
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.1

Chapter 3 - Processes

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 1

 Midterm 2/13

 Feedback

 Chapter 3 Processes
 3.1 Threads – cont’d

 3.2 Virtualization

 3.3 Clients

 3.4 Servers

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

OBJECTIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.2

 How do you determine i f i t is more time ef ficient to generate a
new thread for every request, or to create a thread pool
(sl ide 24)?

 For servicing incoming client requests, having a pre-initialized
thread pool should generally always be more time efficient
than creating thread(s) on demand to service incoming
requests

 Measure thread creation/destruction time –
using a thread pool should negate this latency

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

FEEDBACK – 2/6

 How large should the thread pool be? Larger pools require
more memory and longer up-front initialization time.

 How much memory is required to maintain the thread pool?
Can we afford the memory investment? –

if the pool is too large there may not be enough memory to
process user requests

 Issues recycling threads: should threads share and maintain
open database connections? Or any other connection-oriented
TCP sessions for reuse?

 How can a request’s session context be decoupled from
individual worker threads?

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.4

POSSIBLE CONCERNS W/ THREAD POOLS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.3

 I am sti ll unclear on the difference between paravirtualization
and vir tualization in hardware.

 Is the difference the extent to which it occurs on the
hardware?

 Based on textbook note 3.5:

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Paravirtualization: Hypervisor provides efficient hypercalls to

eliminate side effects of privileged instructions
 Guest OS uses drivers and modified kernel to call hypercalls
 Paravir tualization is the software coordination between the

hypervisor and guest (v ia hypercalls) used to improve
performance

 Performance O/H ~10%-50% depending on PV type + workload
February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L8.5

FEEDBACK - 2

 Virtualization in hardware:
 Specific technology to support vir tualization built- in to

hardware

 CPUs
 VT-x is codename for Intel’s CPU Virtualization support (2005)
 Intel's technology for vir tualization on the x86 platform
 Ten new instructions to permit entering and exiting a vir tual

execution mode where the guest OS perceives itself as running
with full privilege (ring 0), but the host OS remains protected

 PCI Bus
 SR-IOV – single root input/output vir tualization (2009)

 Supports sharing PCI adapters (e.g. network cards) among many guests

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

FEEDBACK - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.4

 I/O

 VT-d – Intel’s technology for directed I/O (2009)
 Input/output memory management unit (IOMMU) that allows guest

VMs to directly use peripheral devices: network card, accelerated
graphics cards, and hard-drive controllers, through DMA (direct
memory access) and interrupt remapping. Also called PCI
passthrough

 SSDs

 NVMe – non-volatile memory express (2011)
 Open logical device interface specification for accessing non-volatile

storage media (e.g. SSDs) attached via a PCI Express (PCIe) bus

 Next gen SSD interface that integrates virtualization enhancements

 Various EC2 instances now support local NVMe SSDs:
See: https://www.ec2instances.info/?filter=NVMe

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.7

FEEDBACK - 4

 CPU interrupts

 APICv (2013)

 What is a Programmable interrupt controller (PIC) ?

 A modular device within CPUs used to combine several
sources of interrupt onto one or more CPU l ines, while
allowing priority levels to be assigned to its interrupt outputs.

 When a PIC has multiple interrupt outputs to assert, it asserts
them in priority order.

 APIC: is an advanced programmable interrupt controller which
supersedes the original 8259 coupled w/ 8086 CPU

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.8

FEEDBACK - 5

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.5

 What is APICv?

 Advanced programmable interrupt controller vir tualization
 APICv: interrupt controller that includes support for targeting

interrupt overhead reduction in vir tualization environments
 Without APICv: Figure shows all vir tualized activities relating

to interrupts and the APIC to and from the guest OS go
through the VMM

 With APICv: activities relating to interrupts are executed by
the hardware (APICv), not in the VMM.

 Eliminates need to issue the "VM exit" command and reduces
overhead providing increased I/O throughput for VMs.

 Available on CPUs in late 2013 into 2014

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

FEEDBACK - 6

CH. 3: PROCESSES

L8.10

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.6

CH. 3.3: CLIENTS

L8.11

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.12

TYPES OF CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.7

 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes

 Example: shared calendar application

 Application independent
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.13

CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and
events with X kernels (servers)

 Clients and servers on single machine Linux GUI

 Client and server communication transported over the
network remote Linux GUI

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

X WINDOWS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.8

 Window manager:

 Application running
atop of X-windows
which provides flair

 Many variants

 Without X windows is
quite bland

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

X WINDOWS - 2

February 6, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.16

 Layered architecture

 X-kernel: low level
interface/APIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

 Provided on Linux
as Xlib

 Provides network
enabled GUI

 Layering allows for
use for custom
window managers

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.9

 How to Install VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.10

 On the VM:
 Edit config fi le: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.20

EXAMPLE: VNC SERVER - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.11

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.21

EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.22

EXAMPLE: VNC CLIENT - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.12

 EC2 instance
with a GUI. . .!!!

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

REMOTE COMPUTER IN THE CLOUD

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.24

THIN CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.13

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects
performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

THIN CLIENTS - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.14

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.15

 Clients help enable distribution transparency of servers

 Replication transparency
 Client aggregates responses from multiple servers

 Only the client knows of replicas

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.29

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.16

CH. 3.4: SERVERS

L8.31

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 IT is moving to the cloud. And, what powers the cloud?

Linux
 Uptime Institute survey - 1 ,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L8.32

SERVERS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.17

 Servers implement a specific service for a collection of cl ients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle cl ient requests

 Concurrent: Pass cl ient request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative : fork a new process for each incoming request

 Hybrid : mix the use of multiple processes with thread pools

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points
(servers/services)

When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.34

END POINTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.18

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.36

TYPES OF SERVERS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.19

 Daemon servers

 Run locally on Linux

 Track current server end points (outside servers)

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)

 Daemons routes local client traffic to the configured
endpoint servers

 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.37

NTP EXAMPLE

 Linux inetd / xinetd
 Single superserver
 Extended internet service daemon
 Not installed by default on Ubuntu
 Intended for use on server machines
 Used to configure box as a server for multiple internet services
 E.g. ftp, pop, telnet

 inetd daemon responds to multiple endpoints for multiple
services
 Requests fork a process to run required executable program

 Check what ports you’re listening on:
 sudo netstat -tap | grep LISTEN

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

SUPERSERVER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.20

 Server design issue:
 Active client/server communication is taking place over a port

 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily

 Must kill the client and/or server

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

INTERRUPTING A SERVER

 Data about state of cl ients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited
time (to support sessions)

 Soft state information expires and is deleted

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

STATELESS SERVERS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.21

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example:
File server - al lows clients to keep local fi le copies for RW

 Server tracks client fi le permissions and most recent versions
 Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

STATEFUL SERVERS

 Session state
 Tracks series of operations by a single user

 Maintained temporarily, not indefinitely

 Often retained for multi-tier client server applications

 Minimal consequence if session state is lost

 Clients must start over, reinitialize sessions

 Permanent state
 Customer information, software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state

locally in “cookies”

 Cookies are not executable, simply client-side data

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

STATEFUL SERVERS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.22

 Host objects and enable remote client access
 Do not provide a specific service

 Do nothing if there are no objects to host
 Suppor t adding/removing hosted objects
 Provide a home where objects l ive
 Objects, themselves , provide “services”

 Object par ts
 State data
 Code (methods, etc.)

 Transient object
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server start-up

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

OBJECT SERVERS

 Should object servers isolate memory for object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading designs:
 Single thread of control for object server
 One thread for each object
 Servers use separate thread for client requests

 Threads created on demand vs.
Server maintains pool of threads

 What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

OBJECT SERVERS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.23

 EJB- specialized Java object hosted by a EJB web container
 4 types: stateless, stateful, entity, and message-driven beans
 Provides “middleware” standard (framework) for implementing

back-ends of enterpr ise applications
 EJB web application containers integrate suppor t for:

 Transaction processing
 Persistence
 Concurrency
 Event-driven programming
 Asynchronous method invocation
 Job scheduling
 Naming and discovery services (JNDI)
 Interprocess communication
 Security
 Software component deployment to an application server

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.45

EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.46

APACHE WEB SERVER

Hooks point to functions in modules

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.24

 Hosted across an LAN or WAN

 Collection of interconnected machines

 Can be organized in tiers:
 Web server app server DB server

 App and DB server sometimes integrated

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.47

SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
 Example: hardware load balancer (F5 networks – Seattle)

 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:
 All requests pass through switch

 Switch sits in the middle of the client/server TCP connection

 Maps (rewrites) source and destination addresses

 Connection hand-off approach:
 TCP Handoff: switch hands of connection to a selected server

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.48

LAN REQUEST DISPATCHING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.25

 Who is the best server to handle the request?

 Switch plays important role in
distributing requests

 Implements load balancing

 Round-robin – routes client
requests to servers in a looping
fashion

 Transport-level – route client
requests based on TCP port number

 Content-aware request distribution – route requests based on
inspecting data payload and determining which server node
should process the request

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.49

LAN REQUEST DISPATCHING - 2

 Deployed across the internet

 Leverage resource/infrastructure from Internet Service
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to
form a cluster

 For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

WIDE AREA CLUSTERS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.26

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.52

DNS LOOKUP

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.27

February 6, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.53

 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

DNS: LINUX COMMANDS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.28

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

February 6, 2019

Slides by Wes J. Lloyd L8.29

QUESTIONS

February 6, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L8.57

EXTRA SLIDES

58

