
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.1

Distributed Systems
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 0 Questions
 Feedback from 1/16
 Homework 1, to be posted…

 Chapter 2: Distributed System Architectures
 Architectural styles: Layered, Object-based,

Resource-centered architectures, Event-based

 Class Activity: Distributed System Architectures

 Chapter 2: System architectures
 Centralized: Single client, multi-tier
 Decentralized peer-to-peer: structured, unstructured,

hierarchical
 Hybrid

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

 How does preserving previous interfaces enable
interoperability?

 INTEROPERABILITY: enabling two arbitrary systems to work
together relying only on their declared service specification

 As systems evolve programmers refine APIs (interfaces)

 Systems are difficult to evolve if the API are fixed and not
allowed to GROW or CHANGE.

 A system with the capability of supporting multiple interface
versions is more interoperable because it is usable by a larger
number of clients (old and new)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

FEEDBACK – 1/16

 Why are layers typically prevented from performing up-cal ls in
a layered architecture?

 Entities in lower-layers of an architecture tend to lack ability
Consider object oriented inheritance:

 OO Inheritance leverages a layered approach where each child
classes inherits from lower layers (parents).

 A parent class provides a base interface which child classes
inherit and extend

 Parent classes don’t typically invoke child interfaces (upcall)
because this would require binding/coupling (e.g. compiling
against) the child’s extended (customized) interface in the
parent’s code

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.4

FEEDBACK – 2

 Do (TCP) sockets enable synchronous node communication?

 YES

 TCP sockets provide session/connection oriented
communication

 Messages are typically sent from client to server

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 3

 Provide example of infrastructure freeze/thaw lifecycle as it
per tains to serverless computing

 Delivery models for serverless:

 Function-as-a-Service (FaaS)

 Container-as-a-Service (CaaS)

 Database-as-a-Service (DBaaS)

 Amazon Aurora Serverless DB w/ MySQL

 Database hibernates after 5-minutes of no client activity

 Charges revert to storage only

 On client request, database thaws after ~30sec warmup

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK - 4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.2

 What is the maximum allowable size for AWS Lambda
services?

 Code size limits: 3MB with online IDE
50MB zipped, direct upload via GUI
250MB unzipped

 What are different serverless platforms?
 Several platforms offer a serverless approach to managing cloud

infrastructure

 FaaS platforms include: AWS Lambda, Google Cloud Functions, Azure
Functions, IBM Cloud Functions

 Also “serverless”:
 CaaS, DBaaS

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

FEEDBACK – 5

 Does a decentralized system architecture have better
(informance?) on avoiding freeze/thaw cycle?

 Informance? performance?

 Informance? information to avoid

 Freeze/thaw cycle pertains to serverless computing

 Infrastructure (VMs, containers) are allocated dynamically in
response to user demand

 Infrastructure is destroyed (frozen) after period of inactivity

 Serverless computing systems (FaaS, CaaS, DBaaS) all feature
decentralized, replicated, architectures

 Centralized systems avoid freeze/thaw with use of persistent,
dedicated infrastructure (e.g. one large dedicated server)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

FEEDBACK - 6

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L5.9

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.10

ARCHITECTURAL STYLES

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.12

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.3

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.15

PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.16

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.17

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

MIDDLEWARE
ORGANIZATION

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L5.18

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.4

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for
fulfillment

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. systems built w/ AWS
Lambda) support modifiability at runtime ?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

MODIFIABLE MIDDLEWARE

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

MIDDLEWARE: INTERCEPTORS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.5

SYSTEM
ARCHITECTURES

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L5.25

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring
system design problems

 Expressed as a logical organization of components
and connectors

 Deciding on the system components, their
interactions, and placement is a realization of a
system architecture

 System architectures represent designs used in
practice

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.26

SYSTEM ARCHITECTURES

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

TYPES OF SYSTEM ARCHITECTURES

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message

arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.28

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.29

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections
 Example: database connections often retained

 Ongoing debate:

 How do you differentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new
requests to other DB nodes for replication, synchronization, etc .

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.30

CLIENT-SERVER PROTOCOLS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.6

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

TCP/UDP

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.32

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent

- if client (or network) is
temporarily unavailable

• Message sequences
guaranteed

Disadvantages • Cannot tell difference of
request vs. response failure

• Requires idempotence
• Clients must be online and

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required
(protocol, retries, multinode-
communication)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.33

CONNECTIONLESS VS
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server?

 Why should we consider component composition?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

MULTITIERED ARCHITECTURES

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

Resource utilization profile changes
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.7

37

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),
fileserver (F), and logging server (L)

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.38

MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.39

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.40

MULTITIERED RESOURCE SCALING - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.42

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.8

 Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.43

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.44

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

DYNAMIC TOPOLOGY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.9

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value
lookup to any node

 Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k

 Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.49

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.50

UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to u (or forwarder) if having data

 Forwards request to ALL neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results by saturating the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until
data is found

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.51

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.52

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.53

SEARCHING FOR DATA - 3

 Problem:
Adhoc system search performance does not scale well as
system grows

 Allow nodes to assume roles to improve search

 Content delivery networks (CDNs) (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage
nodes

 Weak peer – Store data

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

HIERARCHICAL
PEER-TO-PEER NETWORKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.10

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements

must be met to become
a super peer?

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

HIERARCHICAL
PEER-TO-PEER NETWORKS - 2

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Adhoc peer-to-peer devices connect to the internet through an

edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to

execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.57

HYBRID
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the

cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud in the sky
 compute/resource capacity is huge, but far away…

 Fog (devices) on the ground
 compute/resource capacity is constrained and local…
January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L5.58

HYBRID
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a file host to
be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well
known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.59

COLLABORATIVE DISTRIBUTED
SYSTEM EXAMPLE QUESTIONS

January 23, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L5.60

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 23, 2019

Slides by Wes J. Lloyd L5.11

EXTRA SLIDES

61

