
TCSS 558: Applied Distributed Computing School of Engineering and Technology
Winter 2020 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss558 Instructor: Wes Lloyd

Assignment 0
Version 0.14

Cloud Computing Infrastructure Tutorial

Due Date: Friday January 31st, 2020 @ 11:59 pm, tentative

Objective
The purpose of assignment 0 is to establish AWS accounts, and gain experience
with technologies used to provide distributed computing infrastructure to support
future TCSS 558 programming assignments.

We will leverage the AWS Educate program for education credits from Amazon Web
Services (AWS) to provide cloud computing resources for TCSS 558 projects. We will
create virtual machines, known as elastic compute cloud (EC2) instances to host
individual nodes of our distributed systems. To support working with VMs to host
our distributed applications, we will harness the Docker-Machine tool to
automatically create and configure VMs. We will use Docker containers then to
deploy code (our nodes) onto VMs.

Assignment 0 provides a tutorial on the use of Cloud Computing Infrastructure.
Specifically, assignment 0 walks through the use of EC2 instances, docker, docker-
machine, and haproxy for load balancing.

Use of a Linux environment is recommended for assignment 0.

For Windows 10 users, there is a Ubuntu “App” that can be installed onto Windows
10 directly. This provides a Ubuntu Linux environment without the use of Oracle
Virtualbox. Alternatively, Windows users can install Oracle Virtual Box to create
virtual machines under Windows 10, and then install a Ubuntu 18.04 virtual
machine.

Windows 10 Ubuntu “App” instructions:
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

Windows Oracle Virtual Box & Ubuntu VM instructions:
There are a number of blogs and YouTube videos that walk through installing Oracle
VirtualBox on Windows 10, and how to then install Ubuntu 18.04 LTS on Virtual Box.
Search using google.com or video.google.com to find blogs and/or videos to help.

Oracle VirtualBox can be downloaded from:
https://www.virtualbox.org/wiki/Downloads

Page 1 of 25

https://www.virtualbox.org/wiki/Downloads
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
http://faculty.washington.edu/wlloyd/courses/tcss558

Task 0 – Creating an AWS account

If you do not presently have an AWS account, as of Winter 2020 there are two
options that provide up to $100 in usage credits each.

Before applying, please note your UW email ID has up to ~3 domain name variants
that can be used to apply to create a secondary or replacement account. If cloud
credits are exhausted on an account with the original email ID, it is possible to apply
again with with an alternate email with an “.edu” domain.

UW “.edu” domains include: uw.edu, u.washington.edu, and washington.edu.
Occasionally GitHub student developer pack and AWS Educate applications are
denied because student status can not be confirmed. In some cases reapplying
using an alternate ID has been sufficient to resolve the issue.

The GitHub Student Developer pack provides a AWS Starter account with $100 in
AWS credits. In addition, the GitHub Student Developer pack provides unlimited
free public and private repositories on GitHub, and also a $100 credit to the Azure
cloud.
https://education.github.com/pack

Once applying, account information will arrive via email in a few minutes to a few
days. The user interface is provided by Vocareum, a third party provider. On the UI,
there will be a button to access the AWS console:

If you already have an AWS account created on your own, not using a UW email,
then it should be possible to create a new account by applying for the GitHub
program under your UW email.

Page 2 of 25

https://education.github.com/pack

If denied AWS credits through the GitHub program, alternatively you can apply
directly to AWS educate using your UW email. This program provides up to ~$100
in credits. These accounts also appear to be “starter” accounts.

http://awseducate.com

Here are the account limitations for starter accounts as of November 2019:
https://s3.amazonaws.com/awseducate-starter-account-
services/AWS_Educate_Starter_Accounts_and_AWS_Services.pdf

A key limitation is that spot instances do not appear to be supported.

If you already have a UW AWS account through AWS Educate or Git Hub, but have
exhausted credits, try to create a support request. Indicate that you’re a student,
and that you’ve exhausted credits from an AWS Educate account from projects in
other classes and academic projects. Include a detailed description of classes and
projects where credits were spent, and state that you’re requesting credits for the
Winter 2020 TCSS 558 Applied Distributed Computing course. Please note it may
take a few days to receive a response from Amazon so start early.

If this doesn’t work, contact the instructor. Provide your AWS account ID (if
available), and your UW email address the AWS account was created with. The
instructor will follow-up with the UW AWS Educate representative.

Note it is possible to complete assignment 0 using only free tier resources (e.g.
t2.micro instances, no spot instance needed).

Task 1 – AWS account setup

Once having access to AWS, task #1 involves creating AWS account credentials to
work with Docker-Machine, if you have not already done so.

If you’re using an AWS starter account: Obtain account credentials for your
AWS starter account by going to the Vocareum user interface in your web browser,
and click the blue button labeled “Account Details”. This should provide access
the account credentials including an access key and a secret key. Copy these
and store in a safe and secure place, and then SKIP to Task 2 in the
assignment!

Page 3 of 25

https://s3.amazonaws.com/awseducate-starter-account-services/AWS_Educate_Starter_Accounts_and_AWS_Services.pdf
https://s3.amazonaws.com/awseducate-starter-account-services/AWS_Educate_Starter_Accounts_and_AWS_Services.pdf
http://awseducate.com/

If not using an AWS starter account, from the AWS services home page, locate the
“IAM” Identity Access Management link, and select it:

Once in the IAM dashboard, on the left hand-side select “Users”:

Provide a user account name. Here I am using “TCSS558” as an example:

Be sure to select the “Programmatic access” checkbox.

Then click the “Next: Permissions” button…

For simplicity, you can simply select the button:

Page 4 of 25

Using the search box, search, find, and select using the checkbox the following
policy:

* AmazonEC2FullAccess

If you plan to use this user account to explore additional Amazon’s services, then
admin access can be added (not required):

* AdministratorAccess

This will allow you, via the CLI, to explore and do just about everything with this
AWS account.

Now click the “Next: Review” button, and then select “Create user”.

You’ll now see a screen with an Access key ID (grayed out below), and a Secret
access key. You can copy both the Access key, and the secret access key to a safe
place, or alternatively, click the “Download .csv” button to download a file
containing this information.

Once you’ve downloaded these keys, be sure to never publish these key values in a
source code repository such as github where your account credentials could be
exposed. Protect these keys as if they were your credit card or wallet!

Task 2 – Working with Docker, creating Dockerfile for Apache Tomcat

Next, launch a virtual machine on Amazon to support working with Docker/Docker-
Machine. You will want to have access to a computer with the ssh/sftp tools. It is
best to have access to a local computer with Ubuntu installed either natively, or on
Oracle Virtualbox. It is possible to download putty, an “SSH” client and also an
“SFTP” client, for Windows, but not recommended.

Choose the “region” that you’ll work in. Recommended options are “US East (Ohio)”
known as “us-east-2” via the CLI. The Ohio region is newer, has less traffic, and has
been seen as less expensive than others for EC2 spot instances.

Page 5 of 25

The region can be set using the dropdown in the upper-right
hand corner. Selecting the region configures the entire AWS
console to operate in that region as shown to the right
–--→

For assignment 0, we will use “t2.micro” instances. Users are
allowed up to 750-hours each month of instance time
for FREE using the t2.micro type.

From the AWS menu, under Compute services, select “EC2”:

Next, click “Instances” on the left-hand side menu.
Then click the blue “Launch Instance” button:

Select Ubuntu:

Specify t2.micro as the instance type, and click the “Next: Configure Instance
Details” button,

Next, specify the following instance details:

Page 6 of 25

Network: choose “(default)” for the Virtual Private Cloud (VPC).
Subnet: choose an availability zone such as us-east-2b
Auto-assign Public IP: choose “Use subnet setting (Enable)”. This will provide a
public IP address to enable connecting to your instance.
Shutdown behavior: Choose “Stop”

Next, click “Next: Add Storage”.
Then, keep defaults and click “Next: Add Tags”.
Then, keep defaults and click “Next: Configure Security Group”.
Choose the option:

And then mark the option for “default VPC security group”.

As we go along, apply all security changes to the default security group for your
default VPC. This way rule changes will persist as you come back to AWS for future
work sessions.
Then click “Review and Launch”.

Review the details and if everything looks ok, click “Launch”.

The very first time you’ll be prompted to create a new RSA private/public keypair to
enable logging into your instance.

The instance should launch and be visible by clicking “Instances” on the left-hand
side of the EC2 Dashboard. Locate the IPv4 Public IP:

Page 7 of 25

Throughout the tutorial, Linux commands are prefaced with the “$”.

Comments are prefaced with a “#”.

First, from the Linux CLI change permissions on your keyfile:

$chmod 0600 <key_file_name>.pem

Before you can SSH into the instance, the default security group used by your
instance must be modified to allow SSH (port 22) access from your computer.

In the Amazon management console., under instances, look at the detailed instance
information and click on “default” next to “Security groups”:

Click the “Inbound” tab, and then the “Edit” button.
Scroll down and click the “Add Rule” button at the bottom of the dialog box:

Add a “SSH” Rule with the following settings:
Protocol = TCP
Port Range = will automatically be set to 22
Source = My IP

Then “Save” the security change.

Then connect using ssh:

$ssh i <key_file_name>.pem ubuntu@<IPv4 Public IP>

Say yes, when the following message is displayed:

The authenticity of host '107.21.193.159 (107.21.193.159)' can't be
established.
ECDSA key fingerprint is SHA256:0cy2eP8Q15zmBThAqTq9z1TwO0+MS0ldKi1SmPZhkE0.
Are you sure you want to continue connecting (yes/no)? Yes

Note, the actual IP address will be different than “107.21.193.159”.

Page 8 of 25

Linux tracks every machine you ever ssh to. The very first time it hashes the public
key and places it into a file at /home/<user_user_id>/.ssh/known_hosts

The idea is when you reconnect to the VM again, there is a possibility that someone
masquerades as the VM. To prevent someone from masquerading as the VM you’re
trying to connect to, ssh tracks the identity of each host and alerts the user every
time there is a change. Sometimes the changes are expected, such as when you
launch a new VM to replace an old one. The idea is to help notify the user if the
VM’s identity changes unexpectedly.

Stopping, and backing up your VM on Amazon:

By default, the t2.micro is an “EBS-backed” instance. The t2.micro instances make
use of remotely hosted elastic blockstore virtual hard disks for their “/root” volume.
“EBS-backed” instances can be paused at any time. This allows the VM to be
stopped, and resumed later. Billing is paused, but storage charges for the EBS disk
are ongoing 24/7. New AWS users are allowed 30GB of free EBS disk space in the 1 st

year. Beyond this, the price for storage is 10 cents per GB, per month, for standard
“GP2-General Purpose 2” EBS storage. A second 30GB (total of 60GB) will cost
$36/year in credits. In the console, any volumes listed under “Elastic Block Store |
Volumes” will count towards this 30GB quota.

Snapshots, under “Elastic Block Store” represent compressed copies of EBS volumes
that are stored using Amazon Simple Storage Service (S3), aka blob storage.
Standard pricing for S3 storage is 2.3 cents per month per GB. If not using a VM for
a considerable time, a cost effective way to preserve the data is to “snapshot” the
EBS volume and create an AMI. Then delete the VM and live EBS volume.

Page 9 of 25

To “stop” your instance right-click on the row in the “Instances” view, select
“Instance state”, and then “stop”. You may later resume the instance by selecting
“start”. When restarting your instance, your public IPv4 address may be
reassigned.

An image can be created by right-clicking on the instance row, and selecting
“Image” and “Create Image”. This will temporarily shutdown your instance to
create the image. Once the image has been created, the instance is restored to its
online state. New images will be listed under “Images | AMIs” on the left-handside
of the EC2 console. Sorting by Creation Date makes it easy to locate newly created
images.

As you work throughout the course projects in TCSS 558, starting from the virtual
machine image can help jump start development and testing of future projects.

Next, let’s install Docker on this VM.

Page 10 of 25

highlight the full text below including all spaces and linefeeds/newlines, then copy-
and-paste directly to the VM. You may break this into separate commands by
copying-and-pasting individual command separated by spaces to more carefully see
what is happening:

IT IS BEST TO USE THE WORD DOC FOR COPY & PASTE, NOT THE PDF!

curl fsSL https://download.docker.com/linux/ubuntu/gpg | sudo aptkey
add
sudo addaptrepository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release cs) stable"

refresh sources
sudo aptget update

install packages
aptcache policy dockerce

sudo aptget install y dockerce

#verify that docker is running
sudo systemctl status docker

The “Docker Application Container Engine” should show as running.

When working with Docker directly on your local VM, we will preface docker
commands with “sudo”, so the commands run as the superuser.

Create a docker image for Apache Tomcat

The “Docker Hub” is a public repository of docker images. Many public images are
provided which include installations of many different software packages.
The “sudo docker search” command enables searching the repository to look for
images.

Let’s start by downloading the “ubuntu” docker container image:
Note that docker commands are prefaced as “sudo”.
They must be run as superuser.
sudo docker pull ubuntu

Verify that the image was downloaded by viewing local images:

sudo docker images a

Next, make a local directory to store files which describe a new docker image.

mkdir docker_tomcat
cd docker_tomcat

Now, download the Java application that we will deploy into the Docker container:

Page 11 of 25

wget
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/fibo.war

Using a text editor such as vi, vim, pico, or nano, edit the file “Dockerfile” to
describe a new Docker image based on ubuntu that will install the Apache tomcat
webserver:

nano Dockerfile

Apache Tomcat Dockerfile contents:
FROM ubuntu
RUN apt-get update
RUN apt-get install -y tomcat8
COPY fibo.war /usr/share/tomcat8/webapps/
COPY entrypoint_tomcat.sh /
RUN mkdir /usr/share/tomcat8/logs
RUN mkdir /usr/share/tomcat8/temp
RUN ln -s /var/lib/tomcat8/conf /usr/share/tomcat8
ENTRYPOINT ["/entrypoint_tomcat.sh"]

Next, create a script called “entrypoint_tomcat.sh” under your docker_tomcat
directory as follows:

#!/bin/bash
tomcat daemon - runs container continually until tomcat exits
/usr/share/tomcat8/bin/startup.sh
echo "tomcat daemon up..."
sleep 3
while :
do
 tomcatstatus=`ps aux | grep tomcat8 | grep java`
 if [-z "$tomcatstatus"]
 then
 #exit
 echo "tomcat down"
 fi
 sleep 1
done

You’ll need to change permissions on this file.
Give the owner execute permission:
chmod u+x entrypoint_tomcat.sh

Next, build the docker container:
sudo docker build t tomcat1 .

Check that the docker image was build locally:
sudo docker images

Page 12 of 25

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/fibo.war

Next launch the container as follows:
sudo docker run p 8080:8080 d rm tomcat1

Check that the container is up
sudo docker ps a

Now, you’ll need to open port 8080 in the default security group in the Amazon
management console.

Under instances, look at the detailed instance information and click on “default”
next to “Security groups”:

Click the “Inbound” tab, and then the “Edit” button.
Scroll down and click the “Add Rule” button at the bottom of the dialog box:

Add a “Custom TCP Rule” with the following settings:
Protocol = TCP
Port Range = 8080
Source = My IP

Then “Save” the security change.

Now, using your browser, point at the http GET endpoint for the web application:

http://<IPv4 Public IP of instance>:8080/fibo/fibonacci

You should see a web page as follows:

Now using your laptop or desktop Ubuntu environment, test the fibonacci web
service deployed using the container on your EC2 instance with the testFibPar.sh
script.

Page 13 of 25

Download the script here using “wget”:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/testFibPar.sh
This script uses a Linux utility known as GNU parallel to coordinate separate threads
to support parallel client sessions with Apache Tomcat.

If not already installed, you’ll need to install GNU parallel in your Ubuntu (Linux)
environment:

sudo aptget install parallel

Near the top of the script, you’ll see parameters for host and port:
 host=34.232.53.152
 port=8080

Update the host to match the public IPv4 Public IP for your EC2instance.

Now try exercising your web service using this script.
The first parameter is the total number of service requests to perform.
The second parameter is the number of concurrent threads to use.
Since we just have one docker container hosting the service, try just one thread:

./testFibPar.sh 10 1

Run this script 3 times.

The first and second runs may feature slower times reflecting “warm-up” of the
infrastructure: VM, container, JVM…

Setting up test: runsperthread=10 threads=1 totalruns=10
run_id,thread_id,json,elapsed_time,sleep_time_ms
1,1,{"number":50000},258,.74200000000000000000
2,1,{"number":50000},300,.70000000000000000000
3,1,{"number":50000},306,.69400000000000000000
4,1,{"number":50000},390,.61000000000000000000
5,1,{"number":50000},274,.72600000000000000000
6,1,{"number":50000},288,.71200000000000000000
7,1,{"number":50000},279,.72100000000000000000
8,1,{"number":50000},356,.64400000000000000000
9,1,{"number":50000},317,.68300000000000000000
10,1,{"number":50000},328,.67200000000000000000

By the 3rd run, performance should be fairly consistent and stable.

Task 3 – Creating a Dockerfile for haproxy

Haproxy is a TCP load balancer that is capable of distributing client requests to a
very large number of server hosts. We will next create a Docker image for our
haproxy load balancer deployment.

Page 14 of 25

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/testFibPar.sh

mkdir docker_haproxy
cd docker_haproxy

First, download the sample haproxy config file:

wget
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/haproxy.c
fg

Using a text editor such as vi, pico, or nano, edit the file “Dockerfile” to describe a
new Docker image based on ubuntu that will install the Apache tomcat webserver:
$nano Dockerfile

haproxy Dockerfile contents:
FROM ubuntu
RUN apt-get update
RUN apt-get install -y haproxy
COPY entrypoint_haproxy.sh /
COPY haproxy.cfg /etc/haproxy/
ENTRYPOINT ["/entrypoint_haproxy.sh"]

Next, create a script called “entrypoint_haproxy.sh” under your docker_haproxy
directory as follows:

#!/bin/bash
haproxy daemon - runs container continually until haproxy exits
service haproxy start
echo "haproxy daemon up..."
sleep 3
while :
do
 haproxystatus=`ps aux | grep haproxy-systemd | grep cfg`
 if [-z "$haproxystatus"]
 then
 #exit
 echo "haproxy down"
 fi
 sleep 10
done

You’ll need to change permissions on this file.
Give the owner execute permission:
chmod u+x entrypoint_haproxy.sh

Page 15 of 25

Now, let’s update the haproxy configuration file (haproxy.cfg) using your favorite
text editor. As provided the haproxy configuration file will perform round-robin load
balancing against 3 nodes:

 server web1 54.210.51.9:8080
 server web2 54.210.51.9:8081
 server web3 54.210.51.9:8082

So far, we have just one Apache Tomcat server in one container, let’s comment out
the bottom two entries by using the “#” character:

 server web1 54.210.51.9:8080
#server web2 54.210.51.9:8081
#server web3 54.210.51.9:8082

Now, update the IP address (here 54.210.51.9) to match your public IPv4 address of
your ec2instance. Also, instead of using port 8080, change this port to 8081.
We will need to destroy your existing tomcat container which is presently using port
8080 and change this to port 8081. First destroy the old container:

sudo docker ps a

Locate the “tomcat1” docker instance. The CONTAINER ID will be the left most
column. Using this ID, stop the container:

sudo docker stop <CONTAINER ID>

Now, relaunch the Apache Tomcat container mapping container port 8080 to the
host port 8081:

sudo docker run p 8081:8080 d rm tomcat1

Now, we’re ready to build the docker container:
$sudo docker build t haproxy1 .

Check that the haproxy docker image was built:
sudo docker images

Now let’s launch the haproxy container. Haproxy will direct incoming traffic to port
8080 to port 8081 which will map to Apache Tomcat:

sudo docker run p 8080:8080 d rm haproxy1

Now, using the testParFib.sh script, retest that you’re still able to access your
webservice, but this time through the haproxy load balancer server.

./testFibPar.sh 10 1

Page 16 of 25

If this works, then all of the pieces are ready to be deployed across different Docker
hosts and containers to complete assignment 0.
__
Task 4 – Working with Docker-Machine

We will use docker-machine to support working with multiple docker hosts
and EC2 instances. Docker-machine makes it very easy to create and
destroy instances, and deploy code using Docker containers to multiple VMs
on Amazon.

Before we begin, please stop all containers created for Task 2 and Task 3.
Search using “sudo docker ps -a”, and use the “sudo docker stop <CONTAINER ID>
command to stop ALL running containers.

Sudo vs. non-sudo: When using docker-machine, docker commands run on
remote hosts are not prefaced with “sudo”.

Let’s start by installing the Amazon Web Services Command Line Interface onto
your VM (AWS CLI):

sudo apt update
sudo apt install awscli

Next configure the AWS CLI using your access credentials created earlier:

configure aws cli
aws configure

The default region name for Ohio is “us-east-2”.

Next install docker-machine onto your EC2 instance:

#to install DockerMachine:

Download the application
curl L https://github.com/docker/machine/releases/download/v0.16.2/docker
machineLinuxx86_64 >/tmp/dockermachine

Make it executable
chmod a+x /tmp/dockermachine

Copy it into an executable location in the system PATH
sudo cp /tmp/dockermachine /usr/local/bin/dockermachine

verify the version
dockermachine version

Check and note that the Docker machine version matches as above.

Page 17 of 25

https://github.com/docker/machine/releases/download/v0.12.2/docker-machine-Linux-x86_64
https://github.com/docker/machine/releases/download/v0.12.2/docker-machine-Linux-x86_64

For further information on Docker Machine see documentation here:
https://docs.docker.com/machine/overview/

Now, let’s create a virtual machine to serve as a docker host.
A single command creates the EC2 instance of the specified type, installs the latest
version of docker, and prepares the instance for hosting docker containers !!!

Below, I’ve specified “c5.large” an EC2 instance with 2 virtual CPUs. Note this is
not free. See discussion below on using the free t2.micro if needed. We
will launch this instance as a “spot” instance with a maximum bid of 10 cents per
hour:

Type this command, but don’t execute yet:

dockermachine create driver amazonec2 amazonec2region “useast2”
amazonec2instancetype "c5.large" amazonec2spotprice ".10"
amazonec2requestspotinstance amazonec2zone "b" amazonec2openport
8080 amazonec2openport 8081 amazonec2openport 8082 amazonec2
openport 8083 aw1
Note that I’ve specified availability zone “b”. Please set your availability zone
accordingly. It will be best to consolidate your instances into the same availability
zone for project work in TCSS 558. Set availability zone zone to match your first VM.

Starter accounts may not support spot instances according to this November 2019
AWS document:
https://s3.amazonaws.com/awseducate-starter-account-
services/AWS_Educate_Starter_Accounts_and_AWS_Services.pdf

If you receive a spot instance error, retry the command without the spot command-
line options:

dockermachine create driver amazonec2 amazonec2region useast2
amazonec2instancetype "c5.large" amazonec2zone "b" amazonec2open
port 8080 amazonec2openport 8081 amazonec2openport 8082
amazonec2openport 8083 aw1

Other notes about the docker-machine create command:
The “aw1” refers to the name of the instance. This is the name that you’ll use to
interact with the VM using the docker-machine CLI. You can use any name desired.

Also please note that docker-machine automatically opens ports using “--
amazonec2-open-port <port number>”. This automatically adjusts the security-
group to provide WORLD access to these ports. ** This is not secure!**, but ok,
assuming your instances will not stay up for long.

Alternatively, you could use “FREE tier t2.micro” instances for your docker host(s).
These instances will spend on your 750-hours/month FREE credits for t2.micro
instances. These single-CPU instances are limited to an initial 30-minute burst of
100% CPU utilization. Once CPU credits are exhausted, the instance is down-
throttled to 10% of one CPU core until credits are earned at a rate of 6-minutes
@100% utilization per hour:

Page 18 of 25

https://s3.amazonaws.com/awseducate-starter-account-services/AWS_Educate_Starter_Accounts_and_AWS_Services.pdf
https://s3.amazonaws.com/awseducate-starter-account-services/AWS_Educate_Starter_Accounts_and_AWS_Services.pdf
https://docs.docker.com/machine/overview/

From: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html
These t2 instances are not spot instances. They are considered full price where the
first 750 hours is free. To create a t2.micro docker host:

dockermachine create driver amazonec2 amazonec2region useast2
amazonec2instancetype "t2.micro" amazonec2zone "b" amazonec2open
port 8080 amazonec2openport 8081 amazonec2openport 8082
amazonec2openport 8083 aw1

Try listing docker-machine hosts:

dockermachine ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
aw1 amazonec2 Running tcp://3.16.90.207:2376 v19.03.5

You should see something similar to the listing above, 1 remote docker host.

Now change your docker CLI to work against the remote host.

eval $(dockermachine env aw1)
Check “docker-machine ls” again. The host should be marked “ACTIVE” with a “*”.
The following command can also be used to show the active host:

dockermachine active

Next, we need provide the docker_tomcat and docker_haproxy containers locally on
each host. While it is possible to use the “docker save” and “docker load”
commands in conjunction with docker-machine to accomplish this, for simplicity we
will simply rebuild the images on each host for assignment 0.

Try listing the container images known to this docker host:

docker images

There aren’t any!!! Now, go back into your docker_tomcat directory on your local
instance:

cd docker_tomcat

Page 19 of 25

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html

Rebuild the tomcat container, but this time because we ran the “eval” command
above, the build occurs on the remote server:

docker build t tomcat1 .

Now check the list of images:

docker images

Next rebuild the haproxy image on this remote host.

cd docker_haproxy

Before rebuilding, update the haproxy.cfg file.
Please specify the IP address of the new docker-machine host that is listed using
“docker-machine ls”. Specify port 8081.

After making these changes, build the haproxy image on the remote host:

docker build t haproxy1 .

Now, create an apache tomcat docker container on the remote host.
We will map apache-tomcat’s port 8080 to 8081 on the Docker Host.

docker run p 8081:8080 d rm tomcat1

Next, create the haproxy docker container on the remote host.
We will map haproxy’s port 8080 to 8080 on the Docker host.

docker run p 8080:8080 d rm haproxy1

Now, by refering again to the IP address obtained from “docker-machine ls”.
Using the testFibPar.sh script, update the host IP and test the service:

./testFibPar.sh 10 1

If your service works, then this certifies you’ve been able to deploy the service onto
a docker host using both an apache-tomcat and apache-haproxy container. You’re
now ready to tackle assignment 0’s deliverable (task 5).

Task 5 – For Submission: Testing Alternate Server Configurations

The objective for assignment 0 is to compare performance of running the Fibonacci
web service using three different configurations created using Docker and Docker-
Machine. To submit assignment 0, create and submit a report using a spreadsheet
in Excel, LibreOffice/OpenOffice Calc, or Google Sheets. Optionally the report may
be created as a document in Word, LibreOffice/OpenOffice Writer, or Google Docs.

For each configuration, adjust the host and port in the testFibPar.sh script to point to
the haproxy container which is set to load balance the containers. Please run

Page 20 of 25

testFibPar.sh 3 times, and copy/import the CSV output of the last, third run into
the report.

Run the test script to perform 3 concurrent threads with 10 requests per thread:
./testFibPar.sh 30 3

In the report, label the testFibPar.sh output for each configuration clearly by name.
Please indicate the instance type used (e.g. c5.large, t2.micro) for the docker
host(s) for the tests of each test using a table of cells as described below. IT is
REQUIRED to use the same instance type for all VMs in the configurations.

At the bottom of the report include a summary table of cells. Include a ranking with
place, average performance in ms, and % equivalence as follows:

RESULTS SUMMARY:
Performance

Ranking
Configuration

Name
Average
Runtime

Performance
Equivalence

1st place Configuration 2 300ms 100%

2nd place Configuration 1 400ms 133%

3rd place Configuration 3 500ms 166%

Create and test the following configurations using docker and/or docker-machine:

Configuration #1 – Co-Located Servers Default CPU Thresholds:
For c5.large VMs, deploy three apache-tomcat containers on one Docker host Virtual
Machine.
For t2.micro VMs, deploy only one apache-tomcat container on the Docker host.

Map the tomcat containers to use successive port numbers, and update the haproxy
configuration accordingly to use these ports:

launch 3 containers on c5.large
docker run p 8081:8080 d rm tomcat1
docker run p 8082:8080 d rm tomcat1
docker run p 8083:8080 d rm tomcat1

launch only 1 container for t2.micro
docker run p 8081:8080 d rm tomcat1

Describe configuration 1’s VM in the report as follows:

CONFIGURATION 1 VM:
VM instance-id VM instance type VM Public IP Type

i-02021976eb21f2660 c5.large 3.16.90.207 spot instance

Include the text of the haproxy.cfg file at the bottom of the report section.

Page 21 of 25

CONFIGURATION 1 HAPROXY CONFIG:
<text of haproxy.cfg>

For t2.micro, the haproxy.cfg will point to one Apache tomcat container only.

Configuration #2 – Co-Located Servers With CPU Thresholds:
For c5.large, deploy three apache-tomcat containers on one Docker host Virtual
Machine, with 66% CPU allocation.

If using t2.micro, use only one apache-tomcat container on the Docker host.

launch 3 containers – c5.large weights
docker run p 8081:8080 d rm cpus .66 tomcat1
docker run p 8082:8080 d rm cpus .66 tomcat1
docker run p 8083:8080 d rm cpus .66 tomcat1

launch only 1 container for t2.micro
docker run p 8081:8080 d rm cpus .66 tomcat1

Describe configuration 2’s VM in the report as follows:

CONFIGURATION 2 VM:
VM instance-id VM instance type VM Public IP Type

i-02021976eb21f2660 c5.large 3.16.90.207 spot instance

Include text of the haproxy.cfg file at the bottom of the section for configuration 2.

CONFIGURATION 2 HAPROXY CONFIG:
<text of haproxy.cfg>

For t2.micro, the haproxy.cfg will point to one Apache tomcat container only.

Configuration #3 – Separate Servers No CPU Thresholds:
Deploy three apache-tomcat containers on three separate Docker host Virtual
Machines. This will require launching an additional two docker hosts using docker-
machine. Map haproxy accordingly on the first host to load balance against the
apache-tomcat containers running on the other remote hosts.

To describe the configuration VMs, include a TABLE describing VMs created for
configuration 3 as follows:

CONFIGURATION 3 VMs:
VM instance-id VM instance type VM Public IP Type

i-02021976eb21f2660 c5.large 3.16.90.207 spot instance

i-0e8fb81e56cabfedb c5.large 3.16.44.102 spot instance

i-03c9e2eb76c4364c8 c5.large 3.16.97.137 spot instance

Page 22 of 25

Include text of the haproxy.cfg file at the bottom of the section for configuration 3.

CONFIGURATION 3 HAPROXY CONFIG:
<text of haproxy.cfg>

Use “docker-machine ls” or the AWS web console to find the IP address of each host.

You will need to build the tomcat container separately for each new host.

On each host, launch one apachetomcat container
docker run p 8081:8080 d rm tomcat1

The expected behavior is that each of these three configurations will perform
differently. If this is not the case, please check your configuration to be sure
haproxy has been reconfigured correctly each time for the appropriate hosts.

What to Submit
To complete the assignment, upload your report (.xslx spreadsheet file, docx
document, or PDF file) into Canvas under assignment 0.

Grading

Each cell in the RESULTS SUMMARY table is worth 2 points. (24 total)
Each cell in the VM descriptions is worth 1 point. (20 total)
Including haproxy.cfg for each configuration is worth 3 points each. (9 total)

This assignment will be scored out of 53 points. (53/53)=100%

Teams (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s report to
Canvas.

Additionally, EACH team member should submit an effort report to score team
participation. Effort reports are submitted INDEPENDENTLY and in confidence (i.e.
not shared) by each team member.

Effort reports are not used to directly numerically weight assignment grades.

Effort reports should be submitted as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a
document in PDF format.

For assignment 0, the effort report should consist of a one-third to one-half page
narrative description describing how the team members worked together to
complete the assignment. The description should include the following:

1. Describe the key contributions made by each team member.

Page 23 of 25

2. Describe how working together was beneficial for completing the assignment.
This may include how the learning objectives of using EC2, Docker, Docker-
machine, and haproxy were supported by the team effort.

3. Comment on disadvantages and/or challenges for working together on the
assignment. This could be anything from group dynamics, to commute
challenges, to faulty technology.

4. At the bottom of the write-up provide an effort ranking from 0 to 100 for each
team member. Distribute a total of 100 points among both team members.
Identify team members using first and last name. For example:

John Doe
Effort 43

Jane Smith
Effort 57

Team members may not share their effort reports, but should submit them
independently in Canvas as a PDF file. Failure of one or both members to submit
the effort report will result in both members receiving NO GRADE on the
assignment…

Disclaimer regarding pair programming:
The purpose of TCSS 558 is for everyone to gain experience developing and working
with distributed systems and requisite compute infrastructure. Pair programming is
provided as an opportunity to harness teamwork to tackle assignment challenges. But
this does not mean that teams consist of one champion programmer, and a second
observer simply watching the champion! The tasks and challenges should be shared as
equally as possible.

Docker - Helpful Hints

To display all containers running on a given docker node:
docker ps a

To stop a container:
docker stop <containerid>
For example:
docker stop cd5a89bb7a98

Multiple docker hosts
When creating multiple docker VM hosts on amazon, each host is referred to by
name. To see your hosts use the command:
dockermachine ls

The active host will be shown with a ‘*’.

The hostname conveniently synced with the AWS keypair name, which is the SSH
key used to interact with the virtual machine. If you should need to manually

Page 24 of 25

remove keys, this can be done via the EC2 console. On the left-hand side, see “Key
Pairs” under “Network & Security”. Keys can be deleted if need be using the UI:

To use a specified remote docker host created by docker-machine:
eval $(dockermachine env <hostname>)

To unset the remote docker host, and work with your local docker:
set docker back to the localhost
eval $(dockermachine env u)

Remove a docker host
Once a host created by docker-machine is no longer needed it can be removed by
name. This will destroy the VM and stop any associated charges.
$dockermachine rm aw2

Shell into a docker container
Obtain the container id with docker ps -a.
$sudo docker exec it <containerid> bash

Document History:
v.10 Initial version
v.11 AWS Educate starter account is now recommended optional
v.12 Corrected quotes on docker-machine command around region name
v.14 Changes regarding use of t2.micro instances, and obtaining account
credentials for an AWS starter account

Page 25 of 25

