TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 6, 2020

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Chapter 3 - Processes

Wes J. Lloyd

School of Engineering
and Technology

University of Washington - Tacoma

OBJECTIVES

= Assignment O - questions
mAssignment 1 - questions

= Feedback from 2/4

= Chapter 3.3: Clients - cont’d
= Chapter 3.4: Servers

= Chapter 3.5: Resource Migration

TCSS558: Applied Distributed Computing [Winter 2020]

(R 1 G A e A BT e e o R P T

MIDTERM SCHEDULING SURVEY

= TCSS 558B
= Tuesday February 11 - 6 respondents (32%)
= Thursday February 13 - 7 respondents (37%) (internship fair @UW Seattle)

= Tuesday February 18 - 12 respondents (63%) ‘/

= No Preference - 2 respondents (11%)

= Midterm Plan:

= Content coverage - through 15t half of Lecture 11 on Feb 11t
= Practice midterm - 2" half of Lecture 11 on Feb 14th

= February 13t - Will cover new material not on midterm

= Midterm Exam - Tuesday February 18"

= Exams returned no later than Tuesday February 25th

February 6, 2020

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri iversit i

1103
chnology, y Tacoma ‘

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (9 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.69 (up from 6.11)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.81 (up from 5.22)

TCSS558: Applied Distributed Computing [Winter 2020]

(R 17 G ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

FEEDBACK FROM 2/4

= In finite state machine server, while 1/0 is reading/writing,
there should be a thread executing I/0 operation,
how is this considered single thread? an abstract machine that can be
in exactly one of a finite number
= The server is a “finite state machine” of states at any given time
= Server has just one thread of execution
= Client requests arrive: if processing the request requires I/0
(disk or network), all 1/0 is non-blocking
= 1/0 request issued as asynchronous call to operating system
= 1/0 is processed using separate kernel thread (protected mode)
= Server saves state of client request, “switches” to work on other request
= Operating system generates interrupt when I/0 completes
= Server traps interrupt, “switches” back to original request who's 1/0 is
complete
... (Section 3.1, p. 115)

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

1105
chnology, y Tacoma ‘

FEEDBACK - 2

= About virtuallzatlon, can you Introduce something about
Firecracker?

= Firecracker is a MicroVM designed to host FaaS functions /
containers for serverless computing

= Goal: securely share servers with many users simultaneously
running serverless workloads

= Features accelerated kernel loading
= microVMs runs with reduced memory overhead of 5 MB/VM

= Implements minimal device model excluding non-essential
functionality

= Firecracker runs in user space (kernel not exposed to VMM)

= Very fast VM startup time: ~125 ms, up to 150 VMs/sec/host
= Leverages KVM virtualization to ensure workload isolation

= See: https://firecracker-microvm.github.io

TCSS558: Applied Distributed Computing [Winter 2020]

(1) G Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L10.1

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 6, 2020

FIRECRACKER (EXTRA)

= About virtuallzation, can you Introduce something about : Carm [pEeh s off Vil 6o Siidle maciine

Flrecracker? VMs featur_e_ rate Iimit(_er tf’ opt_imize sharin_g of net_work & storage
- . . . = VMs traditionally provide intelligent scheduling/sharing of CPU/memory
g g g = Firecracker goes further with network/storage sharing

Can virtualize Linux 4.14+ and OSv guests

Firecracker is a VMM that is an alternative to QEMU

Replaces QEMU which underlies KVM

QEMU -hosted VMM that performs hardware virtualization

Early 2000s command line tool for creating VMs on Linux

QEMU supports multiple modes:

= System emulation (provides the full VM)

= KVM mode (handles disk image setup/migration and some HW
= Firecracker runs in user space (kernel not exposed to VMM) emulation, KVM executes (runs) the VM)

= Very fast VM startup time: ~125 ms, up to 150 VMs/sec/host * Xen mode (emulates some HW, XEN executes (runs) the VM)
q " . q q Firecracker is based on Chromium 0S’s VMM called crossvm
= Leverages KVM virtualization to ensure workload isolation N a . h
) .)) Firecracker is written in Rust
= https://firecracker-microvm.github.io

Key take-away:

Firecracker provides VM like experience (security/isolation)
with container like agility (high speed, low overhead)

= Rust - new language designed for safe concurrency
TCsS558: Applied Distributed Computing [Winter 2020] TCSS558: Applied Distributed Computing [Winter 2020]
‘ (e 2 e o Ty s s o Tty T L7 (R 1 G A e AR N o e f T uoe

TYPES OF CLIENTS

= Thick clients
=Web browsers
= Client-side scripting
= Mobile apps

CH. 3.3: CLIENTS * Multi-tier MVC apps

EThin clients
= Remote desktops/GUIs (very thin)

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (R 17 G 5ehool of Engineerng sndTechnoloayiUniversity f Tecoma L0
= VNC sends picture of desktop across network : :

— P P = Thin clients
= Minimal optimizations are employed ;

P [P = X windows protocol
= Send only parts of screen which have changed : :
. i N g = A variety of other remote desktop protocols exist:
= Limit colors, resolution
= VNC requires more data transfer Remote deskicp protocols include the followng:
o FIIR conds [ISmeEions 6n (e & e Saee (® et « Apple Remote Desktop Protocol (ARD) - Original protocol for Apple Rerotz Deskiop on macOS mechines.

— « Appliance Link Prctocol (ALP) - a Sun Microsystems specific protocol featuring audio (play and recard), femote printing, remote USB, aczeerated vicea
= Client renders image based on instructions and displays it « HP Remote Graphics (RGS)— a propriztary protocol designed by Hewle vd specfically for high end workstaion remoting and colleboration.
= Transferring instructions requires much less network bandwidth « Independent Compuing Arciitecture (ICA) — a propritary protocl designed by Citrx Sysiems

. " - . » NX technolbgy (NoMachire \IX) - Cross platform protocol featuring audio, video, remote pritirg, remote USE, H264-enabled.
= Client computer "understands" image it has created « PC-over-IP (PColIP) - a proprieta’y protocal used by VMware (licensed from Teradici?!
= Client performs simple operations locally + Remoze Deskiop Protocol (RDP) — a Windaws-specifc prctocol featuring audio and remote prirting
* Move windows without sending mouse input to host computer + Remoce Frame Bufer Frotocol (RFB) - A framebufer level cross pltform pro:ocol that VN is based on
)) « SPICE (Simple Protocal for Indepers mputing Environments) - remote-display for by Qumranet, now Red Hat

= No need to wait for host computer to render moved window + Splashtop — a high performance remote deskiop protocol developed by Splashtap, fuly optimized for hardware (+.264) including Intel / AVD chipsets, NVIDIA

= No need to wait for response from server of media codecs, Splasitop can delfver figh frame rates vith low latency, and also low power consumption.

o @l s cellrEes and cEes s el « X Window System (X11) - awel-estabiished cross-platfomn protccal mainly used for displaying local applications; XL is network transparent

TCSS558: Applied Distributed Computing [Winter 2020] TCSS558: Applied Distributed Computing [Winter 2020]
‘ (e 5 20 ‘ Seoolof Ensineera endTechnoloayiUniversty Tacoma uoa (1) G Sehodl of Engineerng and Technolosy University o Washi Tacoma Loz

11 12

Slides by Wes J. Lloyd L10.2

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 6, 2020

THIN CLIENTS - 2

= Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

= Client must wait for response

= Synchronous behavior and app-to-Ul coupling adversely affects
performance over WAN / Internet

= Protocol optimizatlons: reduce bandwidth by shrinking size of
X protocol messages

= Send only differences between messages with same identifier

= Optimizations enable connections with 9600 kbps

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma o

‘ February 6, 2020

THIN CLIENTS - 3

= Virtual network computing (VNC)

= Send display over the network at the pixel level
(instead of X lib events)

= Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
= Can transport any GUI this way

= THINC- hybrid approach

= Send video device driver commands over network
= More powerful than pixel based operations

= Less powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma o

February 6, 2020

13

14

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols
= Examples: VNC, THINC, RDP, X11

Plxel-level Graphles llb
VNC ['] X11/ RDP

u

TC55558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 11015

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols
= Examples: VNC, THINC, RDP, X11

Pixel-level Graphics lib

VNC P n XE.1/ RDP
< U >

e Generic - no app context e Application context

e Graphics data is available

o Higher network bandwidth e Ul data/operations

e Fewer colors e Lower network bandwidth

o Utilize graphics compression o More colors

e More network traffic e Client more processing

e Server more processing

TCSS558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma Los

February 6, 2020

15

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Client application (not users) know of replicas

Client machine arver T erver eIVer 3
Client Server Server Server
appl appl appl appl
Y
N . A A

et sidd handles N~

equest replication

Replicated request

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma o7

‘ February 6, 2020

17

Slides by Wes J. Lloyd

16

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency
= Client aggregates responses from multiple servers
= Failure transparency

= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma os

February 6, 2020

18

L10.3

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 6, 2020

3.4: SERVERS

SERVERS

= Cloud & Distributed Systems - rely on LInux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |IT is moving to the cloud. And, what powers the cloud?

*Linux
= Uptime Institute survey - 1,000 IT executives (2016)
= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on Linux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

‘ February 6, 2020 TCss558: Applied Distributed Computing [Winter 2020]

School of Technology, University Tacoma

19

SERVERS - 2

= Server types
= |teratlve: immediately handle client requests

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Concurrent: Pass client request to separate thread

= Alternative: fork a new process for each incoming request
= Hybrid: mix the use of multiple processes with thread pools

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

Technology, y Tacoma

21

CoMMON PORTS
TCP/UDP Port Numbers

7 Echo 554 RTSP 2745
19 Chargen 546-547 DHCPV6 2967 Symantec AV
20-21 FTP 560 rmonitor 3050 Interbase DB
» SN o RS o
23 Telnet 587 SMTP 3124 HTTP Proxy
25 smTP 591 FileMaker 3127
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy
43 WHoIS 631 Internet Printing 3222 GLep
49 TacACS 636 3260 iSCsi Target
53 DNS 639 MSDP (PIM) 3306 MysQL
67-68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server
69 TFTP 691 M Exchange 3689 iTunes
70 Gopher 860 iSCS! 3690 Subversion
79 Finger 873 rsync 3724
80 HTTP 902 VMware Server 3784-3785 Ventrilo
88 Kerberos 989-990 FEBEISSHN 4333 msqL
102 Ms Exchange 993 IMAPA over SSL P
110 PoP3 995 FORSOIEHSSIN 4664 Google Deskiop
113 ident 1025 Microsoft RPC 4672
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin
123 NTP 1080 SOCKS Proxy 5000 UPnP
135 Microsoft RPC 1080 [ESERIN 5001 Slingbox
137-139 NetBios 1194 OpenvPN 5001 iperf
143 MAPa 1214 KEEI 5004-5005 RTP
161-162 SNMP 1241 Nessus 5050 faRgoliessengen)
177 xoMCP 1311 Dell OpenManage 5060 SiP
120 8ce 1337 ViASTER— 130

23

Slides by Wes J. Lloyd

packetlife.net

6891-6901
6970 Quicktime
7212 Ghostsurt
7648-7649
8000 Internet Radio
8080 HTTP Proxy
8086-8087 Kaspersky AV
8118 Privoxy
8200 VMware Server
8500 Adobe ColdFusion
8767
8866
9100 HP JetDirect
9101-9103 Bacula
9119
9800 WebDAV
9898
9988
9999 Urchin
10000 Webmin
10000 BackupExec
10113-10116 NetiQ
11371 OpenPGP
12035-12036
12345
13720-13721 NetBackup

20

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

=When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University of Washi Tacoma

‘ February 6, 2020 ‘ 11022 ‘

22

TYPES OF SERVERS

=Daemon server
= Example: NTP server

=Superserver

= Stateless server
= Example: Apache server

= Stateful server
= QObject servers

= EJB servers

TCS5558: Applied Distributed Computing [Winter 2020]

(1) G Schoolof echnoloayUniversityof Tacoma

24

L10.4

TCSS 558: Applied Distributed Computing February 6, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

DAEMON SERVERS SUPERSERVER

= Servers run in background on Linux, respond to requests from = Linux (extended) internet service daemon inetd / xinetd
local programs and remote users « Used on Linux machines

= Daemons processes typically started at boot time = One instance (single superserver) per machine

= One of three major Linux process types = Superserver configures host to run multiple internet services
(interactive, batch, daemon) E.g. ftp, pop, telnet

= PID 1, boots as first process
= inetd daemon provides common Interface for multiple services:
= Perform service operations: restart, start, status, stop, etc.

= Have single script under /etc/init.d defining how to start,
restart, terminate, perform status checks, etc.

= Example: network time protocol (ntp) daemon = “Start” forks a process to run specified “server”
= Listen locally on specific port (ntp is 123) = Scripts under /etc/Inlt.d/ define server behavior

= No longer installed / used by Ubuntu

= Routes local client traffic to the configured endpoint servers
= Replaced by upstart, then systemd: start daemons concurrently

= University of Washington: time.u.washington.edu

= Example “ntpq -p” = Check ports you're listening on:
Queries local ntp daemon, routes traffic to configured server(s) How 21any daemons can you see?
= Others: crond(task scheduler), ftpd, Ipd(laser printing)... TS EOROEE S || GECR Uk

TCSS558: Applied Distributed Computing [Winter 2020]

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (e 2 e A BT e e o R P T

T o T s s o T T T T ‘ uozs ‘ ‘ (R 1 G A

25 26

INTERRUPTING A SERVER STATELESS SERVERS

= Server design issue: = Data about state of clients is not stored
= Active client/server communication is taking place over a port = Example: web application servers are typically stateless
= How can the server / data transfer protocol support interruption? = Also function-as-a-service (FaaS) platforms

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream? = Many servers maintain information on clients (e.g. log files)
1. Out-of-band data: special messages sent in-stream to support

interrupting the server (TCP urgent data) = Loss of stateless data doesn’t disrupt server availability
Application protocol could be designed to accommodate OOB data = Loosing log files typically has minimal consequences
2. Use a separate connection (different port) for admin control info

= Example: sftp secure file transfer protocol = Soft state: server maintains state on the client for a limited
= Once a file transfer is started, can’t be stopped easily time (to support sessions)
= Must kill the client and/or server = Soft state information expires and is deleted
TCSS558: Applied Distributed Computing [Winter 2020] TCSS558: Applied Distributed Computing [Winter 2020]
‘ EEbiatye 2020 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome ‘ Loz ‘ ‘ (R 17 G ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma Loz ‘

27 28

STATEFUL SERVERS STATEFUL SERVERS - 2

= Maintain persistent information about clients = Session state

= Information must be explicitly deleted by the server = State records sequence of operations by a single user
= Maintained temporarily, not indefinitely by servers

= Often retained for multi-tier client server applications

= Example: = Minimal consequence if session state is lost
= Clients retrieve and store RW file copies from File server = Clients may need to start over, reissue requests
= Server then tracks client file permissions and versions (reinitialize sessions)

= Table tracks (client ID, filename) entries w/ metadata = Permanent state

= Customer information (address, etc.), software keys

= If server crashes data must be recovered u Client-side cookles

= Entire state before a crash must be restored = When servers don’t maintain client state, clients can store state
= Fault tolerance - Ch. 8 locally in “cookies”
= Cookies are not executable, simply client-side data

TCS$558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2020]
‘ (e 5 20 Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms

‘ 11029 ‘ ‘ February 6, 2020

29 30

Slides by Wes J. Lloyd L10.5

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 6, 2020

OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent ob)ect(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server at boot time

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lo3t ‘

‘ February 6, 2020

OBJECT SERVERS - 2

= Should obJect servers Isolate memory for object Instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

= Object server threading design alternatives:
= Single thread of control for object server
= One thread for each object
= Separate thread for every client request

= Threads created on demand vs.
Server maintains pool of threads

= What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 11032 ‘

31

32

EJB - ENTERPRISE JAVA BEANS

= Enterprise JavaBeans (EJB) is architecture for transactional,
component-based distributed computing

= Beans are components that run in EJB web container
(i.e. special web server that has nothing to do with Docker containers)

= Developers just write beans (components)
= EJB architecture then automatically supports transaction
support, security, remote object access, etc ...

= 4 types of beans: stateless, stateful, entity, and message-
driven beans

= Key Idea: EJB provides “middleware” standard (framework) for
implementing back-ends of enterprise applications
= Simplifies distributed application development

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lo ‘

‘ February 6, 2020

EJB - 2

= Architecture became less popular with advent of web services
= EJB web application containers integrate support for:

= Transaction processing

= Persistence

= Concurrency

= Event-driven programming

= Asynchronous method invocation

= Job scheduling

= Naming and discovery services (JNDI)

= Interprocess communication

= Security

= Software component deployment to an application server

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 11034 ‘

33

APACHE WEB SERVER

= Highly configurable, extensible, platform independent
= Supports TCP HTTP protocol communication

= Uses hooks - placeholders for group of functions

= Requests processed in phases by hooks

= Many hooks:
= Translate a URL

= Write info to log %
[

Module Module Module

L

ink between
function and hool
|

i B | (i

Function

= Check client ID g

= Check access rights DDH o mm I ‘
= Hooks processed in order =7=! " Hooks point to functions in modules
enforcing flow-of-control / [|

| Apache core
= Functions in replaceable Functions called per hock _‘_‘J
modules Roquest Rosponse

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 ‘ 11035 ‘

35

Slides by Wes J. Lloyd

34

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch Application/compute servers Distributed

(possibly multiple) file/database
system

T

Client requests request

R

First tier econd tier Third tier

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 11036 ‘

36

L10.6

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - 0S| layers 4-7

= Network-address-translation (NAT) approach (rewrite packets):
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach (not a proxy)
= TCP Handoff: switch hands off connection to a selected server
= Key: connection is handed off. Server responds directly to client

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma Los7

‘ February 6, 2020

37

WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resources from a single cloud provider can be combined to
form a cluster

= For deploylng a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?
® (2) across multiple availability zones (us-east-1a, us-east-1e)?
= (3) across multiple Regions (e.g. us-east-1, us-west-2)?

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma o9

‘ February 6, 2020

39

DNS LOOKUP

= First query local server(s) for address

= Typically there are (2) local DNS servers
= One is backup

= Hostname may be cached at local DNS server

= E.g. www.google.com
= If not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCS5558: Applied Distributed Computing [Winter 2020]

‘ (e 5 20 Seoolof Ensineera endTechnolomyilniversity/hiNas hington S Tecoms

L1041

41

Slides by Wes J. Lloyd

February 6, 2020

until closed

fashion

should process the

LAN REQUEST DISPATCHING - 2

= Hand-off is sticky. Session remains between client/server pair
(not a proxy - dispatcher’s job Is done)
= Which is the best server to handle the request?

= Switch plays important role in
distributing requests

= Implements load balancing

= Round-robin - routes client
requests to servers in a looping

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node

request

Logically a
single TCP ————u:
connection

—

Request

Response

Request ©
(handed of) *

‘ February 6, 2020

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1038

38

= Example: Domain

nmcli dev

Name System

= Linux: find your DNS servers:

Show device configuration

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server

= Hierarchical decentralized naming system

Find you device name of interest

nmcli device show <device name>

‘ February 6, 2020

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

=

40

Local Name Server
5. lterative Query to root
4.Check > (root)
Cache 6. Name Server for .edu
- ai
13. Update B — Root Name Server
Cache - D
Cache
Server T 7. Iterative
3.Recursive Quisry & A sl
Que:
2 “I'P dress 8. Name Server for
googleplex.edu
2. Check .edu Name Server
- 50 9. lterative Query "
@ o googleplex.edu
15. Updat
< 10. Name Server for googleplex
Cache Resolver compsci.googleplex.edu
googleplex.edu
1. Re:olmnt Name Server
=" | [16. Roquested 11. lterative Query to %
IP Address compsci.googleplex.edu m
g m 12. 1P Address for >
) wwww.net.compsci.googlepler.edt comnsc googlepler.edu
me Server
17. HTTP Request -
User & Browser to Resolved Address
Client

42

L10.7

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,

UW-Tacoma

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

= Traces network path to destination

DNS: LINUX COMMANDS

traceroute <ip addr / hostname>

By default, output is limited to 30 hops, can be increased

TCS5558: Applied Distributed Computing [Winter 2020] L1043 ‘

(e 2 T o T s s o T T T T

43

= Ping www.google.com in WA from wireless network:

DNS EXAMPLE - WAN DISPATCHING

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping “VA” google in WA: ~3.63x

WA laptop: local-google 22.458ms to VA-google 81.637ms

Latency to ping “WA” google in VA: ~48.7x

Virginia ec2 VM: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCS5558: Applied Distributed Computing [Winter 2020]

EEbiatye 2020 e oolol Enpinear s erd Technoloayilnvers Y e hinetonETecome Lioas ‘

February 6, 2020

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
= Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
= Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
= Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCS5558: Applied Distributed Computing [Winter 2020] L0as ‘

(R 1 G A e A BT e e o R P T

44

EXAMPLE: PLANETLAB

= Unstructured heterogeneous cluster of servers

= Similar to grid but organized as cluster (no grid middleware)

= Testbed established in 2002 for computer networking and
distributed systems research

i A User-assigned Priviliged management
- Organl_zatlons Share virtual machines virtual machines
nodes in the cluster I N I S

Leverages Linux Vservers
Early “containers”
similar to Docker

sseo0id | |

[z
\
o [0]
>4 [“sseo0ig
ssa00id

s000ia | |
==

Doy [5500
[[sse00id |

l Vserver Vserver

Linux enhanced operating system

Vserver Vserver

Hardware

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

L1046

February 6, 2020

46

VSERVERS

= Early container based approach

= Vservers share a single operating system kernel

= Primary task is to support a group of processes

= Provides separation of name spaces

= Linux kernel maps process IDs: host 0S > Vservers

= Each Vserver has its own set of libraries and file system
= Similar name separation as the “chroot” command

= Additional isolation provided to prevent unauthorized
access among Vservers directory trees

TCSS558: Applied Distributed Computing [Winter 2020]
(1) G Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L1048

Tice
= Slices: set of Vservers running across @ ==
—_ Node
PlanetLab | CLD)
= o] @)
= Acts as a virtual server cluster server (O 0| (o)
(similar to Amazon VPC) (@l D D)
= Node manager: manages Vservers running on a host
= Slice creatlon service (SCS): To create virtual server clusters
= Clients must be slice authorities to create cluster
= Rspec: resource specification
= Specifies resource requirements for a slice
= Rcap: resource capability
= Specifies resource capabilities of nodes
TCSS558: Applied Distributed Ce iting [Winter 2020]
(e 5 20 School ms:;rieri:g:n: ?echzrcr;‘\zzy:r:fr\ive"r‘si:;uVWashing(un—Ta:oma o4 ‘

Slides by Wes J. Lloyd

48

L10.8

TCSS 558: Applied Distributed Computing

[Winter 2020] School of Engineering and Technology,

UW-Tacoma

February 6, 2020

VSERVERS - 2

= Advantages of Vservers (contalners) vs. VMs:
= Simpler resource allocation
= Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 2)
= VMs reserve a block of memory
= Containers can oversubscribe memory
= Memory not formally reserved
= Linux kernel shares memory among processes
= Swap filesystem can use disk as extended RAM
= Memory sharing important for PlanetLab
= Early nodes had limited memory (e.g. 4 GB)
= Vserver hogging most memory reset when out of swap space

L10.49

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

CH. 3.5: RESOURCE

(CODE) MIGRATION

L10.50

49

50

RESOURCE MIGRATION

= To support on-the-fly reorganization of distributed
systems, at times there is interest in resource
migration

= Can consider various types of resource migration
=Code migration: source code, libraries
=Process migration: a running job/task
=VM migration: an entire virtual server!

L1051

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

chnology, y Tacoma

CODE MIGRATION

= Distributed systems can support more than passing data

= Some situations call for passing programs (e.g. code)

= Live mlgratlon - moving code while it is executing

= Portability - transferring code (running or not) across
heterogeneous systems:

Mac 0S X > Windows 10 - Linux

= Code migration enables flexIbllity of distributed systems
= Topologies can be dynamically reconfigured on-the-fly

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University of Washi Tacoma

‘ February 6, 2020

052

51

PROCESS MIGRATION

= Move an entire process from one node to another
= Motivation is always to address performance

= Process migration is slow, costly, and intricate
=Need to pause, save intermediate state, move, resume
=Consider application specific vs. agnostic approaches

= What would be:

an application agnostic approach to migration?
an application specific approach?

= What are advantages and disadvantages of each?

L1053

chnology, y Tacoma

February 6, 2020 TCSS558: Applied Distributed Computing [Winter 2020]
School of

53

Slides by Wes J. Lloyd

52

PROCESS MIGRATION - 2

= Move processes:
from heavily loaded > lightly loaded nodes
= When do we consider a node as heavily loaded?
= Load average
= CPU utilization
= CPU queue length

= Which process(es) should be moved?
= Must consider resource requirements for the task

= Where should process(es) be moved to?

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineeri Technology, University of Washi Tacoma

‘ February 6, 2020

L1054

54

L10.9

TCSS 558: Applied Distributed Computing February 6, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

MOTIVATIONS FOR MIGRATION 6 LINUX CRIU

= Can migrate processes or entire virtual machlnes = Linux (CRIU) Checkpoint restore in userspace
= Goals: = Linux tool: https://www.criu.org/
o Off-loading machines: reduce load on oversubscribed servers = Supports freezing a running application (or part of it) to create
o Loading machine: ensure machine has enough work to do a checkpoint to persistent storage (e.g. disk) as a collection of
o Minimize total hosts/servers in use to save energy/cost flles.
= This means saving the state of RAM to disk
= VM migration: = Can use checkpoint files to restore and run the application
= Migrate complete VMs with apps to lightly loaded hosts from the point it was frozen at.

= Distinctive feature of CRIU is that it can be run in the user
space (CPU user mode), rather than in kernel mode.

= CRIU can save a Docker container’s state for migration
= |s VM migration application specific or agnostic? elsewhere

= Generally, VM migration is easier than process migration

TC55558: Applied Distributed Computing [Winter 2020] L0ss
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 11056

TCSS558: Applied Distributed Computing [Winter 2020]
(R 1 G A e A BT e e o R P T

55 56

LOAD DISTRIBUTION ALGORITHMS WHEN TO MIGRATE?
= Make decisions concerning allocation and = Decisions to migrate code often based on qualitative
redistribution of tasks across machines reasoning or adhoc decisions vs. formal mathematical models
= Difficult to formalize solutions due to heterogeneous composition
= Provide resource management for compute intensive and state of systems and networks
systems

= |s It better to migrate code or data?
= Often CPU centric

. = What factors should be considered?
= Algorithms should also account for other resources

A = Size of code = Cost of data t f
= Network capacity may be larger bottleneck that CPU fz osto ,a a transter
capacity = Size of data = Processing power of nodes
= Available network transfer = Cost of processing
speed = Are there security

requirements for the data?

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma Los7

TCSS558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma L10.58

‘ February 6, 2020 February 6, 2020

57 58

APPROACHES TO CODE MIGRATION DYNAMIC WEB CLIENTS

= Traditional clients = Advantages
= Client interacts with server using specific protocol = Client code loaded in as necessary
=Tight coupling of client->server limits system flexibility = Discarded when no longer needed
= Difficult to change protocol when there are many clients = Can easily change the client/server protocol
= Dynamic web clients = Disadvantages
= Web browser downloads client code immediately before use = Security: we have to trust the code Clent : i';‘;‘:,‘;";;‘f:” Server
= New versions can readily be distributed = Downloading client requires

network bandwidth & time

1. Client fetches code
Service-specific =
client-side code

Code repository

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma L9

‘ February 6, 2020

TCSS558: Applied Distributed Computing [Winter 2020]
(1) G Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

=

59 60

Slides by Wes J. Lloyd L10.10

TCSS 558: Applied Distributed Computing
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

February 6, 2020

CODE MIGRATION

= Sender-initiated: (upload the code)... e.g. Github

= Receiver-initiated: (download the code)... e.g. web browser

= Remote clonlng
= Produce a copy of the process on another machine
while parent runs

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma Lot

‘ February 6, 2020

CODE MIGRATION - 2

= What is migrated?

= Code segment

= Resource segment (device info)

= Execution segment (process info: data, statem stack, PC)
= Weak mobllity

= Only code segment, no state

= Code always restarts
= Strong mobility

= Code + executlon segment

= Process stopped, state saved, moved, resumed

= Represents true process migration

TCS5558: Applied Distributed Computing [Winter 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 6, 2020 11062

61

CODE MOBILITY TYPES

62

Before execution After execution
Clioas Clioa
* indicates what is everything runs remotely
modified [| code [] =
es] | oxe [| oxec”
. I | resource [| resource
= CS: Client-Server hertprovis
= REV: Remote Evaluation code [| [] code
REV U [Cexec | []|t exec’
= CoD: Code-on-demand [resource | [| resource
= MA: Mobile agents et obtairs-SrTaTstode———
code code
ICoD exec exec*
= Where does state get ’es““':_g [esoucs
modified?
[ode]| | [| |Cede |
mA [[Texee ||t] [[t |Cexee |
. . resource [Tosource | [Tesource |
= State is stored in exec ‘ ‘ [rosoure]
CS: Client-Server REV: Remote evaluation
CoD: Code-on-demand MA: Mobile agents

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma Lo

‘ February 6, 2020

MIGRATION OF

HETEROGENEOUS SYSTEMS

= Assumption: code will always work at new node
= [nvalid if node architecture is different (heterogeneous)

= What approaches are available to migrate code across
heterogeneous systems?

= Intermediate code
= 1970s Pascal: generate machine-independent intermediate code
= Programs could then run anywhere
= Today: web languages: Javascript, Java

= VM Migration

TCSS558: Applied Distributed Computing [Winter 2020]

‘ (R 17 G ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

=

63

VIRTUAL MACHINE MIGRATION

= Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed
4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

= What are some advantages and disadvantages of 1-4?

TCS5558: Applied Distributed Computing [Winter 2020]

School of Engineering and Technology, University of Washington - Tacoma Lo

‘ February 6, 2020

64

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

= What are some advantages and disadvantages of 1-4?
= 1/3:no loss of service

: fast transfer, minimal loss of service

: fastest data transfer

:new VM immediately available

: must track modified pages during full page copy
: longest downtime - unacceptable for live services
: prolonged, slow, migration

: original VM must stay online for quite a while

= 1/3: network load while original VM still in service

L]
WWNE WN S

L1066

65

Slides by Wes J. Lloyd

66

L10.11

TCSS 558: Applied Distributed Computing February 6, 2020
[Winter 2020] School of Engineering and Technology,
UW-Tacoma

QUESTIONS

February 6, 2020

67

Slides by Wes J. Lloyd L10.12

