
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 30, 2019

Slides by Wes J. Lloyd L7.1

Distributed Systems
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 0 Questions
 Homework 1
 Feedback

 Chapter 2: System architectures
 (X) Centralized: Single client, multi-tier
 Decentralized peer-to-peer: structured, unstructured,

hierarchical
 Hybrid

 Chapter 3 Processes
 3.1 Threads
 3.2 Virtualization
 3.3 Clients
 3.4 Servers
January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L7.2

OBJECTIVES

 UDP can save network bandwidth, is it because UDP sends
message w/o sequencing?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

FEEDBACK – 1/28

 UDP can save network bandwidth, is it because UDP sends
message w/o sequencing?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

FEEDBACK – 1/28

UDP header size is 1/3 the size:
UDP (64-bytes) vs TCP (192-bytes)

SYSTEM
ARCHITECTURES

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.5

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

TYPES OF SYSTEM ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 30, 2019

Slides by Wes J. Lloyd L7.2

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

 Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

 Organization (structure) assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive/resolve requests with the hash function

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
 DOES this approach provide distr ibution transparency to clients?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 30, 2019

Slides by Wes J. Lloyd L7.3

 Fixed hypercube requires static topology

 Nodes cannot join or leave what if 1 node short of perfect cube?

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value
lookup to any node

 Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k

 Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains ad hoc list of neighbors

 Facilitates nodes frequently joining, leaving, ad hoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

UNSTRUCTURED PEER-TO-PEER

Methods to find/disseminate data in unstructured
peer-to-peer networks

 Flooding

Random Walks

Policy-based search

Alternate topology:

Hierarchically organized peer-to-peer networks

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to [Node u] (or forwarder) if having

data
 Forwards request to ALL neighbors
 Ignores repeated requests

 Features
 High network traffic
 Fast search results by saturating the network with requests
 Variable # of hops
 Max number of hops or time-to-live (TTL) often specified
 Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

SEARCHING FOR DATA - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 30, 2019

Slides by Wes J. Lloyd L7.4

 Policy-based search methods

 Incorporate history and knowledge about the ad hoc
network at the node-level to enhance effectiveness of
queries

 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

SEARCHING FOR DATA - 3

 Problem:
Ad hoc system search performance does not scale well as
system grows

 Allow nodes to assume roles to improve search

 Content delivery networks (CDNs) (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage
nodes

 Weak peer – Store data

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

HIERARCHICALLY ORGANIZED
PEER-TO-PEER NETWORKS

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements

must be met to become
a super peer?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

HIERARCHICALLY ORGANIZED
PEER-TO-PEER NETWORKS - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Ad hoc peer-to-peer devices connect to the internet through an

edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to

execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

HYBRID
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the

cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud in the sky
 compute/resource capacity is huge, but far away…

 Fog (devices) on the ground
 compute/resource capacity is constrained and local…
January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L7.24

HYBRID
ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 30, 2019

Slides by Wes J. Lloyd L7.5

 BitTorrent Example:
File sharing system – users must contribute as a file host to
be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well
known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

COLLABORATIVE DISTRIBUTED
SYSTEM EXAMPLE

 What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?
 Spreading/finding data

 Flooding, Random walk

 What are some advantages of a decentralized structured peer-
to-peer architecture?

 What are some disadvantages?

 What are some advantages of a decentralized unstructured
peer-to-peer architecture?

 What are some disadvantages?

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

REVIEW QUESTIONS

CH. 3: PROCESSES

L7.27

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

CHAPTER 3

 For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

 What is the dif ference between a process and a thread?
 Review from Operating Systems

 Key dif ference : what do threads share amongst each other
that processes do not…. ?

 What are the segments of a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

THREADS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 30, 2019

Slides by Wes J. Lloyd L7.6

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: h t tp ://unikernel .org/pro jects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

THREADS - 3

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to cr itical sections of code which modify shared
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread

 #2 C/S:
Kernel threadProc B

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

INTERPROCESS COMMUNICATION QUESTIONS

January 30, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L7.98

