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 Midterm 2/13
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 Chapter 3 Processes
 3.1 Threads – cont’d

 3.2 Virtualization

 3.3 Clients

 3.4 Servers
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 How do you determine i f  i t is more time ef ficient to generate a 
new thread for every request, or  to create a thread pool 
(sl ide 24)?

 For servicing incoming client requests, having a pre-initialized 
thread pool should generally always be more time efficient 
than creating thread(s) on demand to service incoming 
requests

 Measure thread creation/destruction time –
using a thread pool should negate this latency
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FEEDBACK – 2/6

 How large should the thread pool be?  Larger pools require 
more memory and longer up-front initialization time.

 How much memory is required to maintain the thread pool?  
Can we afford the memory investment? –

if the pool is too large there may not be enough memory to 
process user requests

 Issues recycling threads:  should threads share and maintain 
open database connections?  Or any other connection-oriented 
TCP sessions for reuse?  

 How can a request’s session context be decoupled from 
individual worker threads?
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POSSIBLE CONCERNS W/ THREAD POOLS
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 I  am sti ll unclear on the difference between paravirtualization 
and vir tualization in hardware.

 Is the difference the extent to which it  occurs on the 
hardware?

 Based on textbook note 3.5:

 GOAL: run all  user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Paravirtualization: Hypervisor provides efficient hypercalls to 

eliminate side effects of privileged instructions
 Guest OS uses drivers and modified kernel to call  hypercalls
 Paravir tualization is the software coordination between the 

hypervisor and guest (v ia hypercalls) used to improve 
performance

 Performance O/H ~10%-50% depending on PV type + workload
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FEEDBACK - 2

 Virtualization in hardware:
 Specific technology to support vir tualization built- in to 

hardware

 CPUs
 VT-x is codename for Intel’s CPU Virtualization support (2005)
 Intel's technology for vir tualization on the x86 platform
 Ten new instructions to permit entering and exiting a vir tual 

execution mode where the guest OS perceives itself as running 
with full  privilege (ring 0), but the host OS remains protected

 PCI Bus
 SR-IOV – single root input/output vir tualization (2009)

 Supports sharing PCI adapters (e.g. network cards) among many guests
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 I/O

 VT-d – Intel’s technology for directed I/O  (2009)
 Input/output memory management unit (IOMMU) that allows guest 

VMs to directly use peripheral devices: network card, accelerated 
graphics cards, and hard-drive controllers, through DMA (direct 
memory access) and interrupt remapping. Also called PCI 
passthrough

 SSDs

 NVMe – non-volatile memory express (2011)
 Open logical device interface specification for accessing non-volatile 

storage media (e.g. SSDs) attached via a PCI Express (PCIe) bus

 Next gen SSD interface that integrates virtualization enhancements

 Various EC2 instances now support local NVMe SSDs:
See:  https://www.ec2instances.info/?filter=NVMe
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FEEDBACK - 4

 CPU interrupts

 APICv (2013)

 What is a Programmable interrupt controller (PIC) ?

 A modular device within CPUs used to combine several 
sources of interrupt onto one or more CPU l ines, while 
allowing priority levels to be assigned to its interrupt outputs. 

 When a PIC has multiple interrupt outputs to assert, it asserts 
them in priority order.

 APIC: is an advanced programmable interrupt controller which 
supersedes the original 8259 coupled w/ 8086 CPU
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 What is APICv?

 Advanced programmable interrupt controller vir tualization
 APICv: interrupt controller that includes support for targeting 

interrupt overhead reduction in vir tualization environments
 Without APICv: Figure shows all vir tualized activities relating 

to interrupts and the APIC to and from the guest OS go 
through the VMM

 With APICv: activities relating to interrupts are executed by 
the hardware (APICv), not in the VMM.  

 Eliminates need to issue the "VM exit" command and reduces 
overhead providing increased I/O throughput for VMs.

 Available on CPUs in late 2013 into 2014
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CH. 3.3: CLIENTS
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 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)
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TYPES OF CLIENTS
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 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes 

 Example: shared calendar application

 Application independent 
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack
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CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and 
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the 
network  remote Linux GUI
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X WINDOWS
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 Window manager:

 Application running 
atop of X-windows 
which provides flair

 Many variants

 Without X windows is 
quite bland
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X WINDOWS - 2
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 Layered architecture

 X-kernel: low level 
interface/APIs for 
controlling screen, 
capturing keyboard 
and mouse events
(X window Server)

 Provided on Linux 
as Xlib

 Provides network 
enabled GUI

 Layering allows for
use for custom
window managers
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 How to Install  VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1
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EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):
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EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &
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 On the VM:
 Edit config fi le: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):
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EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:
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EXAMPLE: VNC SERVER - 3
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 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44
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EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”
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EXAMPLE: VNC CLIENT - 2
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 EC2 instance
with a GUI. . .!!!
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REMOTE COMPUTER IN THE CLOUD

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:
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THIN CLIENTS
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 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled 
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects 
performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of 
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps
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THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level 
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X
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THIN CLIENTS - 3
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic
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 Clients help enable distribution transparency of servers

 Replication transparency 
 Client aggregates responses from multiple servers

 Only the client knows of replicas
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new 

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency 
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY - 2
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CH. 3.4: SERVERS

L8.31

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 IT is moving to the cloud. And, what powers the cloud? 

Linux
 Uptime Institute survey - 1 ,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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SERVERS
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 Servers implement a specific service for a collection of cl ients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle cl ient requests

 Concurrent: Pass cl ient request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative :  fork a new process for each incoming request

 Hybrid :  mix the use of multiple processes with thread pools
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SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points 
(servers/services)

When designing new TCP client/servers must be careful 
not to repurpose ports already commonly used by others
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END POINTS
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Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers
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TYPES OF SERVERS
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 Daemon servers 

 Run locally on Linux

 Track current server end points (outside servers)

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)

 Daemons routes local client traffic to the configured 
endpoint servers

 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)
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NTP EXAMPLE

 Linux inetd / xinetd
 Single superserver
 Extended internet service daemon
 Not installed by default on Ubuntu
 Intended for use on server machines
 Used to configure box as a server for multiple internet services
 E.g. ftp, pop, telnet

 inetd daemon responds to multiple endpoints for multiple 
services
 Requests fork a process to run required executable program

 Check what ports you’re listening on:
 sudo netstat -tap | grep LISTEN
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SUPERSERVER
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 Server design issue:
 Active client/server communication is taking place over a port

 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 
unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 
interrupting the server  (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily

 Must kill the client and/or server
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INTERRUPTING A SERVER

 Data about state of cl ients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited 
time (to support sessions)

 Soft state information expires and is deleted
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STATELESS SERVERS
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 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 
File server - al lows clients to keep local fi le copies for RW

 Server tracks client fi le permissions and most recent versions
 Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS

 Session state
 Tracks series of operations by a single user

 Maintained temporarily, not indefinitely

 Often retained for multi-tier client server applications

 Minimal consequence if session state is lost

 Clients must start over, reinitialize sessions

 Permanent state
 Customer information, software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state 

locally in “cookies”

 Cookies are not executable, simply client-side data
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STATEFUL SERVERS - 2
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 Host objects and enable remote client access
 Do not provide a specific  service 

 Do nothing if there are no objects to host
 Suppor t adding/removing hosted objects 
 Provide a home where objects l ive
 Objects,  themselves ,  provide “services”

 Object par ts
 State data
 Code (methods, etc.)

 Transient object
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server start-up
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OBJECT SERVERS

 Should object servers isolate memory for  object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading designs:
 Single thread of control for object server
 One thread for each object
 Servers use separate thread for client requests

 Threads created on demand    vs.
Server maintains pool of threads

 What are the tradeoffs for  creating server threads on demand vs.  
using a thread pool?
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OBJECT SERVERS - 2
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 EJB- specialized Java object hosted by a EJB web container
 4 types: stateless, stateful, entity, and message-driven beans
 Provides “middleware” standard (framework) for implementing 

back-ends of enterpr ise applications
 EJB web application containers integrate suppor t for:

 Transaction processing
 Persistence
 Concurrency
 Event-driven programming
 Asynchronous method invocation
 Job scheduling
 Naming and discovery services (JNDI)
 Interprocess communication
 Security 
 Software component deployment to an application server
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EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules
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APACHE WEB SERVER

Hooks point to functions in modules
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 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated
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SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides 
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 
requests, hands off to a server
 Example: hardware load balancer (F5 networks – Seattle)

 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:
 All requests pass through switch

 Switch sits in the middle of the client/server TCP connection

 Maps (rewrites) source and destination addresses

 Connection hand-off approach:
 TCP Handoff: switch hands of connection to a selected server
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 Who is the best server to handle the request?

 Switch plays important role in 
distributing requests

 Implements load balancing

 Round-robin – routes client 
requests to servers in a looping
fashion

 Transport-level – route client 
requests based on TCP port number

 Content-aware request distribution – route requests based on 
inspecting data payload and determining which server node 
should process the request
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LAN REQUEST DISPATCHING - 2

 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to 
form a cluster

 For deploying a cloud-based cluster (WAN), what are the 
implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?
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 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server  

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server  is  ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!
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QUESTIONS
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