
TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.1

Chapter 3 - Processes

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Assignment 1 – questions

 Feedback from 2/6

Chapter 3.4: Servers

Chapter 3.5: Resource Migration

Practice Midterm

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

OBJECTIVES

 TCSS 558B

 Tuesday February 11 – 6 respondents (32%)

 Thursday February 13 – 7 respondents (37%) (In te rns hip f a i r @U W S eat t le)

 Tuesday February 18 – 1 2 respondents (63%) √
 No Preference – 2 respondents (11%)

 Midterm Plan:

 Content coverage - through 1st half of Lecture 11 on Feb 11th

 Practice midterm - 2nd half of Lecture 11 on Feb 11th

 February 13th – Will cover new material not on midterm

 Midterm Exam – Tuesday February 18th

 Exams returned no later than Tuesday February 25th

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.3

MIDTERM SCHEDULING SURVEY

 Please classify your perspective on material covered in today’s
class (9 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.59

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.4

MATERIAL / PACE

 Assignment 1 – Discussion thread created

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.5

FEEDBACK FROM 2/6

CH. 3.4: SERVERS

L11.6

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.2

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.7

WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.8

DNS LOOKUP

 DNS Resolver – carries out DNS lookup queries on behalf of clients
by communicating with multiple DNS servers

 Root name server – provides address of top-level domain (TLD)
servers

 Top Level Domain (TLD) Server – DNS server that stores NS (name
server) records describing name servers for a domain
 Informs resolver of name server for top-level domain (i.e.: .com, .edu)

 Domain name server – DNS server that stores A (IP address)
records describing IP addresses for servers in the domain

 I terative DNS query:
Resolver Root Name Server TLD Server DNS Server

 Non-recursive query: when resolver queries DNS directly because
DNS address is cached at the resolver

 Recursive query: DNS client requires DNS recursive resolver
(DNS resolver)

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.9

DNS LOOKUP - 2

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L11.10

 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

DNS EXAMPLE – WAN DISPATCHING

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.3

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.13

DNS EXAMPLE – WAN DISPATCHING

Latency to ping “VA” google in WA: ~3.63x
WA laptop: local-google 22.458ms to VA-google 81.637ms

Latency to ping “WA” google in VA: ~48.7x
Virginia ec2 VM: local-google 1.278ms to WA-google 62.349!

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and
distributed systems research

 Organizations share
nodes in the cluster

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.14

CH 3.2 - EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers”
similar to Docker

 Slices: set of Vservers running across
PlanetLab

 Acts as a virtual server cluster
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be s l ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice

 Rcap: resource capability
 Specifies resource capabilities of nodes

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.15

PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized
access among Vservers directory trees

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

VSERVERS

 Advantages of Vservers (containers) vs . VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 2)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved

 Linux kernel shares memory among processes

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.17

VSERVERS - 2

CH. 3.5: RESOURCE
(CODE) MIGRATION

L11.18

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.4

 To support on-the-fly reorganization of distributed
systems, at times there is interest in resource
migration

Can consider various types of resource migration

Code migration: source code, libraries

Process migration: a running job/task

VM migration: an entire virtual server!

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.19

RESOURCE MIGRATION

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across
heterogeneous systems:

Mac OS X Windows 10 Linux

 Code migration enables f lex ibili ty of distributed systems
 Topologies can be dynamically reconfigured on-the-fly

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.20

TYPES OF CODE MIGRATION

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration?
an application specific approach?

What are advantages and disadvantages of each?
February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
L11.21

PROCESS MIGRATION

 Move processes:
from heavily loaded lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

PROCESS MIGRATION - 2

 Can migrate processes or entire virtual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

MOTIVATIONS FOR MIGRATION

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it) to create
a checkpoint to persistent storage (e.g. disk) as a collection of
files.
 This means saving the state of RAM to disk

 Can use checkpoint files to restore and run the application
from the point it was frozen at.

 Distinctive feature of CRIU is that it can be run in the user
space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration
elsewhere

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

LINUX CRIU

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.5

 Make decisions concerning allocation and
redistribution of tasks across machines

 Provide resource management for compute intensive
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU
capacity

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition

and state of systems and networks

 Is it better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing

 Are there security
requirements for the data?

WHEN TO MIGRATE?

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L11.26

 Size of code
 Size of data
 Available network transfer

speed

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.27

APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires
network bandwidth & time

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.28

DYNAMIC WEB CLIENTS

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web browser

 Remote cloning

 Produce a copy of the process on another machine
while parent runs

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, state, stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobil ity

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.30

CODE MIGRATION - 2

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.6

* indicates what is
modified

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.31

CODE MOBILITY TYPES

client obtains & runs code

client provides code for remote exec

everything runs remotely

client moves code and exec to server

 Assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.32

MIGRATION OF
HETEROGENEOUS SYSTEMS

 Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.33

VIRTUAL MACHINE MIGRATION

L11.34

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 (+) 1/3: no loss of service
 (+) 4: fast transfer, minimal loss of service
 (+) 2: fastest data transfer
 (+) 3: new VM immediately available

 (-) 1: must track modified pages during full page copy
 (-) 2: longest downtime - unacceptable for live services
 (-) 3: prolonged, slow, migration
 (-) 3: original VM must stay online for quite a while
 (-) 1/3: network load while original VM still in service

QUESTIONS

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L11.35

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L11.36

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 11, 2020

Slides by Wes J. Lloyd L11.7

 Meetings on Wednesdays from 12 (12:30) to 1:30pm

 MDS 202

 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.37

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

EXTRA SLIDES

38

 Each node keeps maintains a finger table with m entries
 m is the number of bits in the hash key

 Distance of the entries increases exponentially

 Contents of each node’s finger table:
for i=0 to m-1

finger table entry for node n:
index: n+2i points to: n+2i mod 2m

 The first entry of finger table is the node's immediate
successor (an extra successor field is not needed).

 Each time a node looks up a key k, it passes the query to the
closest node to k in the finger table that is not greater than k

 With finger tables, the number of nodes contacted to find a
successor in an N-node network is O(log N).

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.39

CHORD SYSTEM – FINGER TABLE

 Keys have m-bits

 m=3

 Always pass query
for key k to index
in the finger table
that is not greater
than k

 Example: key (k=7)

 Query arrives at (0)
 0: (index=4, pass

to 0), key 7 is
adjacent

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.40

CHORD SYSTEM – 2

Index points to

Index points to

Index points to

 Example (k=7)

 Query arrives at (1)
 1: (index=5, pass

to 0), key 7 is
adjacent

 Query arrives at (3)
 1: (index=7, pass

to 0), key 7 is
adjacent

 Example (k=6)

February 11, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.41

CHORD SYSTEM – 2

37 38

39 40

41

