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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Homework 0 Questions
 Feedback from 1/16
 Homework 1, to be posted…

 Chapter 2: Distributed System Architectures
 Architectural styles: Layered, Object-based, 

Resource-centered architectures, Event-based 

 Class Activity: Distributed System Architectures

 Chapter 2: System architectures
 Centralized: Single client, multi-tier
 Decentralized peer-to-peer: structured, unstructured, 

hierarchical 
 Hybrid
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OBJECTIVES

 How does preserving previous interfaces enable 
interoperability?

 INTEROPERABILITY: enabling two arbitrary systems to work 
together relying only on their declared service specification

 As systems evolve programmers refine APIs (interfaces)

 Systems are difficult to evolve if the API are fixed and not
allowed to GROW or CHANGE.

 A system with the capability of supporting multiple interface 
versions is more interoperable because it is usable by a larger 
number of clients (old and new)
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FEEDBACK – 1/16

 Why are layers typically prevented from performing up-cal ls in 
a layered architecture?

 Entities in lower-layers of an architecture tend to lack ability 
Consider object oriented inheritance:

 OO Inheritance leverages a layered approach where each child
classes inherits from lower layers (parents).

 A parent class provides a base interface which child classes 
inherit and extend

 Parent classes don’t typically invoke child interfaces (upcall) 
because this would require binding/coupling (e.g. compiling 
against) the child’s extended (customized) interface in the 
parent’s code
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FEEDBACK – 2

 Do (TCP) sockets enable synchronous node communication?

 YES

 TCP sockets provide session/connection oriented 
communication

 Messages are typically sent from client to server
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FEEDBACK - 3 

 Provide example of  infrastructure freeze/thaw lifecycle as  it  
per tains to serverless computing

 Delivery models for serverless:

 Function-as-a-Service (FaaS)

 Container-as-a-Service (CaaS)

 Database-as-a-Service (DBaaS)

 Amazon Aurora Serverless DB w/ MySQL

 Database hibernates after 5-minutes of no client activity

 Charges revert to storage only

 On client request, database thaws after ~30sec warmup
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FEEDBACK - 4
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 What is  the maximum allowable size for AWS Lambda 
services?

 Code size limits: 3MB with online IDE
50MB zipped, direct upload via GUI
250MB unzipped

 What are different serverless platforms?
 Several platforms offer a serverless approach to managing cloud 

infrastructure

 FaaS platforms include: AWS Lambda, Google Cloud Functions, Azure
Functions, IBM Cloud Functions

 Also “serverless”:
 CaaS, DBaaS
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FEEDBACK – 5

 Does a decentralized system architecture have better 
( informance?) on avoiding freeze/thaw cycle?

 Informance?  performance?

 Informance?   information to avoid

 Freeze/thaw cycle pertains to serverless computing

 Infrastructure (VMs, containers) are allocated dynamically in 
response to user demand

 Infrastructure is destroyed (frozen) after period of inactivity

 Serverless computing systems (FaaS, CaaS, DBaaS) all feature 
decentralized, replicated, architectures

 Centralized systems avoid freeze/thaw with use of persistent, 
dedicated infrastructure (e.g. one large dedicated server)
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FEEDBACK - 6

CH. 2: DISTRIBUTED 
SYSTEMS

ARCHITECTURES

L5.9

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:
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PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled 
(dependent on name)

Direct
Explicit synchronous 
service call

Mailbox
Asynchronous by 
name (address)

Referentially 
decoupled
(name not required)

Event-based
Event notices 
published to shared 
bus, w/o addressing

Shared data space
Processes write tuples 
to a shared data 
space

Not publish and subscribe
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 Event-based coordination

 Processes do not know 
about each other explicitly

 Processes:

Publish: a notification 
describing an event

Subscribe: to receive 
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)
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PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples 

(subscribe)

 When tuples are added, 
subscribers are notified of 
matches

 Key characteristic: 
Processes have no explicit 
reference to each other
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PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil  
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of  a publish-and-
subscribe system?
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PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.16

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 
TO CONSIDER

MIDDLEWARE
ORGANIZATION
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 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at 
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for 
fulfillment
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MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate 
with the broker
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MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other 
application code to be executed

 Enables remote procedure calls (RPC), remote method 
invocation (RMI)

 Object A can call a method belonging to object B on a 
different machine than A.
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MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation” 
by the middleware 

 The “generic object invocation” is transformed into a 
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to 
object replicas
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MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of 
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime 
by enabling components to be swapped out.

 Does a microservices architecture (e.g. systems built w/ AWS 
Lambda) support modifiability at runtime ?
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MODIFIABLE MIDDLEWARE
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MIDDLEWARE: INTERCEPTORS - 2
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SYSTEM 
ARCHITECTURES
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 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 
system design problems

 Expressed as a logical organization of components 
and connectors

 Deciding on the system components, their 
interactions, and placement is a realization of a 
system architecture

 System architectures represent designs used in 
practice
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SYSTEM ARCHITECTURES

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message 

arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?
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CENTRALIZED: 
SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections
 Example: database connections often retained

 Ongoing debate:

 How do you differentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new 
requests to other DB nodes for replication, synchronization, etc .
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP

Connectionless (UDP) 
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 
CONNECTION ORIENTED

Connectionless (UDP) 
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no 
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent 

- if client (or network) is 
temporarily unavailable

• Message sequences 
guaranteed

Disadvantages • Cannot tell difference of 
request vs. response failure

• Requires idempotence
• Clients must be online and 

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required 
(protocol, retries, multinode-
communication)
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CONNECTIONLESS VS 
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES

SC2

M D
F 

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound       

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

Resource utilization profile changes 
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound
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37

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 
fileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.40

MULTITIERED RESOURCE SCALING - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 
ARCHITECTURES
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 Nodes organized using specific topology 
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys
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STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 
of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111
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WHICH CONNECTOR LEADS TO THE 
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes
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DYNAMIC TOPOLOGY
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 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value 
lookup to any node

 Node forwards client 
request to node with 
m-bit ID closest to, but 
not greater than key k 

 Nodes must continually 
refresh finger tables by 
communicating with 
adjacent nodes to 
incorporate node 
joins/departures
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CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to u (or forwarder) if having data

 Forwards request to ALL neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results by saturating the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until 
data is found
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SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a 

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce 

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide 

walk when data is found…
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SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of 
queries

 Nodes maintain lists of preferred neighbors which often 
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops
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SEARCHING FOR DATA - 3

 Problem:
Adhoc system search performance does not scale well as 
system grows

 Allow nodes to assume roles to improve search

 Content delivery networks (CDNs)   (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage 
nodes

 Weak peer – Store data
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 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements 

must be met to become 
a super peer?
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HIERARCHICAL 
PEER-TO-PEER NETWORKS - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Adhoc peer-to-peer devices connect to the internet through an 

edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to 

execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge
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HYBRID 
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the 

cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud  in the sky   
 compute/resource capacity is huge, but far away…

 Fog  (devices) on the ground   
 compute/resource capacity is constrained and local…
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HYBRID 
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a file host to 
be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 
known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 
participates to reserve downloaded content or network 
bandwidth is  reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 
SYSTEM EXAMPLE QUESTIONS
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