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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Assignment 1 – questions

 Feedback from 2/6

Chapter 3.4: Servers

Chapter 3.5: Resource Migration

Practice Midterm
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 TCSS 558B

 Tuesday February 11 – 6 respondents (32%)

 Thursday February 13 – 7 respondents (37%) ( I n ternsh ip  fa i r  @ U W Seat t le )

 Tuesday February 18 – 12 respondents (63%) √
 No Preference – 2 respondents (11%)

 Midterm Plan:

 Content coverage - through 1st half of Lecture 11 on Feb 11th

 Practice midterm - 2nd half of Lecture 11 on Feb 11th

 February 13th – Will cover new material not on midterm

 Midterm Exam – Tuesday February 18th

 Exams returned no later  than Tuesday February 25th
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MIDTERM SCHEDULING SURVEY

 Please classify your perspective on material covered in today’s 
class (9 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.59

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81
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 Assignment 1 – Discussion thread created
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FEEDBACK FROM 2/6

CH. 3.4: SERVERS

L11.6
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 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>
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WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP

7

8



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.5

 DNS Resolver – carries out DNS lookup queries on behalf of c lients 
by communicating with multiple DNS servers

 Root name server – provides address of top-level domain (TLD)
servers

 Top Level Domain (TLD) Ser ver – DNS server  that stores NS (name 
server) records describing name servers for a domain
 Informs resolver of name server for top-level domain (i.e.: .com, .edu)

 Domain name server – DNS server that stores A (IP address) 
records describing IP addresses for servers in the domain

 I terative DNS query:
Resolver  Root Name Server  TLD Server  DNS Ser ver

 Non-recursive query: when resolver queries DNS directly because 
DNS address is cached at the resolver

 Recursive query: DNS client requires DNS recursive resolver 
(DNS resolver)
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DNS LOOKUP - 2
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased
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DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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DNS EXAMPLE – WAN DISPATCHING
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping “VA” google in WA: ~3.63x
WA laptop: local-google 22.458ms to VA-google 81.637ms

Latency to ping “WA” google in VA: ~48.7x
Virginia ec2 VM: local-google 1.278ms to WA-google 62.349!

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and 
distributed systems research

 Organizations share 
nodes in the cluster
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CH 3.2 - EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers” 
similar to Docker
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 Slices: set of Vservers running across
PlanetLab

 Acts as a vir tual server cluster 
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be sl ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice 

 Rcap: resource capability
 Specifies resource capabilities of nodes
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PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS  Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized 
access among Vservers directory trees

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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VSERVERS
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 Advantages of  Vservers (containers) vs. VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic 
resource allocation - Example:  CPU or  RAM (assignment 0, config 2)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved 

 Linux kernel shares memory among processes 

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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VSERVERS - 2

CH. 3.5: RESOURCE
(CODE) MIGRATION

L11.18
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 To support on-the-fly reorganization of distributed 
systems, at times there is interest in resource 
migration

Can consider various types of resource migration

Code migration: source code, libraries

Process migration: a running job/task

VM migration: an entire virtual server!

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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RESOURCE MIGRATION

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it  is executing

 Portability – transferring code (running or not) across 
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lexibil ity of distributed systems
 Topologies can be dynamically reconfigured on-the-fly

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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TYPES OF CODE MIGRATION
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Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration? 
an application specific approach?

What are advantages and disadvantages of each?

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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PROCESS MIGRATION

 Move processes:  
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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PROCESS MIGRATION - 2
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 Can migrate processes or entire vir tual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?
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MOTIVATIONS FOR MIGRATION

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it) to create 
a checkpoint to persistent storage (e.g. disk) as a collection of 
fi les.
 This means saving the state of RAM to disk

 Can use checkpoint fi les to restore and run the application 
from the point it was frozen at. 

 Distinctive feature of CRIU is that it can be run in the user 
space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration 
elsewhere

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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LINUX CRIU
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 Make decisions concerning allocation and 
redistribution of tasks across machines

 Provide resource management for compute intensive 
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU 
capacity
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LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative 
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition 

and state of systems and networks

 Is it  better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing 

 Are there security 
requirements for the data?

WHEN TO MIGRATE?

February 11, 2020
TCSS558: Applied Distributed Computing [Winter 2020]
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 Size of code
 Size of data
 Available network transfer 

speed
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 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed
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APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires 
network bandwidth & time

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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DYNAMIC WEB CLIENTS
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 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web browser

 Remote cloning

 Produce a copy of the process on another machine 
while parent runs

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, state, stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts 

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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CODE MIGRATION - 2
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* indicates what is 
modified 

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec
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CODE MOBILITY TYPES

client obtains & runs code

client provides code for remote exec

everything runs remotely

client moves code and exec to server

 Assumption: code will  always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across 
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration 

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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MIGRATION OF 
HETEROGENEOUS SYSTEMS
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 Four approaches:

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
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VIRTUAL MACHINE MIGRATION

L11.34

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 (+) 1/3: no loss of service
 (+) 4: fast transfer, minimal loss of service
 (+) 2: fastest data transfer
 (+) 3: new VM immediately available

 (-) 1: must track modified pages during full page copy
 (-) 2: longest downtime - unacceptable for live services
 (-) 3: prolonged, slow, migration
 (-) 3: original VM must stay online for quite a while
 (-) 1/3: network load while original VM still in service
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QUESTIONS
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RESEARCH DIRECTIONS

October 5, 2017
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 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.
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CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

EXTRA SLIDES
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 Each node keeps maintains a finger table with m entries
 m is the number of bits in the hash key

 Distance of the entries increases exponentially 

 Contents of each node’s finger table:
for i=0 to m-1

finger table entry for node n:
index: n+2i   points to: n+2i mod 2m

 The first entry of finger table is the node's immediate 
successor (an extra successor field is not needed). 

 Each time a node looks up a key k, it passes the query to the 
closest node to k in the finger table that is not greater than k

 With finger tables, the number of nodes contacted to find a 
successor in an N-node network is O(log N).
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CHORD SYSTEM – FINGER TABLE

 Keys have m-bits

 m=3

 Always pass query 
for key k to index 
in the finger table 
that is not greater 
than k

 Example: key (k=7)

 Query arrives at (0)
 0:  (index=4, pass 

to 0), key 7 is 
adjacent

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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CHORD SYSTEM – 2 

Index  points to

Index  points to

Index  points to
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 Example (k=7)

 Query arrives at (1)
 1:  (index=5, pass 

to 0), key 7 is 
adjacent

 Query arrives at (3)
 1:  (index=7, pass

to 0), key 7 is
adjacent

 Example (k=6)
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CHORD SYSTEM – 2 
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