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OBJECTIVES

 What does it  mean if  a multi-threaded (parallel) program is  
embarrassingly parallel?
 An embarrassingly parallel workload or problem requires little or no 

effort to separate the problem into parallel tasks.
 One is example is workloads that operate on independent segments 

of a common shared data set in parallel
 These operations are can occur independent of each other without 

any synchronization or communication between threads
 MAP REDUCE jobs is an example
 MAP phase – separate tasks into independent components
 REDUCE phase – assemble results at the end
 Reduce phase may involve aggregation of data, calculating 

statistics, etc.

 What is  another name for  an embarrassingly parallel job?
 Pleasingly parallel
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FEEDBACK – 1/30

 Design goal of distributed systems:

 Support for sharing resources (accessibility)

 November 2018 – AWS now supports “inference” engine 
attachment to ANY EC2 virtual machine instance

 Called “Amazon Elastic Inference”, the concept is 
essentially attaching a remote GPU (Graphics Process 
Unit) with a variable number of compute cores and 
capacity to any EC2 instance

 Requires shared virtual private network (VPC)

 https://aws.amazon.com/machine-learning/elastic-inference/
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EXAMPLE OF DISTRIBUTED SYSTEMS 
DESIGN GOAL - ACCESSIBILITY

CH. 3: PROCESSES

L8.5

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation 
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration
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CHAPTER 3
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 For implementing a server (or client) threads offer many 
advantages vs. heavy weight processes

 What is  the dif ference between a process and a thread?
 Review from Operating Systems

 Key dif ference : what do threads share amongst each other 
that processes do not…. ?

 What are the segments of  a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)
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THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of  the same code?

 These may be managed as shared pages (across processes) in 
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment
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THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is  a context switch? 

 Context switching among threads is considered to be more 
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: h t tp ://unikernel .org/pro jects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time
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THREADS - 3
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OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to cr itical sections of code which modify shared 
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU
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THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously 
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BLOCKING THREADS
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 IPC – mechanism using pipes, message queues, and shared 
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to 
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread


#2 C/S:
Kernel threadProc B
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INTERPROCESS COMMUNICATION

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments 
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the 

context switch

 Captures performance degradation related to the side effects of 
context switching  (e.g. rewriting of memory caches, etc.)

 Primarily cache perturbation 
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CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of a 
context switch

 Cache is not clear, but elements from cache are removed as a 
result of another program running in the CPU

 80% performance overhead from context switching results 
from this “cache perturbation”
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CONTEXT SWITCH –
CACHE PERTURBATION

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of  many-to-one threading?

 What are some disadvantages?
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THREADING MODELS

 One-to-one threading: use of separate kernel threads for each 
user process - also called kernel-level threads

 The kernel API calls (e.g.  I/O, locking) are farmed out to an 
existing kernel level thread  

 Thread operations (create, delete, locks) run in kernel mode
 Threads scheduled individually by the OS
 System calls required, context switches as expensive as 

process context switching
 Idea is to have preinitialized kernel threads for user processes
 Linux uses this model…

 What are some advantages of  one-to-one threading?

 What are some disadvantages?
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THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 
concurrent access to shared data, by providing coordination 
and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 
shared memory, what is  the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distributed objects share memory?
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APPLICATION EXAMPLES
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 Web browser
 Uses threads to load and render portions of a web page to the 

user in parallel
 A client could have dozens of concurrent connections all 

loading in parallel

 testFibPar.sh
 Assignment 0 client script  (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all 

loading data in parallel
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MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads
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MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 
- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from 
disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 

 Reported by: top, htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 
system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests
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MULTITHREADED SERVERS
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 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing) 

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request
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SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a 
request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 
proceeding with request processing

 Consider the implications of these designs for responsiveness, 
availability, scalability. . .
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SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O 
Single-thread No parallelism, blocking I/O
Finite-state machine Parallelism, non-blocking I/O

CH. 3.2: 
VIRTUALIZATION

L8.27

 Initially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based 
hardware became inexpensive

 Vir tualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 
vir tual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)
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VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of v ir tualization:
mimic these interface to provide a virtual computer
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TYPES OF VIRTUALIZATION

 Process virtual machine
 Interpret instructions: (interpreters)

(JavaVM)  byte code  HW instructions
 Emulate instructions: (emulators)

(Wine)  windows code  Linux code

 Native vir tual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel 
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of 

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code 

directly on the CPU 
 Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 2
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 Hosted vir tual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full vs.  paravir tualization

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full v ir tualization: scan the EXE, insert code around privileged 

instructions to divert control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of 

privileged instructions
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TYPES OF VIRTUALIZATION - 3
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EVOLUTION OF AWS VIRTUALIZATION

From  ht tp ://www.bre ndang re g g .com /blog/2017 -11-29/aw s-ec2 -v i r tua l iz at ion -2 017. htm l

V S :

V i r tuali zation

In  s o f tware

P :

Par avir tual

V H :

V i r tuali zation

In  H ar dware

H :

H a r dware

 Ful l  V ir tualization - Ful ly  Emulated 
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU V T-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances
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AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU V T-x required)
 Paravirtual: network, storage, interrupts, t imers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, t imers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter) 

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, t imers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)
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AWS VIRTUALIZATION - 3

 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, t imers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%
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AWS VIRTUALIZATION - 4

CH. 3.3: CLIENTS

L8.36
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 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)
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TYPES OF CLIENTS

 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes 

 Example: shared calendar application

 Application independent 
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack
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CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and 
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the 
network  remote Linux GUI
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X WINDOWS

 Window manager:

 Application running 
atop of X-windows 
which provides flair

 Many variants

 Without X windows is 
quite bland
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X WINDOWS - 2
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 Layered architecture

 X-kernel: low level 
interface/APIs for 
controlling screen, 
capturing keyboard 
and mouse events
(X window Server)

 Provided on Linux 
as Xlib

 Provides network 
enabled GUI

 Layering allows for
use for custom
window managers

 How to Install VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1
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EXAMPLE: VNC SERVER
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 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):
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EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &

 On the VM:
 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):
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EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:
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EXAMPLE: VNC SERVER - 3

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44
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EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”
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EXAMPLE: VNC CLIENT - 2

 EC2 instance
with a GUI. . . !!!
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REMOTE COMPUTER IN THE CLOUD
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QUESTIONS
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