
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.1

Distributed Systems
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 I ’m confused about accessibi li ty vs. availability in distributed
systems…

 Accessibil ity : refers to making remote resources (e.g.
servers, storage, networks, data) easy for users to access
 In cloud computing, each service delivery model (e.g. IAAS, PAAS,

FAAS) provides accessibility through a different interface / API
 Can evaluate which interface(s) are easier to use…

 Availability : refers to making remote resources available
around-the-clock
 Ranked using 9s: 99%, 99.9%, 99.99%
 High availability (HA) - systems designed with fail-over HW to

“always” be available
 HA systems feature fault tolerance from HW failures

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

FEEDBACK – 1/23

 What is an example of a system having a shared data
architecture? (e.g. shared data space model)

 Systems that feature referential (name) and temporal (time)
decoupling

 Distributed systems where nodes communicate with
messaging middleware

 Common messaging middleware: RabbitMQ, Apache Kafka,
AWS SQS

 Messaging middleware supports referential and temporal
decoupling through a publish and subscribe pattern

 Publishers submit messages to message queues
 Subscribers later retrieve messages from queues, or receive

notifications of message availability

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

FEEDBACK – 2

 How do cl ients in event-based architectures access the events
when there is no name/reference?

 In other words, how do we know to subscribe and consume
event-based data -- - in contrast to using REST APIs, where
clients invoke REST services

 System will consist of distributed nodes

 Nodes connect to event bus or message queue on start up

 Difference from shared data space is that nodes must be
active and online as messages only are disseminated once in
response to events

 Nodes that go offline miss messages
 When nodes come back online, messages are not persisted

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.4

FEEDBACK - 3

 Will we have to know TCP handshake (Syn/Ack) details?

 When implementing application protocols on top of TCP
(assignment 1), details are hidden in lower OSI layers, so
intimate knowledge is generally not required

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

FEEDBACK - 4

 What does windowing mean for
TCP communication?

 Sender and Receiver use sliding
buffers to communicate

 Idea is to acknowledge receipt
of portion of message

 Example:
 Two hosts A and B each allocate 32KB buffers for incoming data
 Host A sends data to Host B; B advertises 32,768 byte window size
 Host A understands it can send 32,768 bytes before receiving any

acknowledgement from Host B
 Given a message segment size (MSS) of 1 ,460 bytes, 22 segments

can be sent without acknowledgement
 When Host B acknowledges receipt, can advertise a smaller window

size (e.g. 16 KB) if sti ll an application is sti ll processing the data

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

FEEDBACK - 5

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.2

 Homework 0 Questions

 Homework 1 posted…

 Chapter 2: System architectures
 Centralized: Single client, multi-tier

 Decentralized peer-to-peer: structured, unstructured,
hierarchical

 Hybrid

 Chapter 3 Processes
 3.1 Threads

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.7

OBJECTIVES

SYSTEM
ARCHITECTURES

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.8

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring
system design problems

 Expressed as a logical organization of components
and connectors

 Deciding on the system components, their
interactions, and placement is a realization of a
system architecture

 System architectures represent designs used in
practice

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

SYSTEM ARCHITECTURES

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

TYPES OF SYSTEM ARCHITECTURES

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message

arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

CLIENT-SERVER PROTOCOLS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.3

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections
 Example: database connections often retained

 Ongoing debate:

 How do you differentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new
requests to other DB nodes for replication, synchronization, etc .

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

CLIENT-SERVER PROTOCOLS - 2

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

TCP/UDP

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.15

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent

- if client (or network) is
temporarily unavailable

• Message sequences
guaranteed

Disadvantages • Cannot tell difference of
request vs. response failure

• Requires idempotence
• Clients must be online and

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required
(protocol, retries, multinode-
communication)

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

CONNECTIONLESS VS
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server?

 Why should we consider component composition?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

MULTITIERED ARCHITECTURES
SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.4

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,147

n . . .

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

Resource utilization profile changes
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

24

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.5

25

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),
fileserver (F), and logging server (L)

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.26

MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing (with a load balancer haproxy, nginx)

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

 Sharding: portions of a database map to a specific server

 A distributed hash table can be used to resolve which
server holds the data

 Relational databases can also be scaled horizontally by
having replica servers

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.28

MULTITIERED RESOURCE SCALING - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.29

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.6

 Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

 Organization (structure) assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
 DOES this approach provide distr ibution transparency to clients?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)

 Fixed hypercube requires static topology

 Nodes cannot join or leave what if 1 node short of perfect cube?

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

DYNAMIC TOPOLOGY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.7

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value
lookup to any node

 Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k

 Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains ad hoc list of neighbors

 Facilitates nodes frequently joining, leaving, ad hoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

UNSTRUCTURED PEER-TO-PEER

Methods to find/disseminate data in unstructured
peer-to-peer networks

Flooding

Random Walks

Policy-based search

Alternate topology:

Hierarchically organized peer-to-peer networks

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to [Node u] (or forwarder) if having

data
 Forwards request to ALL neighbors
 Ignores repeated requests

 Features
 High network traffic
 Fast search results by saturating the network with requests
 Variable # of hops
 Max number of hops or time-to-live (TTL) often specified
 Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the ad hoc
network at the node-level to enhance effectiveness of
queries

 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

SEARCHING FOR DATA - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.8

 Problem:
Ad hoc system search performance does not scale well as
system grows

 Allow nodes to assume roles to improve search

 Content delivery networks (CDNs) (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage
nodes

 Weak peer – Store data

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

HIERARCHICALLY ORGANIZED
PEER-TO-PEER NETWORKS

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements

must be met to become
a super peer?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

HIERARCHICALLY ORGANIZED
PEER-TO-PEER NETWORKS - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Ad hoc peer-to-peer devices connect to the internet through an

edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to

execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

HYBRID
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the

cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud in the sky
 compute/resource capacity is huge, but far away…

 Fog (devices) on the ground
 compute/resource capacity is constrained and local…
January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L6.47

HYBRID
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a file host to
be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well
known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

COLLABORATIVE DISTRIBUTED
SYSTEM EXAMPLE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.9

CH. 3: PROCESSES

L6.49

 Chapter 3 titled processes

 Covers variety of distributed system implementation
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

CHAPTER 3

 For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

 What is the dif ference between a process and a thread?
 Review from Operating Systems

 Key dif ference : what do threads share amongst each other
that processes do not…. ?

 What are the three segments of a program stored in memory?
 Heap segment (global memory)

 Code segment

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernels, example OSv

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

THREADS - 3

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.54

OSV: JUST THREADS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.10

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared
variables must be mutually exclusive

 No more than one thread can execute at any given time

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Threads

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 For CPU context switching which is preferable?
(A) user space threads or (B) kernel space processes ?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

INTERPROCESS COMMUNICATION

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the

context switch

 Captures performance degradation related to the side effects of
context switching

 Primarily cache perturbation

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of
context switch

 Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

 80% performance overhead from context switching results
from this “cache perturbation”

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

CONTEXT SWITCH –
CACHE PERTURBATION

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 What are some advantages of many-to-one threading?

 What are some disadvantages?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

THREADING MODELS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.11

 One-to-one threading: multiple kernel- level threads per process

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as
process context switching

 Linux uses this model…

 What are some advantages of one-to-one threading?

 What are some disadvantages?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

 Each process maintains its own private memory

 Do distributed objects share memory?

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

APPLICATION EXAMPLES

 Web browser
 Uses threads to load and render portions of a web page to the

user in parallel
 A client could have dozens of concurrent connections all

loading in parallel

 testFibPar.sh
 Assignment 0 client script (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all

loading data in parallel

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode
- cpuIdle: CPU idle time
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
disk
- dsw: disk sector writes
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes
- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

 Reported by: top, htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

LOAD AVERAGE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

Slides by Wes J. Lloyd L6.12

 Metric – measures degree of parallelism realized by running
system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize block of threads to service requests

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

MULTITHREADED SERVERS

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing)

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a
request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before
proceeding with request processing

 Consider the implications of these designs for responsiveness,
availability, scalability. . .

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O
Single-thread No parallelism, blocking I/O
Finite-state machine Parallelism, non-blocking I/O

QUESTIONS

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L6.71

EXTRA SLIDES

72

