TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Chapter 3 - Processes

Wes J. Lloyd

School of Engineering
and Technology

University of Washington - Tacoma

ine

OBJECTIVES

" Homework 1
= Midterm 2/13
® Feedback

® Chapter 3 Processes
= 3.1 Threads - cont’d
= 3.2 Virtualization
= 3.3 Clients
= 3.4 Servers

TCSS558: Applied Distributed Computing [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.2

Slides by Wes J. Lloyd

February 6, 2019

L8.1

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2/6

® How do you determine if it is more time efficient to generate a
new thread for every request, or to create a thread pool
(slide 24)?

® For servicing incoming client requests, having a pre-initialized
thread pool should generally always be more time efficient
than creating thread(s) on demand to service incoming
requests

® Measure thread creation/destruction time -
using a thread pool should negate this latency

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

POSSIBLE CONCERNS W/ THREAD POOLS

® How large should the thread pool be? Larger pools require
more memory and longer up-front initialization time.

® How much memory is required to maintain the thread pool?
Can we afford the memory investment? -
if the pool is too large there may not be enough memory to
process user requests

® |ssues recycling threads: should threads share and maintain
open database connections? Or any other connection-oriented
TCP sessions for reuse?

® How can a request’s session context be decoupled from
individual worker threads?

TCSS558: Applied Distributed Computing [Winter 2019]

8.4
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2

= | am still unclear on the difference between paravirtualization
and virtualization in hardware.

® |s the difference the extent to which it occurs on the
hardware?

= Based on textbook note 3.5:

® GOAL: run all user mode instructions directly on the CPU

m x86 instruction set has ~17 privileged user mode instructions

® Paravirtualization: Hypervisor provides efficient hypercalls to
eliminate side effects of privileged instructions

®m Guest OS uses drivers and modified kernel to call hypercalls

® Paravirtualization is the software coordination between the
hypervisor and guest (via hypercalls) used to improve
performance

® Performance O/H ~10%-50% depending on PV type + workload

TCSS558: Applied Distributed Computing [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.5

FEEDBACK - 3

® Virtualization in hardware:

m Specific technology to support virtualization built-in to
hardware

= CPUs
®m VT-x is codename for Intel’s CPU Virtualization support (2005)
® Intel's technology for virtualization on the x86 platform

® Ten new instructions to permit entering and exiting a virtual
execution mode where the guest OS perceives itself as running
with full privilege (ring 0), but the host OS remains protected

= PCI Bus
® SR-IOV - single root input/output virtualization (2009)
= Supports sharing PCl adapters (e.g. network cards) among many guests

TCSS558: Applied Distributed Computing [Winter 2019]

L8.6
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 4

=1/0
® VT-d - Intel’s technology for directed 1/0 (2009)

= Input/output memory management unit (IOMMU) that allows guest
VMs to directly use peripheral devices: network card, accelerated
graphics cards, and hard-drive controllers, through DMA (direct
memory access) and interrupt remapping. Also called PCI
passthrough

= SSDs
= NVMe - non-volatile memory express (2011)

= Open logical device interface specification for accessing non-volatile
storage media (e.g. SSDs) attached via a PCI Express (PCle) bus

= Next gen SSD interface that integrates virtualization enhancements

= Various EC2 instances now support local NVMe SSDs:
See: https://www.ec2instances.info/?filter=NVMe

TCSS558: Applied Distributed Computing [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

The Internals of 8259

INTA INT

FEEDBACK - 5 G

sng eleq [ewalu]

= CPU interrupts
= APICv (2013)

Interrupt Mask Rogister (IMR)

poersupon { —J 2
® What is a Programmable interrupt controller (PIC) ?
® A modular device within CPUs used to combine several

sources of interrupt onto one or more CPU lines, while
allowing priority levels to be assigned to its interrupt outputs.

® When a PIC has multiple interrupt outputs to assert, it asserts
them in priority order.

= APIC: is an advanced programmable interrupt controller which
supersedes the original 8259 coupled w/ 8086 CPU

TCSS558: Applied Distributed Computing [Winter 2019]

L8.8
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

VM [VM .
FEEDBACK - 6 m r ‘ NoVM LELbtLIE
[| |
= What is APICv? VMM VMM configure
Without APICv With APICv

= Advanced programmable interrupt controller virtualization
® APICv: interrupt controller that includes support for targeting
interrupt overhead reduction in virtualization environments

= Without APICv: Figure shows all virtualized activities relating
to interrupts and the APIC to and from the guest OS go
through the VMM

= With APICv: activities relating to interrupts are executed by
the hardware (APICv), not in the VMM.

= Eliminates need to issue the "VM exit" command and reduces
overhead providing increased I/0 throughput for VMs.

= Available on CPUs in late 2013 into 2014

TCSS558: Applied Distributed Computing [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

al

Scale
(running processes)

g

]
EEE

>

Workload diversity
(process types)

CH. 3: PROCESSES

Slides by Wes J. Lloyd

February 6, 2019

L8.5

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

CH. 3.3: CLIENTS

TYPES OF CLIENTS

®Thick clients
= Web browsers
= Client-side scripting
= Mobile apps
= Multi-tier MVC apps

®Thin clients
= Remote desktops/GUIs (very thin)

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.12

Slides by Wes J. Lloyd

February 6, 2019

L8.6

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

CLIENTS

. . ags Client machine Server machineg|
® Application specific protocol
q = Applicati Applicatis
= Thick clients e oy L
q q - n specific
= Clients maintain local data Middleware | protocol Middleware
= Middleware (APIs) Local O3 tocal OF

= Clients synchronize data with remote nodes J—\‘-'-''-'-"-'-"-'-"-'-''-'-T-":’.rJ—

= Example: shared calendar application

® Application independent

Client machine Server maching|
= Thin clients -AppEication -Appiication
q . A Application- A

= Client acts as a remote terminal independent

B q Middleware pratocol Middleware
= Provides interface to user (GUI / Ul) s I L
= Server houses entire application stack | — 73 |

T
TCSS558: Applied Distributed Computing [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma 813

X WINDOWS

m Layered architecture to transport Ul over network

B Remote desktop functionality for Linux/Unix systems

B X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine - Linux GUI

= Client and server communication transported over the
network 2 remote Linux GUI

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

Slides by Wes J. Lloyd

February 6, 2019

L8.7

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

Slides by Wes J. Lloyd

X WINDOWS - 2

= Window manager:

= Application running
atop of X-windows
which provides flair

= Many variants

= Without X windows is
quite bland

The current manual page is: xsetdx).

user preference utility for ¥

15
xset |-display display] [-b] [b on/off] [b [voluse [pitch [duration]]]
[i-Ibe] [=c] [c onfaff] [c [volume]] [[+~[dpns] [dpns stanady [suspend

I offll] [dpns force standby/suspend/offfen] [(-+]fp(-+

pathlpatal,... 1] [£p default] [fp cehashl ({-]led [intogerl] [lod
enfest] [afowsel laccel mulel/eccel divl ~[thrssdoldl]] Infousel
aspeals) [pin ctee] [CE Bopeondy] (€ caface] Jlx kies seniy
Ire £ Tiongeh [poriod]]] [o Dlankrnoblank] lo cxpose/aerposal [n
i NG Pl i et fal

DESCRIPTION

This program is used to set various user preference options of the dis-
play.
oPTIONS

- display display
This aption apecifies the secver to uss; see X(77

b The b option controls bell volme. pitch and ducation This

option accepts up to thres mmerical paraneters, = preceding
dash(-). or a ‘enfoff' flag If no paraneters ace given. or
the ‘on’ flag 1s used, the system defaults will be used If
the dash or 'Off' are given, the bell vill be turned off. If
caly one numecical parmnete:

be The be option controls fug compatifility node in the secver, if

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

= Layered architecture

= X-kernel: low level
interface/APlIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

® Provided on Linux
as Xlib

® Provides network
enabled GUI

® | ayering allows for
use for custom
window managers

February 6, 2019

Application Clients - User Productivity
OpenOffice.org, Firefox, Gimp

Desktop Environment - Application and
File Management
Gnome/KDE panels, desktop icon managers

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Session Manager
gnome-session, ksmserver

Dlsglay Manager - Local X Server Startup
User Authentication
gdm, kdm, xdm

Toolkits
GTK, Qt, Moif, Xaw

)’g Window Server - Display Hardware Management
org

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.16

February 6, 2019

L8.8

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu EC2 instance VM:
® sudo apt-get update

" # ubuntu 16.04
® sudo apt-get install ubuntu-desktop

® sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

= # on ubuntu 18.04
® sudo apt install xfced4 xfced-goodies

" sudo apt-get install tightvncserver # both

m Start VNC server to create initial config file
B yncserver :1

TCSS558: Applied Distributed Computing [Winter 2019]

18.17
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

EXAMPLE: VNC SERVER - UBUNTU 16.04

® On the VM: edit config file: nano ~/.vnc/xstartup

®m Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL XMODMAP DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r SHOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2019]

18.18
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.9

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER - UBUNTU 18.04

® On the VM:
® Edit config file: nano ~/.vnc/xstartup
®m Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/ .Xresources
startxfced &

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

EXAMPLE: VNC SERVER - 3

®m On the VM: reload config by restarting server
® yncserver -kill :1

B yncserver :1

® Open port 22 & 5901 in EC2 security group:

Edit inbound rules X
Type | Protocol (i Port Range (i Source i
S5H TCP 2 Anywhere v [0.0.0.0/0 [x]
Custom TCP Rule = TCP | 5801 ; Anywhere v 0.0.0.0/0 Q
Add Rule Cancel m
TCSS558: Applied Distributed Computing [Winter 2019]
February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma 1820

Slides by Wes J. Lloyd

February 6, 2019

L8.10

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC CLIENT

® On the client (e.g. laptop):

® Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

® This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1l ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Winter 2019]

18.21
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

EXAMPLE: VNC CLIENT - 2

® On the client (e.g. laptop):

® Use a VNC Client to connect

® Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others

®= Remmina login:

® Chose “VNC” protocol

n Log Into “|00a|h05t:5901" a Remmina Remote Desktop Client
B new

f VNC~ | localhost:5901 Connect!

)
jName <« Group Server

TCSS558: Applied Distributed Computing [Winter 2019]

18.22
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.11

TCSS 558: Applied Distributed Computing

[Winter 2019] School
UW-Tacoma

of Engineering and Technology,

REMOTE COMPUTER IN THE CLOUD

> B =@ &

m EC2 instance -o- =
with a GUI. . .!!!

o ubuntu@Iip-172-31-58-89: ~
File Edit View Search Terminal Help
ubuntu@ip 89:

Downloads

Templates

1 ubuntu@ip-172-31-5

TCSS558: Applied Distributed Computing [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

18.23

THIN CLIENTS

® Thin clients
= X windows protocol
= A variety of other remote desktop protocols exist:

Remote desktop protocols include the following:

+ Apple Remote Desktop Pratocol (ARD) — Original protocol for Apple Remote Desktop en macOS machines.

« Appliance Link Protocol (ALP) — a Sun Microsystems-specific protocol featuring audio (play and record), remote printing, remote USB, accelerated video

+ HP Remote Graphics Software (RGS) — a proprietary protocol designed by Hewlett-Packard specifically for high end workstation remoting and collaboration.

« Independent Computing Architecture (ICA) — a proprietary protocol designed by Citrix Systems

» NX technology (NoMachine NX) — Cross platform protocol featuring audio, video, remote printing, remote USB, H264-enabled.

» PC-over-IP (PColP) — a proprietary protocol used by VMware (licensed from Teradici)?!

« Remote Desktop Pratocol (RDP) — a Windows-specific protocol featuring audio and remote printing

« Remote Frame Buffer Protocol (RFB) — A framebuffer level cross-platform protocol that VNC is based on.

« SPICE (Simple Protocol for Independent Computing Environments) — remote-display system built for virtual environments by Qumranet, now Red Hat

« Splashtop — a high performance remote desktop protocol developed by Splashtop, fully optimized for hardware (H.264) including Intel / AMD chipsets, NVIDIA
of media codecs, Splashtop can deliver high frame rates with low latency, and also low power consumption.

= X Window System (X11) — a well-established cross-platform protocol mainly used for displaying local applications; X11 is network transparent

TCSS558: Applied Distributed Computing [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.24

Slides by Wes J. Lloyd

February 6, 2019

L8.12

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

THIN CLIENTS - 2

® Applications should separate application logic from Ul

® When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

® Client must wait for response

® Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

®m Send only differences between messages with same identifier
® Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2019]

18.25
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

THIN CLIENTS - 3

® Virtual network computing (VNC)

®m Send display over the network at the pixel level
(instead of X lib events)

® Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
® Can transport any GUI this way

= THINC- hybrid approach

® Send video device driver commands over network
® More powerful than pixel based operations

® Less powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Winter 2019]

L8.26
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.13

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

® Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
< |.| >

TCSS558: Applied Distributed Computing [Winter 2019]

18.27
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

® Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
< 1 >
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
e More network traffic

TCSS558: Applied Distributed Computing [Winter 2019]

L8.28
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.14

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

® Clients help enable distribution transparency of servers

® Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine Server 1 Server 2 Server 3
Client Server Server Server
app! appl appl appl
|
hd

Client side handles
request replication

TCSS558: Applied Distributed Computing [Winter 2019]

February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.29

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

® | ocation/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

®m Replication transparency
= Client aggregates responses from multiple servers

® Failure transparency
= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.30

Slides by Wes J. Lloyd

February 6, 2019

L8.15

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

~ CH. 3.4: SERVERS

i

SERVERS

® Cloud & Distributed Systems - rely on Linux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |IT is moving to the cloud. And, what powers the cloud?
= Linux

= Uptime Institute survey - 1,000 IT executives (2016)

= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites

= 23% expect the shift in 2017, 70% by 2020...
® Docker on Windows / Mac 0S X

= Based on Linux

= Mac: Hyperkit Linux VM

= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.32

Slides by Wes J. Lloyd

February 6, 2019

L8.16

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

SERVERS - 2

m Servers implement a specific service for a collection of clients
m Servers wait for incoming requests, and respond accordingly

m Server types

m |[terative: immediately handle client requests
® Concurrent: Pass client request to separate thread

® Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

m Alternative: fork a new process for each incoming request
® Hybrid: mix the use of multiple processes with thread pools

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

18.33

END POINTS

E Clients connect to servers via:
IP_ Address and Port Number

® How do ports get assigned?

= Many protocols support “default” port numbers

= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

= When designing new TCP client/servers must be careful

nhot to repurpose ports already commonly used by others

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.34

Slides by Wes J. Lloyd

February 6, 2019

L8.17

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

CoMMON PORTS packetlife.net

TCP/UDP Port Numbers

7 Echo 554 RTSP 2745 EEEE 6891-6901 WifdeWSILVENIN
19 Chargen 546-547 DHCPv6 2967 Symantec AV 6970 Quicktime
20-21 FTP 560 rmonitor 3050 Interbase DB 7212 GhostSurf
23 Telnet 587 SMTP 3124 HTTP Proxy 8000 Internet Radio
25 SMTP 591 FileMaker 3127 [ESST 8080 HTTP Proxy
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy 8086-8087 Kaspersky AV
43 WHOIS 631 Internet Printing 3222 GLBP 8118 Privoxy
49 TACACS 636 [[DAPGUEFSSENN 3260 iSCSI Target 8200 VMware Server
53 DNS 639 MSDP (PIM) 3306 MySQL 8500 Adobe ColdFusion
67-68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server 8767 [feamspeaci]
69 TFTP 691 MS Exchange 3689 iTunes 8566 ERGICE
70 Gopher 860 iSCs! 3690 Subversion 9100 HP JetDirect
79 Finger 873 rsync 3724 World of Warcraft | 9101-9103 Bacula
80 HTTP 902 VMware Server 3784-3785 Ventrilo 9119 [FXENNN
88 Kerberos 989-990 FiEEErss 4333 msQL 9800 WebDAV
102 MS Exchange 993 [MAP4 over SSL | 1424 EEEED ss9s [GREEEEN
110 POP3 995 POP3 overssL | 4664 Google Desktop LEEEY
113 Ident 1025 Microsoft RPC 4672 eMule 9999 Urchin
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin 10000 Webmin
123 NTP 1080 SOCKS Proxy 5000 UPnP 10000 BackupExec
135 Microsoft RPC 1080 SR 5001 Slingbox 10113-10116 NetlQ
137-139 NetBIOS 1194 OpenVPN 5001 iperf 11371 OpenPGP
143 IMAP4 1214 (SZE| 5004-5005 RTP 12035-12036 SEEERGLEIINN
161-162 SNMP 1241 Nessus 5050 [YaRGeTiessengery 12345 [(EEENN
177 XDMCP 1311 Dell OpenManage 5060 SIP 13720-13721 NetBackup
179 BGP 1337 WASTENUNN 5100 AICONNNNNNNN =~ 14567 ESCASONNNNNN |

TYPES OF SERVERS

®Daemon server
= Example: NTP server

mSuperserver

= Stateless server
= Example: Apache server

= Stateful server
= Object servers

mEJB servers

TCSS558: Applied Distributed Computing [Winter 2019]

February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

L8.36

Slides by Wes J. Lloyd

February 6, 2019

L8.18

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

NTP EXAMPLE

® Daemon servers
= Run locally on Linux
= Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)

Daemons routes local client traffic to the configured
endpoint servers

University of Washington: time.u.washington.edu
Example “ntpgq -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCSS558: Applied Distributed Computing [Winter 2019]

18.37
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

SUPERSERVER

E Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines

= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet

= inetd daemon responds to multiple endpoints for multiple
services

= Requests fork a process to run required executable program

® Check what ports you're listening on:
" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2019]

L8.38
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.19

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

INTERRUPTING A SERVER

® Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

® Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

®m Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Winter 2019]

18.39
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

STATELESS SERVERS

® Data about state of clients is not stored

= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

® Many servers maintain information on clients (e.g. log files)

m Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

m Soft state: server maintains state on the client for a limited
time (to support sessions)

m Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2019]

L8.40
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.20

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

STATEFUL SERVERS

® Maintain persistent information about clients
® Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

m Server tracks client file permissions and most recent versions
= Table of (client, file) entries

® |f server crashes data must be recovered
® Entire state before a crash must be restored
® Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2019]

18.41
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

STATEFUL SERVERS - 2

m Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

® Permanent state
= Customer information, software keys

® Client-side cookies

= When servers don’t maintain client state, clients can store state
locally in “cookies”

= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Winter 2019]

L8.42
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.21

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

OBJECT SERVERS

Host objects and enable remote client access
Do not provide a specific service

= Do nothing if there are no objects to host

® Support adding/removing hosted objects
Provide a home where objects live

Objects, themselves, provide “services”

Object parts
= State data
= Code (methods, etc.)

= Transient object
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCSS558: Applied Distributed Computing [Winter 2019]

18.43
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

OBJECT SERVERS - 2

Should object servers isolate memory for object instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

® Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

® Threads created on demand vs.
Server maintains pool of threads

What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCSS558: Applied Distributed Computing [Winter 2019]

L8.44
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.22

TCSS 558: Applied Distributed Computing February 6, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

EJB - ENTERPRISE JAVA BEANS

EJB- specialized Java object hosted by a EJB web container
4 types: stateless, stateful, entity, and message-driven beans

Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

= EJB web application containers integrate support for:
= Transaction processing
= Persistence
= Concurrency
= Event-driven programming
= Asynchronous method invocation
= Job scheduling
= Naming and discovery services (JNDI)
= Interprocess communication
= Security
= Software component deployment to an application server

TCSS558: Applied Distributed Computing [Winter 2019]

18.45
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

APACHE WEB SERVER

Highly configurable, extensible, platform independent
® Supports TCP HTTP protocol communication
Uses hooks - placeholders for group of functions
®m Requests processed in phases by hooks

= Many hooks: Hodue ode

= Translate a URL

= Write info to log

= Check client ID

= Check access rights

® Hooks processed in order
enforcing flow-of-control -
Apache core

® Functions in replaceable inctions caled et hook

Function

Link between
function and hool

00, pA. m

"Hooks point to functions in modules

m0du|eS RequestT

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

Response

February 6, 2019 18.46

Slides by Wes J. Lloyd L8.23

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

® Hosted across an LAN or WAN
® Collection of interconnected machines

® Can be organized in tiers:

SERVER CLUSTERS

= Web server > app server > DB server
= App and DB server sometimes integrated

Logical switch Application/compute servers Distributed
(possibly multiple) file/database
system

Dispatched
Client requests reque_zst// B _
- =
.l ==l - U

]

First tier Second tier Third tier
TCSS558: Applied Distributed Computing [Winter 2019]
February'6, 2019 School of Engineering and Technology, University of Washington - Tacoma 847

LAN REQUEST DISPATCHING

® Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

® Transport-layer switches: switch accepts TCP connection

requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)

= HW Load balancer - OSI layers 4-7

= Network-address-translation (NAT) approach:

= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection

= Maps (rewrites) source and destination addresses
® Connection hand-off approach:

= TCP Handoff: switch hands of connection to a selected server
18.48

TCSS558: Applied Distributed Computing [Winter 2019]
February 6, 2019 School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

L8.24

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

LAN REQUEST DISPATCHING - 2

® Who is the best server to handle the request?

® Switch plays important role in e

distributing requests singe TOP ———zone . "] Server
* Implements load balancing e / .
= Round-robin - routes client o L Rewest |] e nangeson :
requests to servers in a looping .

fashion
= Transport-level - route client

Server

requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Winter 2019]

18.49
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

WIDE AREA CLUSTERS

® Deployed across the internet

® Leverage resource/infrastructure from Internet Service
Providers (ISPs)

B Cloud computing simplifies building WAN clusters

® Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?
® (2) across multiple availability zones?

TCSS558: Applied Distributed Computing [Winter 2019]

L8.50
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.25

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

WAN REQUEST DISPATCHING

® Goal: minimize network latency using WANs (e.g. Internet)
® Send requests to nearby servers

® Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized nhaming system

® Linux: find your DNS servers:

Find you device name of interest
nmcli dev
Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Winter 2019]

18.51
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

DNS LOOKUP

® First query local server(s) for address

® Typically there are (2) local DNS servers
= One is backup

® Hostname may be cached at local DNS server
=" E.g. www.google.com

® If not found, local DNS server routes to other servers
® Routing based on components of the hostname

® DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCSS558: Applied Distributed Computing [Winter 2019]

L8.52
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.26

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

Local Name Server

2. Check

Cache
o,
. L —
' 15. Update

Cache

5. Iterative Query to root

A J

6. Name Server for .edu

(root)

Root Name Server

7. iterative

Query to .edu

S —icd 8. Name Server for

edu

googleplex.edu
.edu Name Server

9. Iterative Query
to googleplex.edu

L

10. Name Server for
; leplex.edu

googleplex.edu
Name Server
11. Iterative Query to
compsci.googleplex.edu

12. IP Address for []

www.net.compsci.googleplex.edu compsci.googleplex.

User & Browser to Resolved Address

Client

googleplex

| compsci I

edu
Name Server Elg m

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

® traceroute <ip addr / hostname>

® Traces network path to destination
® By default, output is limited to 30 hops, can be increased

February 6, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

Slides by Wes J. Lloyd

February 6, 2019

L8.27

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)
= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

= Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196
= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
B Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
® Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
B Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2019]

18.55
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

DNS EXAMPLE - WAN DISPATCHING

® Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

® From local wireless network, ping VA us-east-1 google :
® Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2019]

L8.56
School of Engineering and Technology, University of Washington - Tacoma

February 6, 2019

Slides by Wes J. Lloyd

February 6, 2019

L8.28

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2019]

FELTETY) G 20 School of Engineering and Technology, University of Washington -

EXTRA SLIDES

Slides by Wes J. Lloyd

February 6, 2019

L8.29

