
Page 1 of 12

TCSS 558: Applied Distributed Computing School of Engineering and Technology
Winter 2020 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss558 Instructor: Wes Lloyd

Assignment 1
Version 0.10

Key Value Store – Client/Server

Due Date: Friday February 21th, 2020 @ 11:59 pm

Objective
The purpose of assignment 1 is to build socket-based and/or remote-object based clients and servers.
For assignment 1 produce a program called “GenericNode”. GenericNode will receive command
arguments and then take on the role of a client or server for a basic Key-Value store. The following
operations should be supported:

Operation Description

put put <key> <value>

Put a value to the key-value store. The key uniquely identifies the object
to store. A unique key maps to only one object which has a unique
value. If multiple clients write to the same key, writes should be
synchronized.

get get <key>

Returns the value stored at <key>.

del del <key>

Deletes the value stored at <key> from the key value store.

store store

Prints the contents of the entire key-value store. You may optionally
truncate the output after returning 65,000 characters. If the contents of
the key value store exceed 65,000 bytes, the return should start with
“TRIMMED:” followed by the content.

exit Exit

When the exit command is sent by the client, the server is shutdown.

For the GenericNode program, the goal is to first implement a TCP client and server. Then the
GenericNode program should be expanded to implement a client/server using one or both of the
protocols: UDP (connection-less), and remote objects (Java RMI).

The end goal is to perform a performance comparison of the transaction execution time for at least two
of the three protocols: TCP, UDP, and RMI.

Page 2 of 12

Students who submit a working GenericNode and performance comparison using all three protocols
(TCP, UDP, and RMI) without errors are eligible for up to 20% extra credit.

The preferred implementation for assignment #1 is in Java 8 or Java 11. The version of Java must be
clearly indicated in the submission. Students are free to implement assignment #1 in C, C++, or Python
if preferred. Solutions in alternate languages must include documentation to describe how to operate
the client and server in the alternate language. All operations including setup must be explained.
Components must be deployed using server and client docker containers. If the operation of any client
or server functions (put, get, del, store, exit) is unclear, no credit will be granted for these operations.

Docker for Assignment #1

All solutions must include a separate Client and Server Dockerfile to support creating server and client
containers. Clients and servers must be able to communicate on the local subnetwork shared among
containers of a single Docker host. The client container will use the docker container private network IP
address to facilitate communication with the server.

To support working with Docker containers, Dockerfiles for the client and server have been provided
and can be downloaded here: (feel free to use these, or develop new Dockerfiles...)

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/a1_dockerfiles.tar.gz

To extract a tar gzip file use the command: (x for extract, z for unzip, f for file)

tar xzf a1_dockerfiles.tar.gz

Then cd into the individual docker_server or docker_client directories to build the docker images.

The sample dockerfiles includes a placeholder GenericNode.jar Java class archive file. For assignment
#1, you’re to develop the GenericNode.jar which implements clients and servers for TCP, UDP, and/or
RMI.

Inside the docker_server directory, a runserver.sh script has been provided.
This script includes a command to start a server of one of the given types.

When building your docker_server container, you should uncomment the specific server you’d like to
run: TCP, UDP, or RMI. Remove the “#”:

Page 3 of 12

Dummy jar file
java -jar GenericNode.jar

#TCP Server
#java -jar GenericNode.jar ts 1234

#UDP Server
#java -jar GenericNode.jar us 1234

#RMI Server
#rmiregistry -J-Djava.class.path=GenericNode.jar &
#java -Djava.rmi.server.codebase=file:GenericNode.jar -cp GenericNode.jar genericnode.GenericNode
rmis

Once running, to discover the internal IP address of your server running on a Docker host, use the
following sequence:

First, build the docker_server container:

$ cd docker_server
$ sudo docker build -t tcss558server .
Sending build context to Docker daemon 5.12kB
Step 1/7 : FROM ubuntu
 ---> ccc7a11d65b1
Step 2/7 : RUN apt-get update
 ---> Using cache
 ---> 1413c1a1f91b
Step 3/7 : RUN apt-get install -y default-jre
 ---> Using cache
 ---> b23e154d7af3
Step 4/7 : RUN apt-get install -y net-tools
 ---> Using cache
 ---> 1d81d5652fc2
Step 5/7 : COPY GenericNode.jar /
 ---> Using cache
 ---> f74d73c86c5c
Step 6/7 : COPY runserver.sh /
 ---> Using cache
 ---> f23167bd7d09
Step 7/7 : ENTRYPOINT /runserver.sh
 ---> Using cache
 ---> e921fbb5db7a
Successfully built e921fbb5db7a
Successfully tagged tcss558server:latest

Then, run the docker container:

Page 4 of 12

$ sudo docker run -d --rm tcss558server
1ad8abcb16cae530322464099487d028154a2452072e5e20f6007ff3e5f1a66d

Now, grab (copy and paste) your unique CONTAINER ID. The Name can also be used (here distracted
hodgkin):

Next, execute bash interactively on this container

$ sudo docker exec -it 1ad8abcb16ca bash

Then, use the “ifconfig” command inside the container to query the local IP address.
The Dockerfile automatically has installed the “net-tools” package required to use ifconfig.

root@1ad8abcb16ca:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:02
 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:48 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:6527 (6.5 KB) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

It may be easier to develop clients and servers on a local machine without Docker containers, and
then test your program using deployments to Docker containers before submitting.

Running the servers

Servers should support the following syntax:

#TCP Server (ts for TCP server)
java -jar GenericNode.jar ts <server port number>

#Example:
java -jar GenericNode.jar ts 1234

#UDP Server (us for UDP server)
java -jar GenericNode.jar us <server port number>

Page 5 of 12

#Example:
java -jar GenericNode.jar us 1234

#RMI Server (rmis for RMI server)
rmiregistry -J-Djava.class.path=GenericNode.jar &
java -Djava.rmi.server.codebase=file:GenericNode.jar -cp GenericNode.jar
genericnode.GenericNode rmis

For Assignment #1, you may optionally have your servers output debugging information. But there are
no formal output requirements for servers to generate output either to the console, or to logfile(s).

Help Output

When GenericNode is run without parameters, produce a help message as below that identifies
available client/server functionality. For example, if only TCP and UDP are implemented, then RMI
messages are not shown.

Usage:
Client:
uc/tc <address> <port> put <key> <msg> UDP/TCP CLIENT: Put an object into
store
uc/tc <address> <port> get <key> UDP/TCP CLIENT: Get an object from store by
key
uc/tc <address> <port> del <key> UDP/TCP CLIENT: Delete an object from store
by key
uc/tc <address> <port> store UDP/TCP CLIENT: Display object store
uc/tc <address> <port> exit UDP/TCP CLIENT: Shutdown server
rmic <address> put <key> <msg> RMI CLIENT: Put an object into store
rmic <address> get <key> RMI CLIENT: Get an object from store by key
rmic <address> del <key> RMI CLIENT: Delete an object from store by key
rmic <address> store RMI CLIENT: Display object store
rmic <address> exit RMI CLIENT: Shutdown server
Server:
us/ts <port> UDP/TCP/TCP-and-UDP SERVER: run server on <port>.
tus <tcpport> <udpport> TCP-and-UDP SERVER: run servers on <tcpport> and
<udpport> sharing same key-value store.
alls <tcpport> <udpport> TCP, UDP, and RMI SERVER: run servers on <tcpport>
and <udpport> sharing same key-value store.
rmis RMI Server.

A nice feature to consider implementing for your GenericNode is to support the ability to launch
multiple types of servers (TCP, UDP, RMI) to operate concurrently with the same back-end data store.
This feature is nice, not required, and there is no extra credit available for implementing it, but should
be easy to do.

RMI registry

For distributed objects in Java, clients discover what remote objects are available by communicating
with a central RMI registry server. The RMI registry allows servers to publish their list of hosted objects
for discovery. RMI follows a hybrid architecture using a centralized repository with distributed object
servers.

Page 6 of 12

IMPORTANT:
For assignment #1, run only one instance of the RMI registry.
Once the RMI registry is started, a second instance cannot be started on the same network interface (i.e.
eth0, network card). The RMI registry locks down a PORT which can not be shared amongst multiple
registry server instances.)

For this reason, check first if an RMI registry is running:

$ ps aux | grep rmi
wlloyd 2017 0.0 0.0 14224 976 pts/24 S+ 16:46 0:00 grep --
color=auto rmi
wlloyd 3912 0.0 0.2 11480904 79920 pts/19 Sl Oct21 0:17 rmiregistry -J-
Djava.class.path=GenericNode.jar
wlloyd 29988 0.1 0.1 685408 55120 ? Sl Oct21 2:04
/usr/lib/gnome-terminal/gnome-terminal-server

Kill the existing RMI registry server, by specifying the PID of the
existing server to terminate:
$ sudo kill 3912

When deploying new versions of the RMI server for testing, it is necessary to terminate and restart the
RMI registry each time.

Testing the servers

Once the IP address of the server is discovered, point your client to this IP address and include the port
number for TCP and UDP to support client/server interaction. RMI by default does not require a port to
be specified.

Get, put, delete, store, and exit commands should be supported using each protocol developed.

Please follow as closely as possible the output format shown below.

Note that regardless of protocol the CLIENT output is essentially the same.

TCP CLIENT TO SERVER INTERACTION

The first parameter is “tc” for TCP client.
The second parameter is the server IP address.
The third parameter is the server port.

Replace localhost with your server IP address.
“1234” represents the service port. The client and server allow the port number to be specified.
Replace with the port used.

$ java -jar GenericNode.jar tc localhost 1234 put a 123
server response:put key=a

Page 7 of 12

$ java -jar GenericNode.jar tc localhost 1234 put b 456
server response:put key=b

$ java -jar GenericNode.jar tc localhost 1234 get a
server response:get key=a get val=123

$ java -jar GenericNode.jar tc localhost 1234 del a
server response:delete key=a

$ java -jar GenericNode.jar tc localhost 1234 store
server response:
key:b:value:456:

$ java -jar GenericNode.jar tc localhost 1234 exit
<the server then exits>

UDP CLIENT TO SERVER INTERACTION

The first parameter is “uc” for UDP client.
The second parameter is the server IP address.
The third parameter is the server port.

UDP SERVERS LISTEN ON PORT A, SHOULD SEND ON PORT A+1
For example, if the UDP server listens on port 1234, it should respond on port 1235.

$ java -jar GenericNode.jar uc localhost 1234 put a 123
server response:put key=a

$ java -jar GenericNode.jar uc localhost 1234 put b 456
server response:put key=b

$ java -jar GenericNode.jar uc localhost 1234 get a
server response:get key=a get val=123

$ java -jar GenericNode.jar uc localhost 1234 del a
server response:delete key=a

$ java -jar GenericNode.jar uc localhost 1234 store
server response:
key:b:value:456:

$ java -jar GenericNode.jar uc localhost 1234 exit
<the server then exits>

RMI CLIENT TO SERVER INTERACTION

$ java -jar GenericNode.jar rmic localhost put a 123
server response:put key=a

$ java -jar GenericNode.jar rmic localhost put b 456

Page 8 of 12

server response:put key=b

$ java -jar GenericNode.jar rmic localhost get a
server response:get key=a get val=123

$ java -jar GenericNode.jar rmic localhost del a
server response:delete key=a

$ java -jar GenericNode.jar rmic localhost store
server response:
key:b:value:456:

$ java -jar GenericNode.jar rmic localhost exit
Closing client...

RMI References

These RMI references may be helpful:
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/codebase.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/hello-world.html
https://docs.oracle.com/javase/tutorial/rmi/running.html

TCP / UDP References

These may be helpful:
https://systembash.com/a-simple-java-tcp-server-and-tcp-client/
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html

Suggested Integrated Development Environment (IDE) / Project Build Files

For maximum potential for partial credit, students may submit their project as a Netbeans project
created with the Netbeans IDE, Oracle’s Java IDE. By providing projects as a Netbeans project, it will be
possible for the grader to build your source and fix potential issues to support partial credit. For
example, a student may nearly have the code correct, but a small detail prevents operation. If the
grader can rapidly fix the code, a lot of partial credit may be awarded.

Download the pre-Apache Netbeans 8.2 version here (for working with Java 8):
https://netbeans.org/downloads/8.2/

Or tryout the Apache releases featuring Java 11.
Download Netbeans 11.0 IDE:
https://netbeans.apache.org/download/nb110/nb110.html

Alternatively, students not using the Netbeans IDE may submit all requisite project build files, as well as
descriptive documentation which clearly describes how to build the project. Students are encouraged
to provide their source code as a Maven build with a valid pom.xml file. If a Maven build is not
provided, SPECIFIC INSTRUCTIONS ARE REQUIRED that describe how to build and use the source code.
Submissions without a working Maven build and without instructions on how to build will loose points.

Page 9 of 12

Provide the project source as a Maven build is recommended for portability among Java IDEs
(https://maven.apache.org/). If the grader is easily able to rebuild your projects, then there is higher
potential for partial credit.

If no build files are provided, and/or no subsequent documentation describing how to build projects, it
will not be possible to issue partial credit for functionality that is nearly complete with minor bugs. In
this case, only by reading the code will the grader attempt to issue partial credit if portions of the
program do not work correctly.

Testing Function and Performance

TCP, UDP, and RMI test scripts have been posted online at:

TCP:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_tc.sh

UDP:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_uc.sh

RMI:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_rc.sh

To run these scripts, adjust the server and port BASH variables as needed to test your
deployments.

You can check that your server has worked on the script by counting the number of resulting
lines in the key value store at the conclusion of the test script as follows:

$java -jar GenericNode.jar rmic localhost store | wc -l

$java -jar GenericNode.jar tc localhost 1234 store | wc -l

$java -jar GenericNode.jar uc localhost 1234 store | wc -l

Assuming no blank lines, the count should be 70.

To obtain performance numbers of TCP, UDP, and/or RMI, run the scripts as follows:

#TCP
time ../bigtest_tc.sh > /dev/null

#UDP
time ../bigtest_uc.sh > /dev/null

#RMI
time ../bigtest_rc.sh > /dev/null

Page 10 of 12

With your submission, please create a PDF file created with Google Docs.
Include in the file performance numbers obtained using the above tests as follows:

Assignment 1 Performance Comparison TCP, UDP, RMI
TCP 17.513s
UDP 53.112s
RMI 14.843s

Note the example times here are randomly generated.

What to Submit
To submit the assignment, teams should build a single tar gzip archive file that contains all project
source code in a main project directory. This could be a tar gzip archive of the entire Netbeans project
folder. In the project directory there should be two directories for the Docker containers:
docker_server and docker_client. The folders must be updated to include your GenericNode.jar file and
they must support building a functioning TCP, UDP, and/or RMI server container. A readme.txt file
should be included. The file should indicate the Language, Language version (e.g. Java 8 or Java 11), as
well as the Integrated Development Environment used if any. The readme.txt should describe how to
compile your source code and produce a working JAR file (if Java). If developing in another language,
the readme.txt will describe how to compile and deploy all source code.

Please note any submitted jar files in the tar gzip archive will not be used to grade the program. Jar files
are rebuilt from source based on instructions provided in the readme.txt. The rebuilt jar file will be used
for testing.

PDF files with performance results should be submitted as a separate file in Canvas.

Grading Rubric

This assignment will be scored out of 100 points, while as many as 125 points are possible.

Functionality 60 points
5 points TCP client/server put
5 points TCP client/server get
4 points TCP client/server del
5 points TCP client/server store
1 point TCP client/server exit
5 points UDP client/server put
5 points UDP client/server get
4 points UDP client/server del
5 points UDP client/server store
1 point UDP client/server exit
5 points RMI client/server put
5 points RMI client/server get
4 points RMI client/server del
5 points RMI client/server store
1 point RMI client/server exit

Page 11 of 12

Miscellaneous 65 points
10 points Use of multiple server threads
10 points Key-value store synchronization
10 points Performance comparison using at least two protocols
10 points Working docker containers
10 points Client/server interaction matches specification
5 points Coding style, code reuse among clients and servers
10 points Program compiles and is easy to deploy and use: clear and correct program

build instructions are included (readme.txt). Working maven build files
included (e.g. pom.xml) and/or Netbeans IDE used.

Teams (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip project source archive file
and the performance report PDF file to Canvas.

Additionally, EACH member of a team should submit an effort report on team participation. Effort
reports are submitted INDEPENDENTLY and in confidence (i.e. not shared) by each team member.

Effort reports are not used to directly numerically weight assignment grades.

Effort reports should be submitted as a PDF file named: “effort_report.pdf”. Google Docs and recent
versions of MS Word provide the ability to save or export a document in PDF format.
For assignment 0, the effort report should consist of a one-third to one-half page narrative description
describing how the team members worked together to complete the assignment. The description
should include the following:

1. Describe the key contributions made by each team member.
2. Describe how working together was beneficial for completing the assignment. This may include

how the learning objectives of using EC2, Docker, Docker-machine, and haproxy were supported
by the team effort.

3. Comment on disadvantages and/or challenges for working together on the assignment. This
could be anything from group dynamics, to commute challenges, to faulty technology.

4. At the bottom of the write-up provide an effort ranking from 0 to 100 for each team member.
Distribute a total of 100 points among both team members. Identify team members using first
and last name. For example:

John Doe

 Research 65
 Design 42
 Coding 30
 Testing 80

Jane Smith
Research 35
Design 58
Coding 70

Page 12 of 12

Testing 20

Team members may not share their effort reports, but should submit them independently in Canvas as
a PDF file. Failure of one or both members to submit the effort report will result in both members
receiving NO GRADE on the assignment…

Disclaimer regarding pair programming:
The purpose of TCSS 558 is for everyone to gain experience developing and working with distributed systems
and requisite compute infrastructure. Pair programming is provided as an opportunity to harness teamwork
to tackle programming challenges. But this does not mean that teams consist of one champion programmer,
and a second observer simply watching the champion! The tasks and challenges should be shared as equally
as possible.
List of Common Docker Commands

Docker build
sudo docker build -t tcss558server .
sudo docker build -t tcss558client .

Run docker container in the background
sudo docker run -d --rm tcss558server
sudo docker run -d --rm tcss558client

Docker “shell” to a container
sudo docker exec -it <container-id> bash

To display all containers running on a given docker node:
docker ps -a

To stop a container:
docker stop <container-id>
For example:
docker stop cd5a89bb7a98

Also docker kill will kill a running container and docker rm will remove a container which has
exited but is no longer running.

Document History:
v.10 Initial version

