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OBJECTIVES

 What does it  mean if  a multi-threaded (parallel) program is  
embarrassingly parallel?
 An embarrassingly parallel workload or problem requires little or no 

effort to separate the problem into parallel tasks.
 One is example is workloads that operate on independent segments 

of a common shared data set in parallel
 These operations are can occur independent of each other without 

any synchronization or communication between threads
 MAP REDUCE jobs is an example
 MAP phase – separate tasks into independent components
 REDUCE phase – assemble results at the end
 Reduce phase may involve aggregation of data, calculating 

statistics, etc.

 What is  another name for  an embarrassingly parallel job?
 Pleasingly parallel
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FEEDBACK – 1/30

 Design goal of distributed systems:

 Support for sharing resources (accessibility)

 November 2018 – AWS now supports “inference” engine 
attachment to ANY EC2 virtual machine instance

 Called “Amazon Elastic Inference”, the concept is 
essentially attaching a remote GPU (Graphics Process 
Unit) with a variable number of compute cores and 
capacity to any EC2 instance

 Requires shared virtual private network (VPC)

 https://aws.amazon.com/machine-learning/elastic-inference/
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EXAMPLE OF DISTRIBUTED SYSTEMS 
DESIGN GOAL - ACCESSIBILITY

CH. 3: PROCESSES

L8.5

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation 
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration
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 For implementing a server (or client) threads offer many 
advantages vs. heavy weight processes

 What is  the dif ference between a process and a thread?
 Review from Operating Systems

 Key dif ference : what do threads share amongst each other 
that processes do not…. ?

 What are the segments of  a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)
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THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of  the same code?

 These may be managed as shared pages (across processes) in 
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment
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THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is  a context switch? 

 Context switching among threads is considered to be more 
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: h t tp ://unikernel .org/pro jects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time
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THREADS - 3
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OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to cr itical sections of code which modify shared 
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU
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THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously 
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BLOCKING THREADS
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 IPC – mechanism using pipes, message queues, and shared 
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to 
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread


#2 C/S:
Kernel threadProc B
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INTERPROCESS COMMUNICATION

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments 
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the 

context switch

 Captures performance degradation related to the side effects of 
context switching  (e.g. rewriting of memory caches, etc.)

 Primarily cache perturbation 
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CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of a 
context switch

 Cache is not clear, but elements from cache are removed as a 
result of another program running in the CPU

 80% performance overhead from context switching results 
from this “cache perturbation”
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CONTEXT SWITCH –
CACHE PERTURBATION

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of  many-to-one threading?

 What are some disadvantages?
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THREADING MODELS

 One-to-one threading: use of separate kernel threads for each 
user process - also called kernel-level threads

 The kernel API calls (e.g.  I/O, locking) are farmed out to an 
existing kernel level thread  

 Thread operations (create, delete, locks) run in kernel mode
 Threads scheduled individually by the OS
 System calls required, context switches as expensive as 

process context switching
 Idea is to have preinitialized kernel threads for user processes
 Linux uses this model…

 What are some advantages of  one-to-one threading?

 What are some disadvantages?
February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L8.17

THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 
concurrent access to shared data, by providing coordination 
and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 
shared memory, what is  the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distributed objects share memory?
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APPLICATION EXAMPLES
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 Web browser
 Uses threads to load and render portions of a web page to the 

user in parallel
 A client could have dozens of concurrent connections all 

loading in parallel

 testFibPar.sh
 Assignment 0 client script  (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all 

loading data in parallel
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MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads
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MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 
- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from 
disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 

 Reported by: top, htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 
system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests
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MULTITHREADED SERVERS
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 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing) 

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request
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SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a 
request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 
proceeding with request processing

 Consider the implications of these designs for responsiveness, 
availability, scalability. . .
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SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O 
Single-thread No parallelism, blocking I/O
Finite-state machine Parallelism, non-blocking I/O

CH. 3.2: 
VIRTUALIZATION

L8.27

 Initially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based 
hardware became inexpensive

 Vir tualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 
vir tual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)
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VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of v ir tualization:
mimic these interface to provide a virtual computer
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TYPES OF VIRTUALIZATION

 Process virtual machine
 Interpret instructions: (interpreters)

(JavaVM)  byte code  HW instructions
 Emulate instructions: (emulators)

(Wine)  windows code  Linux code

 Native vir tual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel 
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of 

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code 

directly on the CPU 
 Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 2
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 Hosted vir tual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full vs.  paravir tualization

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full v ir tualization: scan the EXE, insert code around privileged 

instructions to divert control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of 

privileged instructions

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

TYPES OF VIRTUALIZATION - 3
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EVOLUTION OF AWS VIRTUALIZATION

From  ht tp ://www.bre ndang re g g .com /blog/2017 -11-29/aw s-ec2 -v i r tua l iz at ion -2 017. htm l

V S :

V i r tuali zation

In  s o f tware

P :

Par avir tual

V H :

V i r tuali zation

In  H ar dware

H :

H a r dware

 Ful l  V ir tualization - Ful ly  Emulated 
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU V T-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances
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AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU V T-x required)
 Paravirtual: network, storage, interrupts, t imers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, t imers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter) 

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, t imers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)
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AWS VIRTUALIZATION - 3

 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, t imers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%
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AWS VIRTUALIZATION - 4

CH. 3.3: CLIENTS

L8.36
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 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)
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TYPES OF CLIENTS

 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes 

 Example: shared calendar application

 Application independent 
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack
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CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and 
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the 
network  remote Linux GUI
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X WINDOWS

 Window manager:

 Application running 
atop of X-windows 
which provides flair

 Many variants

 Without X windows is 
quite bland
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X WINDOWS - 2
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 Layered architecture

 X-kernel: low level 
interface/APIs for 
controlling screen, 
capturing keyboard 
and mouse events
(X window Server)

 Provided on Linux 
as Xlib

 Provides network 
enabled GUI

 Layering allows for
use for custom
window managers

 How to Install VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1
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EXAMPLE: VNC SERVER
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 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):
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EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &

 On the VM:
 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):
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EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:
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EXAMPLE: VNC SERVER - 3

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44
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EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”
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EXAMPLE: VNC CLIENT - 2

 EC2 instance
with a GUI. . . !!!

February 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L8.48

REMOTE COMPUTER IN THE CLOUD
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QUESTIONS
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