
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 0 Posted
 Feedback from 1/14

 Types of distributed systems
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Chapter 2: Distributed System Architectures
 Architectural styles: Layered, Object-based,

Resource-centered architectures, Event-based

 Research directions
 Introduction to Serverless Computing
 Containerization
 Infrastructure-as-a-Service

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.2

 What is the difference between RPC and RMI?
 RPC is remote procedure call, originally for modular (non-object

oriented) languages.
 Idea is to remotely invoke C functions on remote servers
 Parameters to make a local procedure call are “packaged up”

and sent over the network

 RMI is remote method invocation in Java
 Servers host object instances
 Java applications can invoke methods of “remote” objects over

the network

 BOTH provide abstraction as to where the actually code runs
 BOTH require intimate knowledge of the precise function and

object interfaces of remote resources

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

FEEDBACK – 1/14

 CORBA – Common object request broker architecture

 Provides a cross-language equivalent to RPC/RMI

 Languages: Ada, C, C++, C++11, COBOL, Java, Lisp, PL/I,
Object Pascal, Python, Ruby and Smalltalk

 RPC/RMI/CORBA
 Generally considered legacy technologies

 Serialization: RPC/RMI/CORBA technologies transfer data
between nodes over the network.

 Network connections are byte streams

 Serialization is the “flattening” of classes and data
structures (arrays) for transport over a byte stream

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.3

Support for sharing resources (accessibility)

Distribution transparency

Openness (avoiding vendor lock-in)

Scalability

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

DESIGN GOALS
OF DISTRIBUTED SYSTEMS

HPC, Cluster, Grid, Cloud

Distributed information systems

Pervasive Systems

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

TYPES OF DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.4

TYPES OF
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L4.7

 Concept review:

 PaaS systems often implemented atop of IaaS

 Distributed systems use transactions

 Distributed transactions should follow ACID principles
 A – Atomic: transaction occurs indivisibly

 C – Consistent: replicas are consistent until all updated

 I – Isolated: transactions don’t interfere with each other

 D – Durable: change is permanent committed

 Nested transaction - building transactions as set of sub-
transactions

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

FEEDBACK FROM 1/14

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.5

 TP Monitor – Transaction Processing Monitoring
 Facilitates implementation of the transaction across the nodes

of the distributed system

 TP monitor may be centralized component

 Methods for node-to-node communication
 RPC/RMI – tight coupling to program code

 REST services

 MOM – message oriented middleware

 Publish/subscribe queues

 Supports message delivery for asynchronous (off-line)
communication

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

REVIEW - 2

 File transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily offl ine
later can receive messages

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.6

 Synchronous node communication

 Channel remains open for duration of transaction

 Asynchronous node communication

Message is sent to initiate work, channel closed

 Result is obtained via polling, or message exchange from
a message queue or storage facility (database or key-
value store)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

COMMUNICATION

TYPES OF
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L4.12

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.7

 Ubiquitous computing systems

 Emphasis on integrating many heterogeneous devices to
build cohesive collaborative systems

 Example: IoT systems that provide new levels of
intelligence by integrating multiple sources of data to
control/manage environment (e.g. heating, cooling)

 Mobile systems

 Emphasis on smartphones, tables, vehicles

 Devices are physically mobile

 Requires ad hoc networks to inter-node communication

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

PERVASIVE SYSTEMS

 Sensor networks

 10 – 100 – 1000s of small nodes with varying
memory/compute/communication capacity

 Different nodes collect different types of data

 Issues regarding how to transport data to the cloud

 Is all of the data needed?

 Can aggregate data on the device an send preprocessed
results upstream

 Sensor network rely on unreliable adhoc networks
 Node battery failure may cause network reconfiguration

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

PERVASIVE SYSTEMS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.8

 Centralized:

 Decentralized:

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

WHO AGGREGATES AND STORES DATA?

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.9

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

SENSOR NETWORKS - 3

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L4.18

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.10

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 Object-oriented and component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Roll ing updates

● No data partitions ● Data partitioned or replicated

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

DISTRIBUTED SYSTEM ARCHITECTURES:
CENTRALIZED VS. DECENTRALIZED

hybrid

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.11

 Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running
 Interfaces must remain the same
 Preserving interfaces across versions enables

interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

ARCHITECTURAL BUILDING BLOCKS

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.12

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

ARCHITECTURAL STYLES

 Consider how the architecture may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.13

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.14

 Example: pure-layered organization

 Each layer of fers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers
to reuse low level implementation

 Abstractions make it easier reuse existing layers
that already implement communication basics

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

COMMUNICATION-PROTOCOL STACKS

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

HOW A NETWORK PACKET IS BUILT

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.15

 Added in transport layer

Ports 

Pckt seq# 

Ackn # 

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

TCP HEADER

 Added by network layer

 Source / Destination IP Address (no port)

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

IP HEADER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.16

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?
 TCP does not dictate format or type/ordering of messages

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, SMTP, DNS, SNMP, TFTP, HTTP,
DHCP, NTP, POP, RTP, Telnet, RPC, LDAP

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

COMMON APPLICATION LAYER
PROTOCOLS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.17

 Distributed application example: Internet search engine

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

APPLICATION LAYERING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.18

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.19

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

OBJECT-BASED
ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.20

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

DISTRIBUTED OBJECTS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.21

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

SERVICE ORIENTED ARCHITECTURE - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.22

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

ARCHITECTURAL STYLES

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate

 Common
architecture

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

RESOURCE BASED ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.23

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.24

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

EXAMPLE: AMAZON S3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.25

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

REST - 2

L4.50

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.26

L4.51

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{

"name": "latitude",
"value":47.2529

},
{

"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.27

 Enables separation between processing and coordination

 Types of coordination:

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.53

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.28

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

PUBLISH SUBSCRIBE ARCHITECTURES - 4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.29

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.57

 Research group meetings

 Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312

 Bioinformatics – Wednesday 11:30-1:00pm, TLB 307C

 Goals:
 Assemble ongoing agile research teams which maximize

opportunities for student collaboration and sharing to lower
the bar for student engagement in research

 Build on past successes through iterative student
contributions

Maximize student learning and research outcomes

 Provide students a practicum in cloud computing research to
increase competitiveness in industry and graduate school

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

58

THIS WINTER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.30

Serverless Computing

59

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

Pay only for
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.31

SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems,
that are challenging to deliver, are
provided automatically

…they are built into the platform

Refers to the avoidance of managing servers

Serverless can pertain to a variety of cloud
services

Evolving technology
 Function-as-a-Service (FaaS)

 Database-as-a-Service (DBaaS)
 Amazon Aurora Serverless DB– general availability Aug 9

 Container-as-a-Service (CaaS)
 Google Kubernetes Engine serverless add-on

 Others…

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

62

SERVERLESS COMPUTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.32

FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

SERVERLESS COMPUTING

Research Challenges

64

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.33

VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires
external services/components

 Increased dependencies  increased hosting costs

Client

Images credit: aws.amazon.com

 VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing: non-intuitive pricing policies

 FREE TIER:
first 1,000,000 function calls/month  FREE

first 400,000 GB-sec/month  FREE

 Afterwards: obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

$0.00001667 GB /second

January 16, 2019

PRICING OBFUSCATION

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

66

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.34

WEBSERVICE HOSTING EXAMPLE

 ON AWS Lambda
 Each service call : 100% of 1 CPU-core

100% of 4GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM
 Hosting cost: $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload
cost on AWS Lambda?
January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
67

PRICING OBFUSCATION

Workload: 10,368,000 GB-sec
 FREE: - 400,000 GB-sec
Charge: 9,968,600 GB-sec
Memory: $166.17
 Invocations: 5,184,000 calls
 FREE: - 1,000,000 calls
Charge: 4,184,000 calls
Calls: $.84
 Total: $167.01
BREAK-EVEN POINT: ~4,319,136 GB-sec-month

~12.5 days 2 concurrent clients @ 2GB

Worst-case scenario = ~2.32x !

AWS EC2: $72.00
AWS Lambda: $167.01

Break Even: 4,319,136 GB-sec

Two threads
@2GB-ea: ~12.5 days

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.35

MEMORY RESERVATION
QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s
memory allocation

 Resource capacity (CPU,
disk, network) coupled to
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

69

 Order of magnitude performance gain ~ 10x

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

70

LAMBDA: PERFORMANCE VS MEMORY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.36

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

71

HOW MUCH FOR 1,000,000 CALLS?

 Coupling between classes/modules

 Degree dependence between software modules

 Measure of how closely connected two modules are

 Cohesion between classes/modules

 Strength of relationships between methods and data

 How unified is the purpose or concepts of groupings

 Functional cohesion

 Object-Oriented Software Best Practice:

Minimize Coupling, Maximize Cohesion

 Shown to correlate with software quality:
maintainability, reusability, extensibility, understandability

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

72

CLOUD NATIVE APPLICATIONS:
EVOLVING BEST PRACTICES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.37

SERVICE COMPOSITION

How should application code be composed for
deployment to FaaS platforms?

 Best practice: decompose into many microservices

 Platform limits: code + libraries ~250MB

How does FaaS function composition impact
performance and cost of native cloud applications?

Performance

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

74

APPLICATION FLOW CONTROL

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.38

INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance

SUMMARY OF FAAS CHALLENGES

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

App flow control – implications of implementation?

 Infrastructure freeze/thaw cycle – how to avoid?

Platform constraints – memory, runtime, codesize

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

76

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.39

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.77

SERVERLESS COMPUTING

 *FaaS Inspector Project*–Mult i .Students , S hrut i R amesh (M icrosof t)

https://github.com/wlloyduw/faas_inspector

 *Service composition* – Baojia Zhang

 Performance and cost implications of microservice
disaggregation vs. composition

 FaaS Performance Simulation and Modeling – Lan Ly

 Freeze/Thaw Lifecycle Mitigation – Minh Vu

 Cloud vs Edge vs Device – Harrison Ross

 Unique applications of FaaS:
 Computer Vision Neural Networks – Vlad Kaganyuk (t-mobile)

 Gaming, Bioinformatics, others…
 FaaS Application Migration – Baojia Zhang

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.40

 Application system containers - Docker
 Container orchestration framework(s) – Kubernetes, Docker

Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

 *Container-as-a-Service* – “Serverless” alternative to
container orchestration frameworks, looking for student to
conduct MSCSS project to explore this new technology (AWS
Fargate, Azure Container Instances, Google…)

 T-Mobile Container Platform Study– Garrett Lahmann
 Analyzing the gap between resource reservation and

uti lization on container platforms

 Workflow Containerization: Resource profi ling of Docker
containers - Huazeng Deng
 https://github.com/wlloyduw/ContainerProfiler
 Project extensions: integrate with Prometheus, Grafana

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

79

CONTAINERIZATION

INFRASTRUCTURE-AS-A-SERVICE
CLOUD RESEARCH

 Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)–

 Workflow scheduling - Zelun “Jim” Jiang

 Container checkpointing - Pai Zhang

 eScience Institute (UW Seattle)

 Rosetta (protein folding) – Srihari Vignesh

 Tsunami Modeling (on AWS GPU instances) – Shawn Qin

 Cloud vs. Edge for mobile computing workloads – Harrison Ross

 Intell igent deployment of bioinformatics workflows on the cloud
to improve per formance and cost

 Performance benchmarking Radhika Sridhar, Saranya Ravishankar

 Resource utilization profiling Radhika Sridhar

 Performance Modeling, Machine Learning

 Infrastructure management improvements

 Public cloud resource contention and avoidance –
Edward Han, Jugal Gandhi

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.41

 Lightweight alternative to containers and VMs

 Custom Cloud Operating System

 No/one process, multiple threads, run one program

 Launch separately atop of hypervisor (XEN/KVM)

 Reduce overhead, duplication of heavy weight OS

 Performance comparison to containers, virtual machines

Web application (services) and native Java application
comparison (OSv) - Devin Durham

 Comparison study: unikernels vs. containers vs. VMs

 *(NEW!)* Micro VMs: AWS Firecracker
https://github.com/firecracker-microvm/firecracker

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

81

VIRTUALIZATION / UNIKERNELS

 Clouds abstract infrastructure implementation from end
users

 Design goal of distributed systems – transparency

 Users access abstract infrastructure via software services

 As-a-service: IaaS, PaaS, SaaS, FaaS, DBaaS, CaaS, cache
services, storage, NoSQL-databases

 How do we best leverage abstract infrastructure?

 What performance and cost implications result from
ignoring abstraction?

 What “value” does the service really provide? Is it worth it?

 What can we infer about abstract infrastructure that can
help the users of cloud services? (cloud consumers)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

82

REVERSE ENGINEERING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.42

CLOUD FEDERATION / ENERGY

Cloud federation and resource abstraction

 How can we dynamically harness resources from diverse
clouds to enable cost savings and high availability
improvements? (SERVERLESS FAAS / IAAS)

 Containers are a key enabling technology for platform
independence
 Bioinformatics applications

Support green computing goals:
 Opportunistic workload consolidation and migration to

the most sustainable, economical, and energy efficient
resources, T-Mobile

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.84

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.43

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.85

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

MIDDLEWARE
ORGANIZATION

October 12, 2017
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.86

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.44

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands of f REST requests to system for
fulfil lment

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.87

MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.88

MIDDLEWARE: WRAPPERS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.45

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.89

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.90

MIDDLEWARE INTERCEPTION - METHOD

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.46

 It should be possible to modify middleware without loss of
availabil ity

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiabil ity at runtime ?

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.91

MODIFIABLE MIDDLEWARE

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.92

MIDDLEWARE: INTERCEPTORS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.47

QUESTIONS

January 16, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.93

EXTRA SLIDES

94

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.48

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.95

FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.96

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.49

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profi ling, Measurement, Cloud System Data

Analytics
 Application per formance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

97

RESEARCH DIRECTIONS

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

