TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

= g
Distributed Systems $ e
Architectures -

Fully Comnected

Wes J. Lloyd mEEen
School of Engineering

s

and Technology _
B

University of Washington - Tacoma

FEEDBACK - 1/23

= I'm confused about accessibility vs. avallability In distributed
systems...

= Accessibility: refers to making remote resources (e.g.
servers, storage, networks, data) easy for users to access
= |n cloud computing, each service delivery model (e.g. IAAS, PAAS,
FAAS) provides accessibility through a different interface / API
= Can evaluate which interface(s) are easier to use...

= Avallabllity: refers to making remote resources available
around-the-clock
= Ranked using 9s: 99%, 99.9%, 99.99%

= High availability (HA) - systems designed with fail-over HW to
“always” be available

= HA systems feature fault tolerance from HW failures

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 162

FEEDBACK - 2

= What Is an example of a system having a shared data
archltecture? (e.g. shared data space model)

= Systems that feature referential (name) and temporal (time)
decoupling

= Distributed systems where nodes communicate with
messaging middleware

= Common messaging middleware: RabbitMQ, Apache Kafka,
AWS SQS

= Messaging middleware supports referential and temporal
decoupling through a publish and subscribe pattern

= Publishers submit messages to message queues

= Subscribers later retrieve messages from queues, or receive
notifications of message availability

FEEDBACK - 3

= How do clients In event-based archltectures access the events
when there is no name/reference?

= In other words, how do we know to subscribe and consume
event-based data --- in contrast to using REST APIs, where
clients invoke REST services

= System will consist of distributed nodes

= Nodes connect to event bus or message queue on start up

= Difference from shared data space is that nodes must be
active and online as messages only are disseminated once in
response to events

= Nodes that go offline miss messages
= When nodes come back online, messages are not persisted

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | L4

January 28, 2019 ;crs‘zilsz' Applied D_is(ribuledj?‘rcr‘\lz;‘jng [_Wim_e’r 2019 o | s ‘
FEEDBACK - 4

= WIll we have to know TCP handshake (Syn/Ack) detalls?

= When implementing application protocols on top of TCP
(assignment 1), details are hidden in lower OSI layers, so
intimate knowledge is generally not required

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019] 165
School of

chnology, y Tacoma

Slides by Wes J. Lloyd

FEEDBACK - 5 [

16 KB
Processed

= What does windowing mean for g; —
TCP communication?

= Sender and Receiver use sliding g oo T . [E]
buffers to communicate = -
= |dea is to acknowledge receipt o

of portion of message g :

= Example:

Two hosts A and B each allocate 32KB buffers for incoming data

Host A sends data to Host B; B advertises 32,768 byte window size

Host A understands it can send 32,768 bytes before receiving any

acknowledgement from Host B

= Given a message segment size (MSS) of 1,460 bytes, 22 segments
can be sent without acknowledgement

When Host B acknowledges receipt, can advertise a smaller window
size (e.g. 16 KB) if still an application is still processing the data

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019] 66

School of Engineering and Technology, University of Washington - Tacoma

L6.1

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

OBJECTIVES

" Homework O Questions
=" Homework 1 posted...

= Chapter 2: System architectures
= Centralized: Single client, multi-tier

= Decentralized peer-to-peer: structured, unstructured,
hierarchical

= Hybrid
= Chapter 3 Processes
= 3.1 Threads

January 28, 2019

TCSS558: Applied Distributed Computing [Winter 2019] 67
School of Engineeri chnology, University i Tacoma

SYSTEM

ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2019]

LT Zih) School of Engineering and Technology, University of Washington -

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)

= General, reusable solutions to commonly occurring
system design problems

= Expressed as a logical organization of components
and connectors

= Deciding on the system components, their
interactions, and placement is a realization of a
system archlitecture

= System architectures represent designs used in
practice

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversi i

January 28, 2019 chnology, y jlacoms)

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

= Hybrid architectures

TCS5558: Applied Distributed Computing [Winter 2019]

YA) Schoolof EchnoloayiUniversiyer Tecoma

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

Client Server

= Clients request services
= Servers provide services
= Request-reply behavior

= Connectionless protocols (UDP)
= Assume stable network communication with no failures

= Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

= Clients can resend the request when no reply is received

= But what [s the server doing?

Request

it Provide service|
Reply

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversi i

January 28, 2019 chnology, y Tacoma

CLIENT-SERVER PROTOCOLS

= Connectlonless cont’d
= |s resending the client request a good idea?
= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |dempotent - repeating requests is safe

= Connection-oriented (TCP)

= Client/server communication over wide-area networks (WANs)
= When communication is inherently reliable

= Leverage “reliable” TCP/IP connections

TCS5558: Applied Distributed Computing [Winter 2019]

YA) Schoolof echnoloayUniversityof Tacoma

Slides by Wes J. Lloyd

L6.2

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

CLIENT-SERVER PROTOCOLS - 2

= Connectlon-orlented cont’d
= Set up and tear down of connections is relatively expensive
= Overhead can be amortized with longer lived connections

= Example: database connections often retained

= Ongoing debate:
= How do you differentiate between a client and server?
= Roles are blurred

= Blurred Roles Example: Distributed databases
= DB nodes both service client requests, *and* submlit new
requests to other DB nodes for replication, synchronization, etc.

January 28, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri chnology, University i Tacoma

Reliable Unreliable.
Connection-oriented Connectionless
and flow control through tndowing o
windowing retransmission
Segment sequencing No sequencing
Acknowledge segments No acknowledgement
.
TCSS558: Applied Distributed Ce iting [Winter 2019]
Lanta 2812010 School ofE::irI‘eeeri:\sg:n: '?ech:rcru‘lzgy;r:fnivelrr;ifyrofWashingtonrTacuma | R

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectlonless (UDP) Connectlon-orlented (TCP)
stateless stateful
Advantages
Disadvantages

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversit i

January 28, 2019 e 5 Tacoma

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectlon-orlented (TCP)

Connectlonless (UDP)
stateless

stateful

delivery confirmation

Advantages ° Fast tocon i (no o
connection overhead) .
. toan i .

Idempotence not required

* Network bandwidth savings

Disadvantages ° Cannot tell difference of .
request vs. response failure
Requires idempotence .
Clients must be online and
ready to receive messages

automatically resent
- if client (or network) is
temporarily unavailable
Message sequences
guaranteed

Connection setup is time-
consuming

More bandwidth is required
(protocol, retries, multinode-
communication)

January 28, 2019

TCS5558: Applied Distributed Computing [Winter 2019] o6
School of Engineering and Technology, University of Washington - Tacoma

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

Userinteﬂaqe‘ [Userinterface| [User interface | [User interface] [User interface

oot | [popicaon | [oo

Database _

| User interface i
Database [Database | [Database [Database | ‘ Database ‘

erver machine.

= Why should we consider component composition?

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversit i

1617

January 28, 2019

chnology, y Tacoma

SC1 SC2
MD MD L
FL F
SC5 SC6

[1)]
F

rmos=

: Tomcat ApplicationServer
: Postgresql DB

nginx file server
Logging server (high O/H)

Slides by Wes J. Lloyd

L6.3

TCSS 558: Applied Distributed Computing January 28, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

SC1 SC2
MD MD L
FL G

SC5

Bell's Number: 4 15
Component Composition Example K number of ways B |
n components can be 6 203
« An application with 4 components has 15 compositions distributed across containers 7 817
* One or more component(s) deployed to each VM 8 4,140
* Each VM launched to separate physical machine o 21147

é& N /

: Tomcat ApplicationServer
: Postgresql DB

: nginx file server

: Logging server (high O/H)

M: Tomcat ApplicationServer
D: Postgresql DB

F: nginx file server

L: Logging server (high O/H)

rmos

o Resource utilization profile changes
| from component composition
e | M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
o] * Shows relative magnitude of performance variance
. it) 7
£ | - £ Two applicatlon varlants tested 2
E =t E * M-bound: Standard service, M is compute bound &
g = sco [* D-bound: Modified service, D is compute bound 9
5 O sc8 1 SC8
R - W SC7 2 B SC7
& u sos ¢ m ses
ol | B SC4 I SC4
O sc3 O sc3
B sc2 B sc2
ol HscL H sc1
"' CPUtime | diskreads diskwrites networkreads networkwritss "' Crutime | diskreads diskwrites networkreads networicwrites
j ‘ ‘ PERFORMANCE IMPLICATIONS OF
= o — COMPONENT DEPLOYMENTS
A Resource Utilization Change ’ PR T L T
Min to Max Utilization 15 g ™
= m-bound d-bound 12 E
Q 11 2
g CPU time: 6.5% 5.5% & - h I]
E Disk sector reads: 14.8% 819.6% Slowerdeployments = o 1 I] I]
& Disk sector writes: 21.8% 111.1% & - I]
P . o 0 o &
Network bytes received: 144.9% 145% s Fasterdeployments
Network bytes sent: 143.7% 143.9% pjer ST
= scl sc2 sc3 scd4 sc5 sc6 sc7 sc8 sc9 sc10scllscl2sc13scldscls
sl Service Configurations
' CPUtime diskreads diskwrltes networkreads networkwrltes "

Slides by Wes J. Lloyd L6.4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

Sl

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15

A Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

[T

scl sc2 sc3 scd sc5 sc6 sc7 scB sc9 scl0scllscl2sc13scldscls

Service Configurations

MULTITIERED ARCHITECTURES - 2

= M D F L architecture
= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Client Application Databast
server server
Request
operation
Request
data
Wait for Wait for
reply data
Return
data
Return

repl

TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 1626

January 28, 2019

MULTITIERED RESOURCE SCALING

= Vertical distribution
= The distribution of “M D F L”
= Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server
= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW
® Scaling an individual tier

=
= Add multiple machines and distribute load

= Load balancing (with a load balancer haproxy, nginx)

= Horizontal distribution

TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma o7

January 28, 2019

MULTITIERED RESOURCE SCALING - 2

= Horlzontal distribution cont’d
=Sharding: portions of a database map to a specific server
= A distributed hash table can be used to resolve which
server holds the data
= Relational databases can also be scaled horizontally by
having replica servers

TCSS558: Applied Distributed Computing [Winter 2019]

YA) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma | 628

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured

= Hierarchically organized

= Hybrid architectures

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

= Client/server:
= Nodes have specific roles

= Peer-to-peer:
=Nodes are seen as all equal...

= How should nodes be organized for communication?

TCS5558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma 1629

January 28, 2019

TCS$558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 1630

January 28, 2019

Slides by Wes J. Lloyd

L6.5

TCSS 558: Applied Distributed Computing January 28, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

STRUCTURED PEER-TO-PEER DISTRIBUTED HASH TABLE (DHT)
= Nodes organized using specific topology = Distributed hash table (DHT) (ch. 5)
(e.g. ring, binary-tree, grid, etc.) = Hash function
= Organization (structure) assists in data lookups key(data item) = hash(data item’s value)

= Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)

* Key / value storage systems = System supports data lookup via key

* Key used to look-up data = Any node can receive and resolve the request

= Data indexed using “semantic-free” indexing

= Lookup function determines which node stores the key
= Nodes store data associated with a subset of keys existing node = lookup (key)

= Node forwards request to node with the data
= DOES this approach provide distribution transparency to clients?

TCS5558: Applied Distributed Computing [Winter 2019] s
School of Engineering and Technology, University of Washington - Tacoma

TCS5558: Applied Distributed Computing [Winter 2019]

L 28, 2D AT o T s s o T T A T T

631 ‘ January 28, 2019

FIXED HYPERCUBE EXAMPLE FIXED HYPERCUBE EXAMPLE - 2
= Example where topology helps route data lookup request = Example: fixed hypercube
= Statically sized 4-D hypercube, every node has 4 connectors node 0111 (7) retrieves data from node 1110 (14)

= 2 x 3-D cubes, 8 vertices, 12 edges
= Node IDs represented as 4-bit code (0000 to 1111)
= Hash data items to 4-bit key (1 of 16 slots) = Which connector leads to the shortest path?

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

= Node 1110 is not a neighbor to 0111

January 28, 2019 | TCS5558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

s ‘ January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019] | o |

School of Engineering and Technology, University of Washington - Tacoma

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

DYNAMIC TOPOLOGY

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

= Fixed hypercube requires statlc topology
= Nodes cannot join or leave > what if 1 node short of perfect cube?
= Relies on symmetry of number of nodes

0111] Neighbors = Can force the DHT to a certain size

1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path) = Chord system - DHT (in ch.5)

= Dynamic topology

= Nodes organized in ring

= Every node has unique ID

= Each node connected with other nodes (shortcuts)

= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCS5558: Applied Distributed Computing [Winter 2019]

LR 2, 2 | Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

o ‘ January 28, 2019 TCsS558: Applied Distributed Computing [Winter 2019] | o3 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L6.6

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 28, 2019

CHORD SYSTEM

Data items have m-bit key

Data item is stored at closest “successor” node with ID 2 key k
Each node maintains finger table of successor nodes

Client sends key/value
lookup to any node
Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k
= Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node

Node responsibie for|
keys (5,678,9)

joins/departures

TCSS558: Applied Distributed Computing [Winter 2019]
L 28, 2D AT o T s s o T T A T T

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
= Each node maintains ad hoc list of neighbors
= Facilitates nodes frequently joining, leaving, ad hoc systems

= Neighbor: node reachable from another via a network path

= Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph”
= Predetermining network routes not possible

= How would you calculate the route algorithmically?

= Routes must be discovered

TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 1638

January 28, 2019

UNSTRUCTURED PEER-TO-PEER

= Methods to find/disseminate data in unstructured
peer-to-peer networks

= Flooding
= Random Walks
= Policy-based search

= Alternate topology:

= Hierarchically organized peer-to-peer networks

TCS5558: Applied Distributed Computing [Winter 2019]

L 25, 2D | e oolol Enpinar s erd Technolomyilnvers Y e hinetonETecoms

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
® [Node u] sends request for data item to all neighbors
® [Node v]
= Searches locally, responds to [Node u] (or forwarder) if having
data

= Forwards request to ALL neighbors
= Ignores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified
= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing [Winter 2019]

YA) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma | o0

SEARCHING FOR DATA - 2

= Random walks
® [Node u] asks a randomly chosen neighbor [node v]
= |f [node v] does not have data, forwards request to a
random neighbor
= Features
= Low network traffic
= Akin to sequential search
= Longer search time
* [node u] can perform parallel random walks to reduce
search time

= As few as 16..64 random walks effective to reduce search time

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCS5558: Applied Distributed Computing [Winter 2019]

LR 2, 2 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

SEARCHING FOR DATA - 3

= Pollcy-based search methods

= Incorporate history and knowledge about the ad hoc
network at the node-level to enhance effectiveness of
queries

= Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops

TCS$558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma | 1642

January 28, 2019

Slides by Wes J. Lloyd

L6.7

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

HIERARCHICALLY ORGANIZED

PEER-TO-PEER NETWORKS

= Problem:
Ad hoc system search performance does not scale well as
system grows

= Allow nodes to assume roles to improve search
= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (diSk/CPU resources) to host data
= Node roles

= Super peer -Broker node, routes client requests to storage

nodes
= Weak peer - Store data
TCSS558: Applied Distributed Computing [Winter 2019]
L 28, 2D AT o T s s o T T A T T 1643

HIERARCHICALLY ORGANIZED

PEER-TO-PEER NETWORKS - 2

= Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

= Leader-election problem:
= Who can become a
super peer?
= What requirements
must be met to become
a super peer?

TCSS558: Applied Distributed Computing [Winter 2019]
YA,) e A R e e o R A T - Leda

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

TCSS558: Applied Distributed Computing [Winter 2019]
| L 25, 2D | e oolol Enpinar s erd Technolomyilnvers Y e hinetonETecoms

HYBRID
ARCHITECTURES

— -
2 Enrprisonemwrk

= Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:
= Ad hoc peer-to-peer devices connect to the internet through an
edge server (origin server)

= Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS558: Applied Distributed Computing [Winter 2019]
YA) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma 1646

[Cllent

1 Content provider
AN

HYBRID B2
ARCHITECTURES - 2 —

Edge server [« =S }
¢ c—%gp oterk

= Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

= End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

= Cloud > in the sky
= compute/resource capacity is huge, but far away...

= Fog > (devices) on the ground
= compute/resource capacity is constrained and local...

January 28, 2019 TCS5558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma o7

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
= Leverages idle client network capacity in the background
= User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth Is reduced!!

= Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2019]
YA) ISehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma o8

Slides by Wes J. Lloyd

L6.8

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

Scale
(running processes)

0
olojpl

aE=

Workioad diversity

CH. 3: PROCESSES

CHAPTER 3

= Chapter 3 titled processes
= Covers variety of distributed system implementation
details

= “Grab bag” of topics

= Processes/threads
= Virtualization

= Clients

= Servers

= Code migration

January 28, 2019 TCS$558: Applied Distributed Computing [Winter 2019] | 650

School of Engineering and Technology, University of Washington - Tacoma

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What Is the difference between a process and a thread?

= Review from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... ?

= What are the three segments of a program stored in memory?
= Heap segment (global memory)
= Code segment

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri Technology, University i Tacoma

January 28, 2019 tes1

= Do several processes on an operating system share...
= Heap segment?
= Stack segment?
= Code segment?
= Can we run multiple copies of the same code?
= These may be managed as shared pages (across processes) in
memory

= Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

TCS5558: Applied Distributed Computing [Winter 2019]

School of Technology, University of Tacoma | 1652

January 28, 2019

= Threads avoid the overhead of process creation
= No new heap or code segments required

= What Is a context switch?

= Context switching among threads is considered to be more
efficient than context switching processes

= Less elements to swap-in and swap-out

= Unikernels, example OSv
= Single process operating system with many threads
= Developed for the cloud to run only one application at a time

TCS5558: Applied Distributed Computing [Winter 2019] 653
School of Engineeri iversit i

Technology, y Tacoma

January 28, 2019

JUST THREADS

Threads

TCS5558: Applied Distributed Computing [Winter 2019]

YA) Sehoollof echnoloayUniversityof Tacoma

E

Slides by Wes J. Lloyd

L6.9

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

THREADS - 4

= I[mportant implications with threads:
= (1) multi-threading should lead to performance gains

= (2) thread programming requires additional effort when
threads share memory

= Known as thread synchronization, or enabling concurrency

= Access to critical sections of code which modify shared
variables must be mutually exclusive

=No more than one thread can execute at any given time

TCS5558: Applied Distributed Computing [Winter 2019]

L 28, 2D AT o T s s o T T A T T

1655

BLOCKING THREADS

= Example: spreadsheet with formula to compute sum of column
= User modifies values in column

® Threads

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

= Single core CPU

= Tasks appear as if they are performed simultaneously
= Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2019]

YA,) e A R e e o R A T -

INTERPROCESS COMMUNICATION

= |[PC - mechanism using pipes, message queues, and shared
memory segments

= |[PC mechanisms incur context switching
= Process |I/0 must execute in kernel mode

= For CPU context switching which Is preferable?
(A) user space threads or (B) kernel space processes ?

Process A Process B
[S1: Switch from user space
akomelipgon: oo S3: Switch from kemel
~— A+ space to user spacs
R -
Operating sys\er:\

2: Switch context from
process A to process B

TCS5558: Applied Distributed Computing [Winter 2019]

L 25, 2D e oolol Enpinar s erd Technolomyilnvers Y e hinetonETecoms

1657

CONTEXT SWITCHING

= Direct overhead
= Time spent not executing program code (user or kernel)
= Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU
= Stack, code, heap, registers, code pointers, stack pointers
= Memory page cache invalidation

= Indirect overhead
= Overhead not directly attributed to the physical actions of the
context switch
= Captures performance degradation related to the side effects of
context switching
= Primarily cache perturbation

TCSS558: Applied Distributed Computing [Winter 2019]

YA) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

CONTEXT SWITCH -
CACHE PERTURBATION

= Refers to cache reorganization that occurs as a result of
context switch

= Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

MRU

LRU

TCS5558: Applied Distributed Computing [Winter 2019]

LR 2, 2 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

1659

THREADING MODELS

= Many-to-one threading: multiple user-level threads per process
= Thread operations (create, delete, locks) run in user mode

= Multithreaded process mapped to single schedulable entity

= Only run thread per process runs at any given time

= What are some advantages of many-to-one threading?

= What are some dlsadvantages?

TCS$558: Applied Distributed Computing [Winter 2019]

YA) ISehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

| e

Slides by Wes J. Lloyd

L6.10

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

THREADING MODELS - 2

= One-to-one threadlng: multiple kernel-level threads per process

= Thread operations (create, delete, locks) run in kernel mode

= Threads scheduled individually by the 0S

= System calls required, context switches as expensive as
process context switching

® Linux uses this model...

= What are some advantages of one-to-one threading?

= What are some dlsadvantages?

TCS5558: Applied Distributed Computing [Winter 2019]

L 28, 2D AT o T s s o T T A T T

APPLICATION EXAMPLES

= Google chrome: processes
= Apache tomcat webserver: threads

= Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

= Each process maintains its own private memory

= Do distributed objects share memory?

January 28, 2019 TC55558: Applied Distributed Computing [Winter 2019] | o6 |

School of Engineering and Technology, University of Washington - Tacoma

MULTITHREADED CLIENTS

= Web browser

= Uses threads to load and render portions of a web page to the
user in parallel

= A client could have dozens of concurrent connections all
loading in parallel

= testFIbPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:

= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

January 28, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri chnology, University i Tacoma

MULTIPLE THREADS

® |n Linux, threads also receive a process ID (PID)
= To display threads of a process in Linux:

= |dentify parent process explicitly:
= top -H -p <pid>
= htop -p <pid>

= ps -iT <pid>

= Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019] | oot |

School of Engineering and Technology, University of Washington - Tacoma

PROCESS METRICS

- dsr: disk sector reads

- dsreads: disk sector reads completed
- drm: merged adjacent disk reads

- readtime: time spent reading from

CPU disk

- dsw: disk sector writes

-cpuUsr: CPU time in user mode
-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed

-cpuldle: CPU idle tim

- cpuloWait: CPU time waiting for I/0

- cpulntSrve:CPU time serving interrupts

- cpuSftintSrvc: CPU time serving soft interrupts M

- cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received

- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches

-loadavg: (avg # proc / 60 secs)

- dwm: merged adjacent disk writes
time spent writing to disk

LOAD AVERAGE

= Reported by: top, htop, w, uptime, and /proc/loadavg
= Updated every 5 seconds
= Average number of processes using or waiting for the CPU
= Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes
= One minute average: exponentially decaying average
= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

= 1.0 = 1-CPU core fully loaded
= 2.0 = 2-CPU cores
= 3.0 =3-CPUcores . ..

January 28, 2019 TCSS558: Applied Distributed Computing [Winter 2019] | e |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L6.11

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 28, 2019

THREAD-LEVEL PARALLELISM

= Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N -
):,':1 1-C

1—co

TLP =

= Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCsS558: Applied Distributed Computing [Winter 2019]
L 28, 2D i G ST ity ety f T

MULTITHREADED SERVERS

= Multiple threads essential for servers in distributed systems
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
= Two designs:

= Generate new thread for every request

= Thread pool - pre-initialize block of threads to service requests

Request dispatched
Dispatcher thread toa worker thread Server

‘7\4\ - Worker thread
OLIes

Operating system

IRequest coming in
rom the network —|—{—

January 28, 2019 TCs$558: Applied Distributed Computing [Winter 2019] Less
School of Technology, Tacoma

SINGLE THREAD & FSM SERVERS

= Single thread server
= A single thread handles all client requests
= BLOCKS for 1/0
= All waiting requests are queued until thread is available

= Finite state machine
=Server has a single thread of execution
=1/0 performing asynchronously (non-BLOCKing)
=Server handles other requests while waiting for 1/0
= Interrupt fired with /0 completes
=Single thread “jumps” back into context to finish request

TCsS558: Applied Distributed Computing [Winter 2019]
L 25, 2D SehooloiEr sineers K holomUnnersty f Tacoms

SERVER DESIGN ALTERNATIVES

= A blocking system call implies that a thread servicing a
request synchronously performs I/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Consider the implications of these designs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking 1/0
Single-thread No parallelism, blocking I/0
Finite-state machine Parallelism, non-blocking I/0

January 28, 2019 TCss558: Applied Distributed Computing [Winter 2019]
Y

670
School of Tacoma | |

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2019]
SETITETR) 25 240K School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

EXTRA SLIDES

L6.12

