
TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

February 6, 2020

Slides by Wes J. Lloyd L10.1

Chapter 3 - Processes

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Assignment 0 – questions

Assignment 1 – questions

 Feedback from 2/4

Chapter 3.3: Clients – cont’d

Chapter 3.4: Servers

Chapter 3.5: Resource Migration

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

OBJECTIVES

1

2



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

February 6, 2020

Slides by Wes J. Lloyd L10.2

 TCSS 558B

 Tuesday February 11 – 6 respondents (32%)

 Thursday February 13 – 7 respondents (37%) ( I n ternsh ip  fa i r  @ U W Seat t le )

 Tuesday February 18 – 12 respondents (63%) √
 No Preference – 2 respondents (11%)

 Midterm Plan:

 Content coverage - through 1st half of Lecture 11 on Feb 11th

 Practice midterm - 2nd half of Lecture 11 on Feb 11th

 February 13th – Will cover new material not on midterm

 Midterm Exam – Tuesday February 18th

 Exams returned no later  than Tuesday February 25th
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MIDTERM SCHEDULING SURVEY

 Please classify your perspective on material covered in today’s 
class (9 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.69  (up from 6.11)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81  (up from 5.22)
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 In  f inite state machine server,  whi le I/O is reading/writ ing,
there should be a thread executing I/O operation,
how is this considered single thread?

 The server is a “finite state machine”

 Server  has just one thread of execution

 Client requests arrive:  if processing the request requires I/O 
(disk or  network), al l I/O is  non-blocking
 I/O request issued as asynchronous call to operating system

 I/O is processed using separate kernel thread (protected mode)

 Server saves state of client request, “switches” to work on other request

 Operating system generates interrupt when I/O completes

 Server traps interrupt, “switches” back to original request who’s I/O is 
complete
… (Section 3.1, p. 115)
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FEEDBACK FROM 2/4

an abstract machine that can be 
in exactly one of a finite number 
of states at any given time

 About virtualization, can you introduce something about 
Firecracker?

 Firecracker is a MicroVM designed to host FaaS functions / 
containers for serverless computing

 Goal: securely share servers with many users simultaneously 
running serverless workloads

 Features accelerated kernel loading 
 microVMs runs with reduced memory overhead of 5 MB/VM
 Implements minimal device model excluding non-essential 

functionality 
 Firecracker runs in user space (kernel not exposed to VMM)
 Very fast VM startup time: ~125 ms, up to 150 VMs/sec/host
 Leverages KVM vir tualization to ensure workload isolation
 See: https://firecracker-microvm.github.io/
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 About virtualization, can you introduce something about 
Firecracker?

 Firecracker is a MicroVM designed to host FaaS functions / 
containers for serverless computing

 Goal: securely share servers with many users simultaneously 
running serverless workloads

 Features accelerated kernel loading 
 microVMs runs with reduced memory overhead of 5 MB/VM
 Implements minimal device model excluding non-essential 

functionality 
 Firecracker runs in user space (kernel not exposed to VMM)
 Very fast VM startup time: ~125 ms, up to 150 VMs/sec/host
 Leverages KVM vir tualization to ensure workload isolation
 https://firecracker-microvm.github.io/
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FEEDBACK - 2

Key take-away:

Firecracker provides VM like experience (security/isolation)
with container like agility (high speed, low overhead)

 Can pack thousands of VMs onto single machine
 VMs feature rate l imiter to optimize sharing of network & storage

 VMs traditionally provide intelligent scheduling/sharing of CPU/memory
 Firecracker goes further with network/storage sharing

 Can vir tualize Linux 4.14+ and OSv guests
 Firecracker is a VMM that is  an alternative to QEMU
 Replaces QEMU which underlies KVM
 QEMU –hosted VMM that per forms hardware vir tualization
 Early 2000s command line tool for creating VMs on Linux
 QEMU supports multiple modes:

 System emulation (provides the full VM)
 KVM mode (handles disk image setup/migration and some HW 

emulation, KVM executes (runs) the VM)
 Xen mode (emulates some HW, XEN executes (runs) the VM)

 Firecracker is based on Chromium OS’s VMM called crossvm
 Firecracker is written in Rust

 Rust - new language designed for safe concurrency
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FIRECRACKER (EXTRA)
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CH. 3.3: CLIENTS

L10.9

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)
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TYPES OF CLIENTS
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 VNC sends picture of desktop across network

 Minimal optimizations are employed
 Send only parts of screen which have changed

 Limit colors, resolution

 VNC requires more data transfer

 RDP sends instructions on how to draw screen to cl ient 

 Client renders image based on instructions and displays it

 Transferring instructions requires much less network bandwidth

 Client computer "understands" image it  has created 

 Client per forms simple operations locally
 Move windows without sending mouse input to host computer

 No need to wait for host computer to render moved window

 No need to wait for response from server 

 Client just calculates and draws results locally  
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RDP VS. VNC

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:
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THIN CLIENTS
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 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled 
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adversely af fects 
performance over WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of 
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps
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THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level 
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X
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THIN CLIENTS - 3
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols
 Examples :  VNC,  THINC,  RDP,  X11

Pixel-level Graphics l ib
VNC X11 / RDP
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols
 Examples :  VNC,  THINC,  RDP,  X11

Pixel-level Graphics l ib
VNC X11 / RDP

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic ● Client more processing
● Server more processing
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 Clients help enable distribution transparency of servers

 Replication transparency 
 Client aggregates responses from multiple servers

 Client application (not users) know of replicas
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new 

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency 
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY - 2
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CH. 3.4: SERVERS

L10.19

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 IT is moving to the cloud. And, what powers the cloud? 

Linux
 Uptime Institute survey - 1 ,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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SERVERS
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 Servers implement a specific service for a collection of cl ients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle cl ient requests

 Concurrent: Pass cl ient request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative :  fork a new process for each incoming request

 Hybrid :  mix the use of multiple processes with thread pools
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SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points 
(servers/services)

When designing new TCP client/servers must be careful 
not to repurpose ports already commonly used by others
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Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers
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TYPES OF SERVERS
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 Servers run in background on Linux, respond to requests from 
local programs and remote users

 Daemons processes typically started at boot time
 One of three major Linux process types 

(interactive, batch, daemon)

 Have single script under /etc/init.d defining how to start, 
restart, terminate, perform status checks, etc.

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)
 Routes local client traffic to the configured endpoint servers
 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)
 Others: crond(task scheduler), f tpd, lpd(laser printing)…
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DAEMON SERVERS

 Linux (extended) internet service daemon inetd / xinetd
 Used on Linux machines
 One instance (single superserver) per machine
 Superserver configures host to run multiple internet services
 E.g. ftp, pop, telnet

 PID 1, boots as first process
 inetd daemon provides common interface for multiple services:
 Perform service operations: restart, start, status, stop, etc.
 “Start” forks a process to run specified “server”  
 Scripts under /etc/init.d/ define server behavior
 No longer installed / used by Ubuntu 
 Replaced by upstart, then systemd: start daemons concurrently

 Check ports you’re listening on:
How many daemons can you see?
 sudo netstat -tap | grep LISTEN
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SUPERSERVER
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 Server design issue:
 Active client/server communication is taking place over a port
 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 
unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 
interrupting the server  (TCP urgent data)
 Application protocol could be designed to accommodate OOB data

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily
 Must kill the client and/or server
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INTERRUPTING A SERVER

 Data about state of cl ients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited 
time (to support sessions)

 Soft state information expires and is deleted

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

STATELESS SERVERS
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 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 

 Clients retrieve and store RW file copies from File server

 Server then tracks cl ient file permissions and versions
 Table tracks  (client ID, filename) entries w/ metadata

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS

 Session state
 State records sequence of operations by a single user
 Maintained temporarily, not indefinitely by servers
 Often retained for multi-tier client server applications
 Minimal consequence if session state is lost
 Clients may need to start over, reissue requests 

(reinitialize sessions)

 Permanent state
 Customer information (address, etc.), software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state 

locally in “cookies”
 Cookies are not executable, simply client-side data
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STATEFUL SERVERS - 2
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 OBJECTIVE: Host objects and enable remote client access
 Do not provide a specific  service 

 Do nothing if there are no objects to host
 Suppor t adding/removing hosted objects 
 Provide a home where objects l ive
 Objects,  themselves ,  provide “services”

 Object par ts
 State data
 Code (methods, etc.)

 Transient object(s)
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server at boot time
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OBJECT SERVERS

 Should object servers isolate memory for  object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading design alternatives:
 Single thread of control for object server
 One thread for each object
 Separate thread for every client request

 Threads created on demand    vs.
Server maintains pool of threads

 What are the tradeoffs for  creating server threads on demand vs.  
using a thread pool?

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

OBJECT SERVERS - 2
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 Enterprise JavaBeans (EJB) is architecture for transactional, 
component-based distributed computing

 Beans are components that run in EJB web container
( i .e.  special  web server that has nothing to do with Docker containers)

 Developers just write beans (components)

 EJB architecture then automatically supports transaction 
support, security, remote object access, etc … 

 4 types of beans: stateless, stateful, entity, and message-
driven beans

 Key idea: EJB provides “middleware” standard (framework) for 
implementing back-ends of enterprise applications
 Simplifies distributed application development
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EJB – ENTERPRISE JAVA BEANS

 Architecture became less popular with advent of web services

 EJB web application containers integrate support for:
 Transaction processing

 Persistence

 Concurrency

 Event-driven programming

 Asynchronous method invocation

 Job scheduling

 Naming and discovery services (JNDI)

 Interprocess communication

 Security 

 Software component deployment to an application server
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EJB - 2
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 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules
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APACHE WEB SERVER

Hooks point to functions in modules

 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated
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SERVER CLUSTERS
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 Front end of three tier architecture (logical switch) provides 
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 
requests, hands of f to a server
 Example: hardware load balancer (F5 networks – Seattle)
 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach (rewrite packets):
 All requests pass through switch
 Switch sits in the middle of the client/server TCP connection
 Maps (rewrites) source and destination addresses

 Connection hand-off approach  (not a proxy)
 TCP Handoff: switch hands off connection to a selected server
 Key: connection is handed off. Server responds directly to client  
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LAN REQUEST DISPATCHING

 Hand-off is sticky.  Session remains between client/server pair 
unti l closed   (not a proxy - dispatcher’s job is done)

 Which is the best server to handle the request?

 Switch plays important role in 
distributing requests

 Implements load balancing
 Round-robin – routes client 

requests to servers in a looping
fashion

 Transport-level – route client 
requests based on TCP port number

 Content-aware request distribution – route requests based on 
inspecting data payload and determining which server node 
should process the request
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LAN REQUEST DISPATCHING - 2
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 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resources from a single cloud provider can be combined to 
form a cluster

 For deploying a cloud-based cluster (WAN), what are the 
implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones (us-east-1a, us-east-1e)?

 (3) across multiple Regions (e.g. us-east-1 , us-west-2)?
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WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>
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WAN REQUEST DISPATCHING
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 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased
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DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping “VA” google in WA: ~3.63x
WA laptop: local-google 22.458ms to VA-google 81.637ms

Latency to ping “WA” google in VA: ~48.7x
Virginia ec2 VM: local-google 1.278ms to WA-google 62.349!

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and 
distributed systems research

 Organizations share 
nodes in the cluster
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EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers” 
similar to Docker
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 Slices: set of Vservers running across
PlanetLab

 Acts as a vir tual server cluster 
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be sl ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice 

 Rcap: resource capability
 Specifies resource capabilities of nodes
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PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS  Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized 
access among Vservers directory trees
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VSERVERS
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 Advantages of  Vservers (containers) vs. VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic 
resource allocation - Example:  CPU or  RAM (assignment 0, config 2)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved 

 Linux kernel shares memory among processes 

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space
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VSERVERS - 2

CH. 3.5: RESOURCE
(CODE) MIGRATION

L10.50
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 To support on-the-fly reorganization of distributed 
systems, at times there is interest in resource 
migration

Can consider various types of resource migration

Code migration: source code, libraries

Process migration: a running job/task

VM migration: an entire virtual server!
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RESOURCE MIGRATION

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it  is executing

 Portability – transferring code (running or not) across 
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lexibil ity of distributed systems
 Topologies can be dynamically reconfigured on-the-fly
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CODE MIGRATION
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Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration? 
an application specific approach?

What are advantages and disadvantages of each?
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PROCESS MIGRATION

 Move processes:  
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?
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PROCESS MIGRATION - 2
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 Can migrate processes or entire vir tual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.55

MOTIVATIONS FOR MIGRATION

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it) to create 
a checkpoint to persistent storage (e.g. disk) as a collection of 
fi les.
 This means saving the state of RAM to disk

 Can use checkpoint fi les to restore and run the application 
from the point it was frozen at. 

 Distinctive feature of CRIU is that it can be run in the user 
space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration 
elsewhere
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LINUX CRIU
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 Make decisions concerning allocation and 
redistribution of tasks across machines

 Provide resource management for compute intensive 
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU 
capacity
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LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative 
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition 

and state of systems and networks

 Is it  better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing 

 Are there security 
requirements for the data?

WHEN TO MIGRATE?
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 Size of code
 Size of data
 Available network transfer 

speed
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 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed
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APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires 
network bandwidth & time
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DYNAMIC WEB CLIENTS
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 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web browser

 Remote cloning

 Produce a copy of the process on another machine 
while parent runs
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CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, statem stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration
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CODE MIGRATION - 2
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* indicates what is 
modified 

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec
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CODE MOBILITY TYPES

client obtains & runs code

client provides code for remote exec

everything runs remotely

client moves code and exec to server

 Assumption: code will  always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across 
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration 
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MIGRATION OF 
HETEROGENEOUS SYSTEMS
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 Four approaches:

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
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VIRTUAL MACHINE MIGRATION

L10.66

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service
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QUESTIONS
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