Release the connection

[ez a0 T e gin- Tcoma = [oo T e gon:Tcome =

39 40

SERVER SOCKET OPERATIONS CLIENT SOCKET OPERATIONS

= Socket: creates new communication end point = Socket: Creates socket client uses for communication
= Connect: Server transport-level address provided, client blocks
= Bind: associated IP and port with end point until connection established
= Send: Supports sending data (to: server/client)
= Listen: for connection-oriented communication, non-blocking = Receive: Supports receiving data (from: server/client)
call reserves buffers for specified number of pending = Close: Closes communication channel
connection requests server is willing to accept = Analogous to closing a file stream
Server
= Accept: blocks until connection request arrives socket |3{ bind [listen -3{accept reieive ser\|d close
= Upon arrival, new socket is created matching original Synchronization point — ’,r‘communicamn\\
= Server spawns thread, or forks process to service incoming request / 3‘
= Server continues to wait for new connections on original socket \connecﬂ—;\ send |——»{receive | »[close
Client
[e et v s wstingon-Toms e | [o T oy o o wstngon Tcoms e

41 42

SOCKET COMMUNICATION MESSAGE ORIENTED COMMUNICATION

= Sockets provide primitives for implementing your own = RPC assumes that the client and server are running
TCP/UDP communication protocols at the same time... (temporally coupled)

= RPC communication is typically synchronous
= Directly using sockets for transient (non-persisted) o VisY

messaging is very basic, can be brittle . . .
= Easy to make mistakes... = When client and server are not running at the same time
= Or when communications should not be blocked...

= Any extra communication facilities must be implemented

byjthelapplicationjdeveloper = This is a use case for message-oriented communication

= More advanced approaches are desirable = Synchronous vs. asynchronous
= E.g. frameworks with support common desirable " Messaging systems
functionality = Message-queueing systems
‘ February 20, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

L13.43 ‘ ‘ February 20, 2020 TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

=

43 44

Slides by Wes J. Lloyd L13.7

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

ZEROMQ - SOCKET LIBRARY

= (0MQ) High performance intelligent socket library

= zero broker, zero latency, zero admin, zero cost, zero waste

= Provides a message queue

= Implementation in C++
= 30+ language bindings provided
= Enables support for various messaging patterns

= Builds upon functionality of traditional sockets QMQ

= Can support brokered (centralized) and broker-less topologies

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (1 2 20 ‘ T o T s s o T T T T

L13.45

45

ZEROMQ - PATTERNS

" Request-reply pattern
= Traditional client-server communication (e.g. RPC)
= Client: request socket (REQ)
= Server: reply socket (REP)

= Publish-subscribe pattern
= Clients subscribe to messages published by servers
= As in event-based coordination (Ch. 1)
= Supports multicasting messages from
server to multiple
= Client: subscribe socket (SUB)

= Server: publish socket (PUB)

Client

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (L 2 20 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome

47

QUEUEING ALTERNATIVES

= Cloud services
=Amazon Simple Queueing Service (SQS)
=Azure service bus

= QOpen source frameworks
=Nanomsg
=ZeroMQ

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (1 2 20 ‘ Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms

L13.49

49

Slides by Wes J. Lloyd

February 20, 2020

ZEROMQ - 2

= ZeroMQ is TCP-connectlon-orlented communication

= Provides socket-like primitives with more functionality
= Basic socket operations abstracted away

= Supports many-to-one, one-to-one, and one-to-many
connections

= Multicast connections (one-to-many - single server socket
simultaneously “connects” to multiple clients)

= Asynchronous messaging

= Supports pairing sockets to support communication
patterns

TCSS558: Applied Distributed Computing [Winter 2020]

‘ (e AL, Y e A BT e e o R P T

=

46

ZEROMQ - PATTERNS - 2

= Pipellne pattern (FIFO-queue)
= Analogous to a producer/consumer bounded buffer
= Producing processes generate results, push to pipe
= Consuming processes consume results,
pull from pipe
= Producers: push socket (PUSH socket)
= Consumers: pull socket (PULL socket)

= Push- distributes messages to all pull
clients evenly

= Consumers pull results from pipe and
push results downstream

TCSS558: Applied Distributed Computing [Winter 2020]

‘ (e A, Y ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

48

MESSAGE PASSING INTERFACE (MPI)

= MPI introduced - version 1.0 March 1994
= Message passing API for parallel programming: supercomputers

= Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

= Point-to-point and collective communication

= Goals: high performance, scalability, portability

| network I

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

= Most implementations
in C, C++, Fortran

‘ February 20, 2020 11350

50

L13.8

TCSS 558: Applied Distributed Computing February 20, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

MOTIVATIONS FOR MPI

MOTIVATIONS FOR MPI - 2

= Motivation: sockets insufficient for interprocess = Supercomputers had proprietary communication libraries
communication on large scale HPC compute clusters and = Offer a wealth of efficient communication operations
super computers

= All libraries mutually incompatible
= Sockets at the wrong level of abstraction

= Sockets designed to communicate over the network using " Led to significant portability problems developing parallel
general purpose TCP/IP stacks E— code that could migrate across supercomputers
= Not designed for proprietary protocols

= Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

= Better buffering and synchronization needed

= Led to development of MPI

= To support transient (non-persistent) communication for
parallel programming

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (1 2 20 T o T s s o T T T T

‘ L1351 ‘ ‘ February 20, 2020 TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ 2 ‘

51 52

= Very large library, v1.0 (1994) 128 functions = MPI - no recovery for process crashes, network partitions
e T e e o
LAl e oL ALY LA psTe = Communication among grouped processes: (groupId, processID)
| | i MPT_BSEND MPT_BSEND_TNIT WPT_BUFFER ATTACH MPT BUFFER DETACH
Version 3 (2015) 440+ e DRewm. ESWIo e = |Ds used to route messages in place of IP addresses
= MPI data types: paE . DM mw Rt Operation _ Description
- Fioviidle GORmED MamHlss AT L an s oS eLrmme MPI_bsend Append outgoing message to a local send buffer
RErT e e WL i W T e e MPI_send Send message, wait until copied to local/remote buffer
i o Dirreee el e = o
MPI.CHAR igned char WPI_GROUP INTERSECTION MPI GROUP RANGE EXCL WP GROUP RAKGE INCL WP GROUP. RANK A el
MPISHORT Tigned sbort. int o e e 1ot G TARATE K 67 Chp T MPI_ssend Send message, wat until transmission starts
Sciiir o o peiinie S S = | o . o i
MPILONG signed long int; it o o o i _sendrecv Send message, wait for reply
MPIUNSIGNED CHAR | unmigned char NV:,(‘):?:ZE n:,:i(x a NP{,P;E:T;HE 4 nr:,:n:r;mz . » 2 .
MPLUNSIGNED SHORT | unsigned short int L] e borey s e pemice MPI_isend Pass to n and
NELLNSIGNED i e T Vot st e
MPLUNSIGNED LONG | unsigned long int w1 senomec WL SEDRECY REPLACE ML SEWD_TIT w1 sseio MPI_issend Pass reft to c ing v wait until receipt start
NELCORT o S e ot Terse el— -
A N e Y Wit wipeee MPI_recv Receive a message, block if there is none
MEaeD: e N s e, MPI_irecv Check for incoming message, do not block!
TCSS558: Applied Distributed Computing [Winter 2020] TCSS558: Applied Distributed Computing [Winter 2020]
‘ (L 2 20 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome ‘ L33 ‘ ‘ (e A, Y ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma ‘ s ‘

53 54

MESSAGE QUEUEING SYSTEMS:

MESSAGE-ORIENTED-MIDDLEWARE USE CASES

= Message-queuelng systems = Enables communication between applications, or sets of
= Provide extensive support for persistent asynchronous processes
communication = User applications
= In contrast to transient systems = App-to-database
= Temporally decoupled: messages are eventually delivered =To support distributed real-time computations

to recipient queues

= Use cases

= Batch processing, Email, workflow, groupware, routing
= Each application has its own private queue to which other subqueries

applications can send messages

= Message transfers may take minutes vs. sec or ms

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (1 2 20 ‘ L3ss ‘ ‘ (R, Y Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma Lsse

55 56

Slides by Wes J. Lloyd L13.9

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

MESSAGE QUEUEING SYSTEMS

February 20, 2020

. Sonder Sonder
® Scenarios: running running

(a) Sender/receiver E D
ENDS

both running

o
-«

(b) Sender running,
receiver offline

(c) Sender offline,
receiver running

<l

(d) Sender/receiver | _READS | |

both offline Receiver Receiver
running passive

= Queue persists msgs,

b)
and attempts to send = L

Sender
passive

[]

Receiver
running

(©)

them but no one may be available to receive them...

Sender
passive

Receive
passive

()

‘ February 20, 2020 TC55558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘

L1357

MESSAGE QUEUEING SYSTEMS - 2

= Key: Truly persistent messaging

= Message queueing systems can persist messages for awhile
and senders and receivers can be offline

= Messages
= Contain any data, may have size limit
= Are properly addressed, to a destination queue

= Basic Inteface

= PUT: called by sender to append msg to specified queue

= GET: blocking call to remove oldest msg from specified queue
= Blocked if queue is empty

= POLL: Non-blocking, gets msg from specified queue

TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma e

February 20, 2020

57

ARCHITECTURE

= Baslc Interface cont’d

into a queue. Notifies receivers

separate process/library

= Queue manager and apps share local network
= |SSUES:

= How should names be resolved (looked-up)?
= Contact address (host, port) pairs

MESSAGE QUEUEING SYSTEMS

= NOTIFY: install a callback function, for when msg is placed

= Queue managers: manage individual message queues as a

= Applications get/put messages only from local queues

= How should we reference the destination queue?

= Local look-up tables can be stored at each queue manager

‘ February 20, 2020 TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

L1359

58

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE - 2

= ISSUES:

= How do we route traffic between queue managers?
= How are name-to-address mappings efficiently kept?
= Each queue manager should be known to all others

= Message brokers
= Handle message conversion among different users/formats
= Addresses cases when senders and receivers don’t speak the
same protocol (language)
= Need arises for message protocol converters
= “Reformatter” of messages
= Act as application-level gateway

TCSS558: Applied Distributed Computing [Winter 2020]

(e A, Y ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

weo |

59

MESSAGE BROKER ORGANIZATION

Source Message broker Destination
Application ppli
Broker plugins _Rules
|
- ’_:Z’ é Queuing || X L
= = layer |= \i E
Local 05| i Local 05 | \ T Localos

Plugins to convert \
messages between APPs

Application-level

Queues

‘ February 20, 2020 TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

L1361

60

AMQP PROTOCOL

= Message-queueing systems initially developed to enable
legacy applications to interoperate

= Decouple inter-application communication to “open”
messaging-middleware

= Many are proprietary solutions, so not very open
= e.g. Microsoft Message Queueing service, Windows NT 1997

= Advanced message queuelng protocol (AMQP), 2006

= Address openness/interoperability of proprietary solutions

= Open wire protocol for messaging with powerful routing
capabilities

= Help abstract messaging and application interoperability by
means of a generic open protocol

= Suffer from incompatibility among protocol versions

= pre-1.0, 1.0+

TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L6

February 20, 2020

61

Slides by Wes J. Lloyd

62

L13.10

TCSS 558: Applied Distributed Computing February 20, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

AMQP MESSAGING

= Consists of: Applications, Queue managers, Queues = AMQP nodes: producer, consumer, queue
= Producer/consumer: represent regular applications

= Connections: set up to a queue manager, TCP, with = Queues: store/forward messages

potentially many channels, stable, reused by many

channels, long-lived . i
= Persistent messaging:

= Channels: support short-lived one-way communication = Messages can be marked durable
= These messages can only be delivered by nodes able to
= Sesslons: bi-directional communication across two recover in case of failure
channels

= Non-failure resistant nodes must reject durable messages
= Source/target nodes can be marked durable

= Link: provide fine-grained flow-control of message
= Track what is durable (node state, node+msgs)

transfer/status between applications and queue manager

TCS5558: Applied Distributed Computing [Winter 2020]

TCsS558: Applied Distributed Computing [Winter 2020]
‘ (1 2 20 i G ST e f Sehoalor Ty, T

chnology, y Tacoma

11363 ‘ ‘ February 20, 2020

wa |

63 64

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

QUESTIONS

= Some examples:
= RabbitMQ, Apache QPid
= Implement Advanced Message Queueing Protocol (AMQP)

= Apache Kafka
= Dumb broker (message store), similar to a distributed log file
= Smart consumers - intelligence pushed off to the clients
= Stores stream of records in categories called topics
= Supports voluminous data, many consumers, with minimal O/H
= Kafka does not track which messages were read by each consumer
= Messages are removed after timeout
= Clients must track their own consumption (Kafka doesn’t help)
= Messages have key, value, timestamp
= Supports high volume pub/sub messaging and streams

TCSS558: Applied Distributed Computing [Winter 2020]

L1368 School of Engineering and Technology, University of Washington -

February 20, 2020

February 20, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

65 66

Slides by Wes J. Lloyd L13.11

