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 TCSS 558B

 Tuesday February 11 – 6 respondents (32%)

 Thursday February 13 – 7 respondents (37%) ( I n ternsh ip  fa i r  @ U W Seat t le )

 Tuesday February 18 – 12 respondents (63%) √
 No Preference – 2 respondents (11%)

 Midterm Plan:

 Content coverage - through 1st half of Lecture 11 on Feb 11th

 Practice midterm - 2nd half of Lecture 11 on Feb 11th

 February 13th – Will cover new material not on midterm

 Midterm Exam – Tuesday February 18th

 Exams returned no later  than Tuesday February 25th

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

MIDTERM SCHEDULING SURVEY

 Please classify your perspective on material covered in today’s 
class (9 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.69  (up from 6.11)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81  (up from 5.22)
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 In  f inite state machine server,  whi le I/O is reading/writ ing,
there should be a thread executing I/O operation,
how is this considered single thread?

 The server is a “finite state machine”

 Server  has just one thread of execution

 Client requests arrive:  if processing the request requires I/O 
(disk or  network), al l I/O is  non-blocking
 I/O request issued as asynchronous call to operating system

 I/O is processed using separate kernel thread (protected mode)

 Server saves state of client request, “switches” to work on other request

 Operating system generates interrupt when I/O completes

 Server traps interrupt, “switches” back to original request who’s I/O is 
complete
… (Section 3.1, p. 115)
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FEEDBACK FROM 2/4

an abstract machine that can be 
in exactly one of a finite number 
of states at any given time

 About virtualization, can you introduce something about 
Firecracker?

 Firecracker is a MicroVM designed to host FaaS functions / 
containers for serverless computing

 Goal: securely share servers with many users simultaneously 
running serverless workloads

 Features accelerated kernel loading 
 microVMs runs with reduced memory overhead of 5 MB/VM
 Implements minimal device model excluding non-essential 

functionality 
 Firecracker runs in user space (kernel not exposed to VMM)
 Very fast VM startup time: ~125 ms, up to 150 VMs/sec/host
 Leverages KVM vir tualization to ensure workload isolation
 See: https://firecracker-microvm.github.io/
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 About virtualization, can you introduce something about 
Firecracker?

 Firecracker is a MicroVM designed to host FaaS functions / 
containers for serverless computing

 Goal: securely share servers with many users simultaneously 
running serverless workloads

 Features accelerated kernel loading 
 microVMs runs with reduced memory overhead of 5 MB/VM
 Implements minimal device model excluding non-essential 

functionality 
 Firecracker runs in user space (kernel not exposed to VMM)
 Very fast VM startup time: ~125 ms, up to 150 VMs/sec/host
 Leverages KVM vir tualization to ensure workload isolation
 https://firecracker-microvm.github.io/
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FEEDBACK - 2

Key take-away:

Firecracker provides VM like experience (security/isolation)
with container like agility (high speed, low overhead)

 Can pack thousands of VMs onto single machine
 VMs feature rate l imiter to optimize sharing of network & storage

 VMs traditionally provide intelligent scheduling/sharing of CPU/memory
 Firecracker goes further with network/storage sharing

 Can vir tualize Linux 4.14+ and OSv guests
 Firecracker is a VMM that is  an alternative to QEMU
 Replaces QEMU which underlies KVM
 QEMU –hosted VMM that per forms hardware vir tualization
 Early 2000s command line tool for creating VMs on Linux
 QEMU supports multiple modes:

 System emulation (provides the full VM)
 KVM mode (handles disk image setup/migration and some HW 

emulation, KVM executes (runs) the VM)
 Xen mode (emulates some HW, XEN executes (runs) the VM)

 Firecracker is based on Chromium OS’s VMM called crossvm
 Firecracker is written in Rust

 Rust - new language designed for safe concurrency

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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FIRECRACKER (EXTRA)
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CH. 3.3: CLIENTS

L10.9

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)
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 VNC sends picture of desktop across network

 Minimal optimizations are employed
 Send only parts of screen which have changed

 Limit colors, resolution

 VNC requires more data transfer

 RDP sends instructions on how to draw screen to cl ient 

 Client renders image based on instructions and displays it

 Transferring instructions requires much less network bandwidth

 Client computer "understands" image it  has created 

 Client per forms simple operations locally
 Move windows without sending mouse input to host computer

 No need to wait for host computer to render moved window

 No need to wait for response from server 

 Client just calculates and draws results locally  
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RDP VS. VNC

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:
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THIN CLIENTS

11

12



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

February 6, 2020

Slides by Wes J. Lloyd L10.7

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled 
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adversely af fects 
performance over WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of 
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level 
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X
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THIN CLIENTS - 3
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols
 Examples :  VNC,  THINC,  RDP,  X11

Pixel-level Graphics l ib
VNC X11 / RDP
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols
 Examples :  VNC,  THINC,  RDP,  X11

Pixel-level Graphics l ib
VNC X11 / RDP

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic ● Client more processing
● Server more processing

15

16



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

February 6, 2020

Slides by Wes J. Lloyd L10.9

 Clients help enable distribution transparency of servers

 Replication transparency 
 Client aggregates responses from multiple servers

 Client application (not users) know of replicas

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new 

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency 
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY - 2
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CH. 3.4: SERVERS

L10.19

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 IT is moving to the cloud. And, what powers the cloud? 

Linux
 Uptime Institute survey - 1 ,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma
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SERVERS
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 Servers implement a specific service for a collection of cl ients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle cl ient requests

 Concurrent: Pass cl ient request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative :  fork a new process for each incoming request

 Hybrid :  mix the use of multiple processes with thread pools
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SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points 
(servers/services)

When designing new TCP client/servers must be careful 
not to repurpose ports already commonly used by others
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END POINTS
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Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers
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TYPES OF SERVERS
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 Servers run in background on Linux, respond to requests from 
local programs and remote users

 Daemons processes typically started at boot time
 One of three major Linux process types 

(interactive, batch, daemon)

 Have single script under /etc/init.d defining how to start, 
restart, terminate, perform status checks, etc.

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)
 Routes local client traffic to the configured endpoint servers
 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)
 Others: crond(task scheduler), f tpd, lpd(laser printing)…
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DAEMON SERVERS

 Linux (extended) internet service daemon inetd / xinetd
 Used on Linux machines
 One instance (single superserver) per machine
 Superserver configures host to run multiple internet services
 E.g. ftp, pop, telnet

 PID 1, boots as first process
 inetd daemon provides common interface for multiple services:
 Perform service operations: restart, start, status, stop, etc.
 “Start” forks a process to run specified “server”  
 Scripts under /etc/init.d/ define server behavior
 No longer installed / used by Ubuntu 
 Replaced by upstart, then systemd: start daemons concurrently

 Check ports you’re listening on:
How many daemons can you see?
 sudo netstat -tap | grep LISTEN
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SUPERSERVER
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 Server design issue:
 Active client/server communication is taking place over a port
 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 
unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 
interrupting the server  (TCP urgent data)
 Application protocol could be designed to accommodate OOB data

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily
 Must kill the client and/or server
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INTERRUPTING A SERVER

 Data about state of cl ients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited 
time (to support sessions)

 Soft state information expires and is deleted
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STATELESS SERVERS
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 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 

 Clients retrieve and store RW file copies from File server

 Server then tracks cl ient file permissions and versions
 Table tracks  (client ID, filename) entries w/ metadata

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS

 Session state
 State records sequence of operations by a single user
 Maintained temporarily, not indefinitely by servers
 Often retained for multi-tier client server applications
 Minimal consequence if session state is lost
 Clients may need to start over, reissue requests 

(reinitialize sessions)

 Permanent state
 Customer information (address, etc.), software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state 

locally in “cookies”
 Cookies are not executable, simply client-side data

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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STATEFUL SERVERS - 2
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 OBJECTIVE: Host objects and enable remote client access
 Do not provide a specific  service 

 Do nothing if there are no objects to host
 Suppor t adding/removing hosted objects 
 Provide a home where objects l ive
 Objects,  themselves ,  provide “services”

 Object par ts
 State data
 Code (methods, etc.)

 Transient object(s)
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server at boot time

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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OBJECT SERVERS

 Should object servers isolate memory for  object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading design alternatives:
 Single thread of control for object server
 One thread for each object
 Separate thread for every client request

 Threads created on demand    vs.
Server maintains pool of threads

 What are the tradeoffs for  creating server threads on demand vs.  
using a thread pool?

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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OBJECT SERVERS - 2
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 Enterprise JavaBeans (EJB) is architecture for transactional, 
component-based distributed computing

 Beans are components that run in EJB web container
( i .e.  special  web server that has nothing to do with Docker containers)

 Developers just write beans (components)

 EJB architecture then automatically supports transaction 
support, security, remote object access, etc … 

 4 types of beans: stateless, stateful, entity, and message-
driven beans

 Key idea: EJB provides “middleware” standard (framework) for 
implementing back-ends of enterprise applications
 Simplifies distributed application development
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EJB – ENTERPRISE JAVA BEANS

 Architecture became less popular with advent of web services

 EJB web application containers integrate support for:
 Transaction processing

 Persistence

 Concurrency

 Event-driven programming

 Asynchronous method invocation

 Job scheduling

 Naming and discovery services (JNDI)

 Interprocess communication

 Security 

 Software component deployment to an application server
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EJB - 2
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 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules
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APACHE WEB SERVER

Hooks point to functions in modules

 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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SERVER CLUSTERS
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 Front end of three tier architecture (logical switch) provides 
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 
requests, hands of f to a server
 Example: hardware load balancer (F5 networks – Seattle)
 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach (rewrite packets):
 All requests pass through switch
 Switch sits in the middle of the client/server TCP connection
 Maps (rewrites) source and destination addresses

 Connection hand-off approach  (not a proxy)
 TCP Handoff: switch hands off connection to a selected server
 Key: connection is handed off. Server responds directly to client  

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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LAN REQUEST DISPATCHING

 Hand-off is sticky.  Session remains between client/server pair 
unti l closed   (not a proxy - dispatcher’s job is done)

 Which is the best server to handle the request?

 Switch plays important role in 
distributing requests

 Implements load balancing
 Round-robin – routes client 

requests to servers in a looping
fashion

 Transport-level – route client 
requests based on TCP port number

 Content-aware request distribution – route requests based on 
inspecting data payload and determining which server node 
should process the request

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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LAN REQUEST DISPATCHING - 2
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 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resources from a single cloud provider can be combined to 
form a cluster

 For deploying a cloud-based cluster (WAN), what are the 
implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones (us-east-1a, us-east-1e)?

 (3) across multiple Regions (e.g. us-east-1 , us-west-2)?
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WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
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WAN REQUEST DISPATCHING
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 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased
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DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping “VA” google in WA: ~3.63x
WA laptop: local-google 22.458ms to VA-google 81.637ms

Latency to ping “WA” google in VA: ~48.7x
Virginia ec2 VM: local-google 1.278ms to WA-google 62.349!

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and 
distributed systems research

 Organizations share 
nodes in the cluster
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EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers” 
similar to Docker
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 Slices: set of Vservers running across
PlanetLab

 Acts as a vir tual server cluster 
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be sl ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice 

 Rcap: resource capability
 Specifies resource capabilities of nodes
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PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS  Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized 
access among Vservers directory trees
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VSERVERS
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 Advantages of  Vservers (containers) vs. VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic 
resource allocation - Example:  CPU or  RAM (assignment 0, config 2)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved 

 Linux kernel shares memory among processes 

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space
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VSERVERS - 2

CH. 3.5: RESOURCE
(CODE) MIGRATION
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 To support on-the-fly reorganization of distributed 
systems, at times there is interest in resource 
migration

Can consider various types of resource migration

Code migration: source code, libraries

Process migration: a running job/task

VM migration: an entire virtual server!
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RESOURCE MIGRATION

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it  is executing

 Portability – transferring code (running or not) across 
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lexibil ity of distributed systems
 Topologies can be dynamically reconfigured on-the-fly
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CODE MIGRATION
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Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration? 
an application specific approach?

What are advantages and disadvantages of each?
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PROCESS MIGRATION

 Move processes:  
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?
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PROCESS MIGRATION - 2
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 Can migrate processes or entire vir tual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?
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MOTIVATIONS FOR MIGRATION

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it) to create 
a checkpoint to persistent storage (e.g. disk) as a collection of 
fi les.
 This means saving the state of RAM to disk

 Can use checkpoint fi les to restore and run the application 
from the point it was frozen at. 

 Distinctive feature of CRIU is that it can be run in the user 
space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration 
elsewhere
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LINUX CRIU
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 Make decisions concerning allocation and 
redistribution of tasks across machines

 Provide resource management for compute intensive 
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU 
capacity

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.57

LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative 
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition 

and state of systems and networks

 Is it  better to migrate code or data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing 

 Are there security 
requirements for the data?

WHEN TO MIGRATE?
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 Size of code
 Size of data
 Available network transfer 

speed

57

58



TCSS 558: Applied Distributed Computing
[Winter 2020]  School of Engineering and Technology, 

UW-Tacoma

February 6, 2020

Slides by Wes J. Lloyd L10.30

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed
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APPROACHES TO CODE MIGRATION

 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires 
network bandwidth & time
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DYNAMIC WEB CLIENTS
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 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web browser

 Remote cloning

 Produce a copy of the process on another machine 
while parent runs
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CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, statem stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts

 Strong mobility

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.62

CODE MIGRATION - 2
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* indicates what is 
modified 

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec
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CODE MOBILITY TYPES

client obtains & runs code

client provides code for remote exec

everything runs remotely

client moves code and exec to server

 Assumption: code will  always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across 
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration 
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MIGRATION OF 
HETEROGENEOUS SYSTEMS
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 Four approaches:

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
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VIRTUAL MACHINE MIGRATION

L10.66

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service
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QUESTIONS
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