TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Distributed Systems
Architectures

Wes J. Lloyd

School of Engineering
and Technology

University of Washington - Tacoma

OBJECTIVES

® Homework O Questions
® Feedback from 1/16
® Homework 1, to be posted...

® Chapter 2: Distributed System Architectures

= Architectural styles: Layered, Object-based,
Resource-centered architectures, Event-based

® Class Activity: Distributed System Architectures

®m Chapter 2: System architectures
= Centralized: Single client, multi-tier

= Decentralized peer-to-peer: structured, unstructured,
hierarchical

= Hybrid

TCSS558: Applied Distributed Computing [Winter 2019]

Lananvies 208 School of Engineering and Technology, University of Washington - Tacoma

L5.2

Slides by Wes J. Lloyd

January 23, 2019

L5.1

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 1/16

® How does preserving previous interfaces enable
interoperability?

® INTEROPERABILITY: enabling two arbitrary systems to work
together relying only on their declared service specification

® As systems evolve programmetrs refine APIs (interfaces)

m Systems are difficult to evolve if the API are fixed and not
allowed to GROW or CHANGE.

®m A system with the capability of supporting multiple interface
versions is more interoperable because it is usable by a larger
number of clients (old and new)

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

= Why are layers typically prevented from performing up-calls in
a layered architecture?

® Entities in lower-layers of an architecture tend to lack ability
Consider object oriented inheritance:

® 00 Inheritance leverages a layered approach where each child
classes inherits from lower layers (parents).

® A parent class provides a base interface which child classes
inherit and extend

® Parent classes don’t typically invoke child interfaces (upcall)
because this would require binding/coupling (e.g. compiling
against) the child’s extended (customized) interface in the
parent’s code

TCSS558: Applied Distributed Computing [Winter 2019]

L5.4
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.2

TCSS 558: Applied Distributed Computing January 23, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

FEEDBACK - 3

= Do (TCP) sockets enable synchronous node communication?

= YES

® TCP sockets provide session/connection oriented
communication

® Messages are typically sent from client to server

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 4

= Provide example of infrastructure freeze/thaw lifecycle as it
pertains to serverless computing

® Delivery models for serverless:
® Function-as-a-Service (FaaS)

® Container-as-a-Service (Caa$S)
® Database-as-a-Service (DBaaS)

® Amazon Aurora Serverless DB w/ MySQL

®m Database hibernates after 5-minutes of no client activity
® Charges revert to storage only

® On client request, database thaws after ~30sec warmup

TCSS558: Applied Distributed Computing [Winter 2019]

Lananvies 208 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L5.3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 5

= What is the maximum allowable size for AWS Lambda
services?
® Code size limits: 3MB with online IDE
50MB zipped, direct upload via GUI
250MB unzipped

® What are different serverless platforms?

= Several platforms offer a serverless approach to managing cloud
infrastructure

= FaaS platforms include: AWS Lambda, Google Cloud Functions, Azure
Functions, IBM Cloud Functions
= Also “serverless”:
CaaS, DBaaS

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 6

= Does a decentralized system architecture have better
(informance?) on avoiding freeze/thaw cycle?

® Informance? - performance?
® Informance? - information to avoid

® Freeze/thaw cycle pertains to serverless computing

® Infrastructure (VMs, containers) are allocated dynamically in
response to user demand

® Infrastructure is destroyed (frozen) after period of inactivity

m Serverless computing systems (FaaS, CaaS, DBaaS) all feature
decentralized, replicated, architectures

m Centralized systems avoid freeze/thaw with use of persistent,
dedicated infrastructure (e.g. one large dedicated server)

TCSS558: Applied Distributed Computing [Winter 2019]

L5.8
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.4

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

CH. 2: DISTRIBUTED

SYSTEMS

ARCHITECTURES

= | ayered

ARCHITECTURAL STYLES

®Object-based
= Service oriented architecture (SOA)

® Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

Slides by Wes J. Lloyd

January 23, 2019

L5.5

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

ARCHITECTURAL STYLES

= | ayered

= Object-based
= Service oriented architecture (SOA)

® Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

L5.11

PUBLISH-SUBSCRIBE ARCHITECTURES

® Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)

. Direct Mailbox
Referentially coupled .
Explicit synchronous Asynchronous by
(dependent on name) .
service call name (address)
. Event-based Shared data space
Referentially . .
Event notices Processes write tuples

decoupled

, published to shared to a shared data
(name not required)

bus, w/o addressing space

Not publish and subscribe

TCSS558: Applied Distributed Computing [Winter 2019]

Lananvies 208 School of Engineering and Technology, University of Washington - Tacoma

L5.12

Slides by Wes J. Lloyd

January 23, 2019

L5.6

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

= Event-based coordination Comlpone”t Conl”pone”t
= Processes do not know Subscribei v i E;Eﬁ;“"”
about each other explicitly < Eventbus
0 Publish
= Processes: Component

= Publish: a notification
describing an event

=Subscribe: to receive
notification of specific kinds of events

= Assumes subscriber is presently up (temporally coupled)

TCSS558: Applied Distributed Computing [Winter 2019]

15.13
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space
B Full decoupling (name and time)
® Processes publish “tuples” to shared dataspace (publish)

B Processes provide search pattern to find tuples
(subscribe)

Component Component
® When tuples are added, A
subscribers are notified of pubnshl SL,bscribei Data
matches 7 delivery
I r,,f,]

®m Key characteristic: y ¥
Processes have no explicit
reference to each other

Shared (persistent) data space

TCSS558: Applied Distributed Computing [Winter 2019]

L5.14
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.7

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

PUBLISH SUBSCRIBE ARCHITECTURES - 4

® Subscriber describes events interested in
® Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
® Publish matching notification and data to subscribers
= Common if middleware lacks storage
®= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

® Publish and subscribe systems are generally scalable

® What would reduce the scalability of a publish-and-
subscribe system?

TCSS558: Applied Distributed Computing [Winter 2019]

15.15
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

DISTRIBUTED SYSTEMS
ARCHITECTURES

Slides by Wes J. Lloyd

January 23, 2019

L5.8

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architectural change may impact:

® Availability

m Accessibility

® Responsiveness

m Scalability

®Openness

m Distribution transparency
ESupporting resource sharing
= QOther factors...

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

L5.17

Intercepted call

Client application

MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2019]

BN 2, 20 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

January 23, 2019

L5.9

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE: WRAPPERS

= Wrappers (adapters)

= Special “frontend” components that provide interfaces to client

= Interface wrappers transform client requests to “implementation” at
the component-level

= Provide modern services interfaces for legacy code/systems
= Enable meeting all preconditions for legacy code to operate
= Parameterization of functions, configuration of environment

® Contributes towards system openness
® Example: Amazon S3

® Client uses REST interface to GET/PUT/DELETE/POST data

m S3 adapts and hands off REST requests to system for

fulfillment

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

MIDDLEWARE: WRAPPERS - 2

® |[nter-application communication

= Application provides unique interface for
every application

® Scalability suffers Application
= N applications > O(N2) wrappers

= Broker

= Provide a common intermediary

= Broker knows how to communicate with
every application

= Applications only know how to communicate Broker

with the broker

Wrapper

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

Slides by Wes J. Lloyd

January 23, 2019

L5.10

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE: INTERCEPTORS

= [nterceptor
m Software construct, breaks flow of control, allows other
application code to be executed

® Enables remote procedure calls (RPC), remote method
invocation (RMI)

= Object A can call a method belonging to object B on a
different machine than A.

TCSS558: Applied Distributed Computing [Winter 2019]

15.21
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

MIDDLEWARE INTERCEPTION - METHOD

® Local interface matching Object B is provided to Object A

® Object A calls method in this interface

B A’s call is transformed into a “generic object invocation”
by the middleware

B The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

® Request-level interceptor automatically routes all calls to
object replicas

TCSS558: Applied Distributed Computing [Winter 2019]

L5.22
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.11

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

MODIFIABLE MIDDLEWARE

® |t should be possible to modify middleware without loss of

availability

m Software components can be replaced at runtime

® Component-based design

= Modifiability through composition

= Systems may have static or dynamic configuration of components

= Dynamic configuration requires late binding
= Components can be changed at runtime

® Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a microservices architecture (e.g. systems built w/ AWS

Lambda) support modifiability at runtime ?

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

15.23

MIDDLEWARE:

INTERCEPTORS - 2

Client application
Intercepted call
i |—{ B.doit(val) }—|
Application stub :
v :
., I
Request-level interceptor : — Nonintercepted cal
I
) [Yy
’_I—Q invoke (B, &doit, val) }—l_‘
Object middleware i
v ;i]
Message-level interceptor i
1
\v :
;J L
send (B, “doit”, wal)
’—'I—_'ocal 0s F'—‘
¥ ToobjectB

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

Slides by Wes J. Lloyd

January 23, 2019

L5.12

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

Intercepted call

Client application

Application stub

Request-evel interceptor

SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2019]

Januaryi2sa2019 School of Engineering and Technology, University of Washington -

SYSTEM ARCHITECTURES

® Architectural styles (or patterns)

® General, reusable solutions to commonly occurring

system design problems

®m Expressed as a logical organization of components

and connectors

® Deciding on the system components, their

interactions, and placement is a realization of a

system architecture

®m System architectures represent designs used in

practice

TCSS558: Applied Distributed Computing [Winter 2019]

SanLaV2i 20 School of Engineering and Technology, University of Washington - Tacoma

L5.26

Slides by Wes J. Lloyd

January 23, 2019

L5.13

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2019]

15.27
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

Client Server

m Clients request services | ey |

m Servers provide services ;
= Request-reply behavior ait | Provitia sandes

® Connectionless protocols (UDP)
B Assume stable network communication with no failures

m Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

® Clients can resend the request when no reply is received
= But what is the server doing?

TCSS558: Applied Distributed Computing [Winter 2019]

L5.28
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.14

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

CLIENT-SERVER PROTOCOLS

= Connectionless cont’d
® |s resending the client request a good idea?

= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |[dempotent - repeating requests is safe

= Connection-oriented (TCP)

® Client/server communication over wide-area networks (WANS)
® When communication is inherently reliable

m Leverage “reliable” TCP/IP connections

TCSS558: Applied Distributed Computing [Winter 2019]

15.29
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

CLIENT-SERVER PROTOCOLS - 2

= Connection-oriented cont’'d
m Set up and tear down of connections is relatively expensive
® Overhead can be amortized with longer lived connections

= Example: database connections often retained

® Ongoing debate:
® How do you differentiate between a client and server?
® Roles are blurred

= Blurred Roles Example: Distributed databases
® DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

TCSS558: Applied Distributed Computing [Winter 2019]

L5.30
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.15

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TCP/UDP

TCP UDP

Reliable Unreliable.
Connection-oriented Connectionless
Segment sequencing No sequencing
Acknowledge segments No acknowledgement

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

15.31

Advantages

Disadvantages

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP)
stateless

Connection-oriented (TCP)

stateful

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.32

Slides by Wes J. Lloyd

January 23, 2019

L5.16

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

Connectionless (UDP)

stateless

Advantages °

Fast to communicate (no
connection overhead)

* Broadcast to an audience

* Network bandwidth savings

Cannot tell difference of
request vs. response failure
* Requires idempotence

* Clients must be online and
ready to receive messages

Disadvantages °

CONNECTIONLESS VS
CONNECTION ORIENTED

Connection-oriented (TCP)

stateful

* Message delivery confirmation
* ldempotence not required
* Messages automatically resent

- if client (or network) is
temporarily unavailable

* Message sequences

guaranteed

* Connection setup is time-

consuming

* More bandwidth is required

(protocol, retries, multinode-
communication)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

15.33

MULTITIERED ARCHITECTURES

® Where should functionality be distributed?
= At the client?
= At the server?

Client machine

‘ User interface |

| User inter‘l‘ace‘

‘ User interface |

‘ User interface ‘ | User interface|

-

L, ‘ Application _ | Application ‘ ‘ Application |

7__7_7-$"“’-*—— ﬁﬁﬁﬁﬁ 7_$""‘* - i’ ! Database __

\qsds;r’i’nterface "/'"7_7 ““““ 7__3_7 ““““ -_—_-‘:“ L

| Application ‘ | Application | ‘__A[;plication ‘ ‘_,_/"_h

| Database | [Database | | Dataase | | Database | | Database ‘
Server machine

= Why should we consider component composition?

January 23, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

Slides by Wes J. Lloyd

January 23, 2019

L5.17

TCSS 558: Applied Distributed Computing

[Winter 2019] School
UW-Tacoma

of Engineering and Technology,

SC2 SC3 SC4
M D L M D FL M D F L
F
Bell's Number: 4 15
5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14
7
no... /
M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

/” Resource utilization profile changes N

from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application variants tested
* M-bound: Standard service, M is compute bound
* D-bound: Modified service, D is compute bound

Resource footprint

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

i . .
0% T T T T

CPU time disk reads disk writes networkreads network writes

Slides by Wes J. Lloyd

January 23, 2019

L5.18

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

Sl¢

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

4 A Performance Change I

Min to max performance

M-bound: 14%

F:

D-bound: 25.7%

I

2

-15

| | I | I | | I | I | | I | |
scl sc2 sc3 sc4 sc5 schb sc7 sc8 sc9 sclOscllscl?scl3scl4scld

Service Configurations

37

MULTITIERED ARCHITECTURES - 2

"= MDFL architecture
=M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

CI |ent Client Application Database|
server server
Request |
operation
L | Request
M : data
Wait for i Wait for i
reply ! data |
: .
ﬂ ! Return
D data
I Return |
reply '

TCSS558: Applied Distributed Computing [Winter 2019]

L5.38
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.19

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

MULTITIERED RESOURCE SCALING

= Vertical distribution
® The distribution of “M D F L”

®m Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server

® Vertical distribution impacts “network footprint” of application
® Service isolation: each component is isolated on its own HW

= Horizontal distribution ﬁﬁﬁﬁ
® Scaling an individual tier

® Add multiple machines and distribute load

= | oad balancing

TCSS558: Applied Distributed Computing [Winter 2019]

15.39
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

MULTITIERED RESOURCE SCALING - 2

= Horizontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

TCSS558: Applied Distributed Computing [Winter 2019]

L5.40
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.20

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured

= Hierarchically organized

®= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2019]

15.41
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

m Client/server:
= Nodes have specific roles

® Peer-to-peer:
= Nodes are seen as all equal...

®" How should nodes be organized for communication?

TCSS558: Applied Distributed Computing [Winter 2019]

L5.42
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.21

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

®= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

® Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

L5.43

DISTRIBUTED HASH TABLE (DHT)

® Distributed hash table (DHT) (ch. 5)
® Hash function

key (data item) = hash(data item’s wvalue)

® Hash function “generates” a unique key based on the data
® No two data elements will have the same key (hash)

®m System supports data lookup via key

® Any node can receive and resolve the request

® Lookup function determines which node stores the key

existing node = lookup (key)

® Node forwards request to node with the data

TCSS558: Applied Distributed Computing [Winter 2019]

Lananvies 208 School of Engineering and Technology, University of Washington - Tacoma

L5.44

Slides by Wes J. Lloyd

January 23, 2019

L5.22

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

® Statically sized 4-D hypercube, every node has 4 connectors
®m 2 x 3-D cubes, 8 vertices, 12 edges

® Node IDs represented as 4-bit code (0000 to 1111)

® Hash data items to 4-bit key (1 of 16 slots)

® Distance (humber of hops) determined by identifying nhumber

of varying bits between neighboring nodes and destination

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

L5.45

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

® Node 1110 is not a neighbor to 0111

® Which connector leads to the shortest path?

TCSS558: Applied Distributed Computing [Winter 2019]

Lananvies 208 School of Engineering and Technology, University of Washington - Tacoma

L5.46

Slides by Wes J. Lloyd

January 23, 2019

L5.23

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
® Node 1110 is not a neighbor to 0111

[0111] Neighbors:

1111 (1 bit different than 1110) 0011 (3 bits different- bad pa
0110 (1 bit different than 1110) 0101 (3 bits different- bad pa

th)
th)

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

L5.47

DYNAMIC TOPOLOGY

® Fixed hypercube requires static topology
= Nodes cannot join or leave

® Relies on symmetry of number of nodes

m Can force the DHT to a certain size

® Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

L5.48

Slides by Wes J. Lloyd

January 23, 2019

L5.24

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

= Node forwards client

= Nodes must continually

CHORD SYSTEM

= Data items have m-bit key

= Data item is stored at closest “successor” nhode with ID 2 key k
® Each node maintains finger table of successor nodes

= Client sends key/value

lookup to any node

request to node with
m-bit ID closest to, but
not greater than key k

5 Node responsible for]
keys {5,6,7,8,9}

refresh finger tables by
communicating with
adjacent nodes to
incorporate node

joins/departures

TCSS558: Applied Distributed Computing [Winter 2019]

L5.49
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
®m Each node maintains adhoc list of neighbors
® Facilitates nodes frequently joining, leaving, adhoc systems

= Neighbor: node reachable from another via a network path

®m Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
® Forms a “random graph”
®m Predetermining network routes not possible

= How would you calculate the route algorithmically?

® Routes must be discovered

TCSS558: Applied Distributed Computing [Winter 2019]

L5.50
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.25

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
B [Node u] sends request for data item to all neighbors
® [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= |lgnores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing [Winter 2019]

15.51
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

SEARCHING FOR DATA - 2

= Random walks
B [Node u] asks a randomly chosen neighbor [node v]

® |f [node v] does not have data, forwards request to a
random neighbor

= Features
= Low network traffic
= AKin to sequential search
= Longer search time

= [node u] can perform parallel random walks to reduce
search time

= As few as 16..64 random walks effective to reduce search time

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2019]

L5.52
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.26

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA -3

® Policy-based search methods

® [ncorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

® Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSS558: Applied Distributed Computing [Winter 2019]

15.53
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

HIERARCHICAL

PEER-TO-PEER NETWORKS

= Problem:
Adhoc system search performance does not scale well as
system grows

= Allow nodes to assume roles to improve search
® Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)

= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
® Node roles
= Super peer -Broker node, routes client requests to storage
nhodes

= Weak peer - Store data

TCSS558: Applied Distributed Computing [Winter 2019]

L5.54
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.27

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

® Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

® Leader-election problem:
= Who can become a &

super peer? __

= What requirements
must be met to become
a super peer?

L Overlay network of super peers

TCSS558: Applied Distributed Computing [Winter 2019]

lanuanyi2s 2088 School of Engineering and Technology, University of Washington - Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered
®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®m Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2019]

Lananvies 208 School of Engineering and Technology, University of Washington - Tacoma

L5.56

Slides by Wes J. Lloyd

January 23, 2019

L5.28

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

HYBRID

ARCHITECTURES

® Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:

® Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

m Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS558: Applied Distributed Computing [Winter 2019]

L5.57
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

HYBRID . = e
ARCHITECTURES - 2

® Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

® End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

® Cloud - in the sky
= compute/resource capacity is huge, but far away...
® Fog - (devices) on the ground

= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019 15.58

Slides by Wes J. Lloyd

January 23, 2019

L5.29

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
m | everages idle client network capacity in the background
m User joins the system by interacting with a central server

m Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

m Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

® Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2019]

15.59
School of Engineering and Technology, University of Washington - Tacoma

January 23, 2019

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington -

January 23, 2019

Slides by Wes J. Lloyd

January 23, 2019

L5.30

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

EXTRA SLIDES

Slides by Wes J. Lloyd

January 23, 2019

L5.31

