TCSS 558: Applied Distributed Computing January 16, 2019
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Distributed Systems:
Types and

Architectures

Wes J. Lloyd

School of Engineering

and Technology

University of Washington - Tacoma

OBJECTIVES

= Homework O Posted
= Feedback from 1/14

= Types of distributed systems
= HPC, cluster, grid, cloud
= Distributed information systems
= Pervasive systems

= Chapter 2: Distributed System Architectures

= Architectural styles: Layered, Object-based,
Resource-centered architectures, Event-based

= Research directions
= Introduction to Serverless Computing
= Containerization
= Infrastructure-as-a-Service

TCSS558: Applied Distributed Computing [Winter 2019]

TG) e A R e e o R A T - | L2 |

FEEDBACK - 1/14

= What Is the difference between RPC and RMI?
= RPC is remote procedure call, originally for modular (non-object
oriented) languages.
= ldea is to remotely invoke C functions on remote servers

= Parameters to make a local procedure call are “packaged up”
and sent over the network

= RMI is remote method invocation in Java

= Servers host object instances

= Java applications can invoke methods of “remote” objects over
the network

= BOTH provide abstraction as to where the actually code runs

= BOTH require intimate knowledge of the precise function and
object interfaces of remote resources

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversit i

January 16, 2019 Fechriclons . Tacoma | “u3 ‘

FEEDBACK - 2

= CORBA - Common object request broker architecture

= Provides a cross-language equivalent to RPC/RMI

= Languages: Ada, C, C++, C++11, COBOL, Java, Lisp, PL/I,
Object Pascal, Python, Ruby and Smalltalk

= RPC/RMI/CORBA

= Generally considered legacy technologies

= Serialization: RPC/RMI/CORBA technologies transfer data
between nodes over the network.

= Network connections are byte streams

= Serialization is the “flattening” of classes and data
structures (arrays) for transport over a byte stream

January 16, 2019

TCS5558: Applied Distributed Computing [Winter 2019] e
School of Engineering and Technology, University of Washington - Tacoma

DESIGN GOALS
OF DISTRIBUTED SYSTEMS

TYPES OF DISTRIBUTED SYSTEMS

= Support for sharing resources (accessibility)

= Distribution transparency

= Openness (avoiding vendor lock-in)

= Scalability

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversit i

January 16, 2019 etholoey , Tacoma | ws ‘

= HPC, Cluster, Grid, Cloud

m Distributed information systems

= Pervasive Systems

TCS$558: Applied Distributed Computing [Winter 2019] | Las |

TG) ISehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L4.1

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

TYPES OF

DISTRIBUTED INFORMATION SYSTEMS

DISTRIBUTED SYSTEMS: B|>\

January 16, 2019

FEEDBACK FROM 1/14

= Concept review:
= PaaS systems often implemented atop of laaS

= Distributed systems use transactions

= Distributed transactions should follow ACID principles
= A - Atomic: transaction occurs indivisibly
= C - Consistent: replicas are consistent until all updated
= | - Isolated: transactions don’t interfere with each other
=D - Durable: change is permanent committed

= Nested transactlon - building transactions as set of sub-
transactions

January 16, 2019

TCS5558: Applied Distributed Computing [Winter 2019]
Y

o s
School of Tacoma | |

REVIEW - 2

= TP Monitor - Transaction Processing Monitoring

of the distributed system
= TP monitor may be centralized component

= Methods for node-to-node communication
= RPC/RMI - tight coupling to program code
= REST services
= MOM - message oriented middleware
= Publish/subscribe queues

communication

= Supports message delivery for asynchronous (off-line)

= Facilitates implementation of the transaction across the nodes

January 16, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversity i

Technology, Tacoma

CHALLENGES WITH VARIOUS

APPLICATION INTEGRATION METHODS

= Flle transfer
= Shared data files (e.g. XML)
= Leads to file management challenges

= Shared database
= Centralized DB, transactions to coordinate changes among users
= Common data schema required - can be challenging to derive
= For many reads and updates, shared DB becomes bottleneck

= Remote procedure call - app A executes on and against app B
data. App A lacks direct access to app B data.

= Messaging middleware - ensures nodes temporarily offline
later can receive messages

January 16, 2019

TCS5558: Applied Distributed Computing [Winter 2019]
Y

School of Engineeri | e

Tacoma

COMMUNICATION

= Synchronous node communlcation
= Channel remains open for duration of transaction

= Asynchronous node communication
= Message is sent to initiate work, channel closed

value store)

= Result is obtained via polling, or message exchange from
a message queue or storage facility (database or key-

January 16, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversity i Tacoma

Technology,

Slides by Wes J. Lloyd

TYPES OF

DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L4.2

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

PERVASIVE SYSTEMS

= Ubiquitous computing systems
= Emphasis on integrating many heterogeneous devices to
build cohesive collaborative systems

= Example: 1oT systems that provide new levels of
intelligence by integrating multiple sources of data to
control/manage environment (e.g. heating, cooling)

= Moblle systems
= Emphasis on smartphones, tables, vehicles

= Devices are physically mobile
= Requires ad hoc networks to inter-node communication

January 16, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri chnology, University i Tacoma

PERVASIVE SYSTEMS - 2

= Sensor hetworks

=10 - 100 - 1000s of small nodes with varying
memory/compute/communication capacity

= Different nodes collect different types of data
= |ssues regarding how to transport data to the cloud
= Is all of the data needed?

= Can aggregate data on the device an send preprocessed
results upstream

=Sensor network rely on unreliable adhoc networks
Node battery failure may cause network reconfiguration

TCS5558: Applied Distributed Computing [Winter 2019]

TG) Sehoalor T TRy T

CENTRALIZED VS. DECENTRALIZED

DATA STORAGE

= Centralized:

ensor network

Operator's site

@ Sensor data

is sent directly
to operator

= Decentralized:

Each sensor
can process and
store data

Sensor network

Operator's site

Query

—
Sensors <

send only

answers

January 16, 2019

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversity i Tacoma

Technology,

WHO AGGREGATES AND STORES DATA?

= Consider the tradeoff space for:
= sensor network data storage and processing

Centrallzsd ﬂ Decsntrallzed

u
e Single point-of-failure e Nodes require high compute
e No node coordination power
e No node processing or storage e “Smart” nodes
e “Dumb” nodes e Expensive nodes
e Less expensive node e Less network traffic
e More network traffic

TCS5558: Applied Distributed Computing [Winter 2019]

School of Technology, University of Tacoma | had

January 16, 2019

SENSOR NETWORKS - 3

= What are some unique requirements for sensor networks
middleware?

= Sensor networks may consist of different types of nodes
with different functions

= Nodes may often be in suspended state to save power
Duty cycles (1 to 30%), strict energy budgets

= Synchronize communication with duty cycles

=How do we manage membership when devices are offline?

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri chnology, University i Tacoma

January 16, 2019 17

i
CH. 2: DISTRIBUTED

SYSTEMS
ARCHITECTURES

Slides by Wes J. Lloyd

L4.3

TCSS 558: Applied Distributed Computing January 16, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

DISTRIBUTED SYSTEM ARCHITECTURES:

DISTRIBUTED SYSTEM ARCHITECTURES CENTRALIZED VS. DECENTRALIZED

= Provides logical organization of a distributed system into = Tradeoff space: degree of distribution of the system
software components
= Loglcal: How system is perceived, modeled Fully Centrallzed Do Decentrallzed
= Object-oriented and component abstractions 4—']’ >
= Physical - how it really exists
e Single point-of-failure e Multiple failure points
= Middleware e No nodes: vertical scaling e Nodes: horizontal scaling
2 GEEBEC R e AL e IR o Always consistent e Eventually consistent
: :2'\:]’2:)e'gti::';T;:'::;:Z::’;Z?:onems e Less available (fewer 9s) e More available (more 9s)
& o 6l (ey GRTmmIEaies e Immediate updates e Rolling updates
= How are systems extended? replicated? o No data partitions e Data partitioned or replicated

= Provides “realization” of the architecture

TCS5558: Applied Distributed Computing [Winter 2019]

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019 School of Engineering and Technology, University of Washington - Tacoma

19 ‘ January 16, 2019 | 1420

ARCHITECTURAL BUILDING BLOCKS ARCHITECTURAL STYLES

= Component: modular unit with well-defined, required, and = Layered
provided Interfaces that is replaceable within its
environment)

= Components can be replaced while system is running " Object-based

= Interfaces must remain the same = Service oriented architecture (SOA)

= Preserving interfaces across versions enables
interoperability = Resource-centered architectures

= Representational state transfer (REST

= Connector: enables flow of control and data between 2 ()
components

= Event-based

= Distributed system architectures are conceived using = Publish and subscribe (Rich Site Summary RSS feeds)
components and connectors

TCS5558: Applied Distributed Computing [Winter 2019]

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019 School of Engineering and Technology, University of Washington - Tacoma

un ‘ January 16, 2019 | 2

ARCHITECTURAL STYLES DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architecture may impact:

= Availability
= Accessibility
= Responsiveness

= Object-based
= Service oriented architecture (SOA)

= Resource-centered architectures = Scalability
= Representational state transfer (REST) = Openness

m Distribution transparency
= Event-based

ESupporting resource sharing
= Publish and subscribe (Rich Site Summary RSS feeds)

= Qther factors...

TCS5558: Applied Distributed Computing [Winter 2019]

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 16, 2019 School of Engineering and Technology, University of Washington - Tacoma

3 ‘ January 16, 2019

Slides by Wes J. Lloyd L4.4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 16, 2019

AYERED ARCHITECTURES LAYERED ARCHITECTURES - 2

= Components organized in layers

Pure-layered
Organization

Mixed-layered
organization

Layered w/ upcalls
organization

= Component at layer L; downcalls to lower-level networking specialized libraries OS signals/events
components at layer L, (where i < j) Faueelosponse One-way cal
— > — >

Layer N-1

= Calls go down

= Exceptional cases may produce upcalls Layer Nt Layer N-1
Handle
Upcall
Layer N-2 | Layer N-2 |
Layer 2
Layer N-3
TCSS558: Applied Distributed Computing [Winter 2019] TCSS558: Applied Distributed Computing [Winter 2019]
LR 28 2D AT o T s s o T T A T T s TG) e A R e e o R A T - L2

= Example: pure-layered organization — Bats
enet, 3
= Each layer offers an interface specifying functions of the layer 567 - Application RS
= Communication protocol: rules used for nodes to communicate Usor Deta (Mossagos or Sireams) P e
= Layer provides a service 4-Transport TcP, ubp
= Interface makes service available i TomsportProtcoitsssges [rce p—
K o P
= Protocol implements communication for a layer * 3—Network AR ICHE: TCP Segment
< | Session Layer
oI Hear || Hoser Appliction bata
= New services can be built atop of existing layers * UBESTCR) A P
to reuse low level implementation 3| Netvok Layer
" N . e | NetworkcSpecific [Ethemet | 1P | cp. ‘ eceueeia Do Ethemet
= Abstractions make it easier reuse existing layers : |pwmine = “B::E' "j”ef . [Fretes
that already implement communication basics e 1= Physical Physical Devices } 01500 bytes }
OStlayer | |
[il
TCSS558: Applied Distributed Computing [Winter 2019] TCSS558: Applied Distributed Computing [Winter 2019]
LR 28 2D e oolol Enpinar s erd Technolomyilnvers Y e hinetonETecoms w7 ‘ TG) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma | L8 |
= Added in transport layer = Added by network layer
T L. P | (TCP) Head = Source / Destination IP Address (no port)
ransmission Conzg?so ;\z:gco (TCP) Header = IPva: 32bits / 4 bytes
— = |[Pv6: 128bits / 16 bytes
Ports > source ;an&tegumber destination port number 0 4 8 16 19 31
Pckt seq# > sequence number Version [':,?;ﬁ |Service Type Total Length
4 bytes T 8 T
Ackn # > acknowledgement number Identification Flags | Fragment Offset
4 bytes 3
T pesmes ‘ mae e 1L Protocol Header Checksum
abis | 3bis 9bits 2bytes
L 8 Source IP Addr
’ checksum urgent pointer
2lbyzes) 2lbvics Destination IP Addr
optional data . "
pm bytes Options Padding
TCSS558: Applied Distributed Computing [Winter 2019] TCSS558: Applied Distributed Computing [Winter 2019]
LRy 28, 2 | Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms w2 ‘ TG) ISehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma | L0 |

Slides by Wes J. Lloyd L4.5

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

= TCP provides easy to use API

= APl supports: setup, tear down of connection(s)
= AP| supports: sending and receiving of messages
= TCP preserves ordering of transferred data

= TCP detects and corrects lost data

= But TCP is “protocol” agnostic
= E.g. language agnostic

= What are we going to say?

= TCP does not dictate format or type/ordering of messages

TRANSMISSION CONTROL PROTOCOL (TCP)

TCS5558: Applied Distributed Computing [Winter 2019]

LR 28 2D AT o T s s o T T A T T

January 16, 2019

COMMON APPLICATION LAYER

PROTOCOLS

=Telnet, FTP, SMTP, DNS, SNMP, TFTP, HTTP,
DHCP, NTP, POP, RTP, Telnet, RPC, LDAP

TCP /1P model

TCP /IP protocal suite

Application

layer
frenpost | Tep H upp H 1GMP H cHP ‘

layer
Internst o D

layer

””” i T e

Hetwark | | Ethernet | ! Token Ring | AT
Interface | I__ _ __ [(o Relay ' T _ !

layer

TCSS558: Applied Distributed Computing [Winter 2019]

TG) e A R e e o R A T -

APPLICATION LAYERING

User-interface
level

Processing
Ranked list level
of page titles

HTML page

User interface
containing list

HTML
generator
Query
generator
Ranking
Database queries algorithm

Web page titles
with meta-information
Database Data level
with Web pages

<eyword expression

= Distributed application example: Internet search engine

TCS5558: Applied Distributed Computing [Winter 2019]

LR 28 2D | e oolol Enpinar s erd Technolomyilnvers Y e hinetonETecoms

APPLICATION LAYERING

= Three logical layers of distributed applications
=The data level
= Application interface level
=The processing level

TCSS558: Applied Distributed Computing [Winter 2019]

TG) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

APPLICATION LAYERING

= Three logical layers of distributed applications

=The data level (M)
= Application interface level V)
=The processing level (C)

= Model - database - handles data persistence
=View - user interface - also includes APIs
= Controller - middleware / business logic

= Model view controller architecture - distributed systems

TCS5558: Applied Distributed Computing [Winter 2019]

LRy 28, 2 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

ARCHITECTURAL STYLES

= Layered

= QObject-based

= Service oriented architecture (SOA)

= Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

TCS$558: Applied Distributed Computing [Winter 2019]

TG) ISehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L4.6

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 16, 2019

Object Object

OBJECT-BASED
ARCHITECTURES - 2

OBJECT-BASED ARCHITECTURES

Method call

Object

= Distributed objects Java- Remote Method Invocation (RMI)

Object

= Enables loose and flexible component organization

= Objects == components = Adds object orientation concepts to remote function calls
L = Clients bind to proxy objects
= Enable distributed node interaction via function calls over the . X i X
network = Proxy provide an object interface which transfers method

invocation over the network to the remote host
= Began with C - Remote Procedure Calls (RPC)

= Straightforward: package up function inputs, send over
network, transfer results back

. = Object marshalling - serialize data, stream it over network
= Language independent i i
= In contrast to web services, RPC calls originally were more * Unmarshalling- create an object from the stream

intimate in nature = Unmarshall local object copies on the remote host

= Procedures more “coupled”, not as independent = JSON, XML are some possible data formats
= The goal was not to decouple and widgetize everything

= How do we replicate objects?

TCSS558: Applied Distributed Computing [Winter 2019]
LR 28 2D AT o T s s o T T A T T

School of Engineering and Technology, University of Washington - Tacoma

s ‘ January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019] | s |

rr = A counterintuitive features is that state is not
lient machine Server machine . .
Object distributed
ot seer = Each “remote object” maintains it tat
. ! | Sisis ac emote object” maintains its own state
ame . .
ini l:] inteface OO0 Method = Remote objects may not be replicated
invokes as opject . B
amethod ¢ Sk — | = Objects may be “mobile” and move around from node
T ke _ Interface
e || B to node
at object f
m—— | ‘ Pr—— = Common for data objects
]L jl = For distributed (remote) objects consider
Network = Pass by value
Marshalled invocation
is passed across network = Pass by reference
TCSS558: Applied Distributed C ing [Wir 2019] TCSS558: Applied Distributed Ce ing [Wi 2019]
sy 16200 e gton T ua | oy 16,2019 [15558 omled b Conput e L e [wa]

SERVICE ORIENTED ARCHITECTURE SERVICE ORIENTED ARCHITECTURE - 2

= Services provide always-on encapsulated functions over = Are more easily developed independent and shared vs.
the internet/web systems with distributed object architectures
= Leverage redundant cloud computing infrastructure

= Services may: = Less coupling
= Aggregate multiple languages, libraries, operatin
sggt s . guag P & = An error while invoking a distributed object may crash the
yeems system
= Include (wrap) legacy code
- _Many softwar_e componenisimavibelinvolvediinithe = An error calling a service (e.g. mismatching the interface)
implementation

generally does not result in a system crash
= Application server(s), relational database(s), key-value

stores, in memory-cache, queue/messaging services

TCSS558: Applied Distributed Computing [Winter 2019]
LRy 28, 2 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

TCSS558: Applied Distributed Computing [Winter 2019]
L ‘ e School of Engineering and Technology, University of Washington - Tacoma La2

Slides by Wes J. Lloyd L4.7

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 16, 2019

ARCHITECTURAL STYLES

= Layered

= QObject-based
= Service oriented architecture (SOA)

= Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCS5558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma s

RESOURCE BASED ARCHITECTURES

= Motivation:

= Need for standardization of interfaces

= Increasing number of services available online
= Make services/components more pluggable
= Easier to adopt and

= Each with specific protocol(s), methods of interfacing
integrate d

=Common Z
architecture

= Connecting services w/ different protocols
@
L
January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019] | |

- integration nightmare
School of Engineering and Technology, University of Washington - Tacoma Lt

REST SERVICES

= Representational State Transfer (REST)
= Built on HTTP
= Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
Four operations: GET PUT POST DELETE

Messages to/from a service are fully described

4. After execution server forgets about client
Stateless execution

January 16, 2019 | TCS5558: Applied Distributed Computing [Winter 2019] Laas

School of Engineering and Technology, University of Washington - Tacoma

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

= An ASClI-based request/reply protocol for transferring
information on the web

= HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request
= HTTP response from server
= Protocol version & status code >
= Response headers
= Response body

HTTP status codes:
2xx — all is well

3xx — resource moved
4xx — access problem
5Xx — server error

TCSS558: Applied Distributed Computing [Winter 2019]
TG) ISehool of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma Lade

REST-FUL OPERATIONS

(Operation . ___Description _|__|

PUT Create a new resource (C)reate
GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate
DELETE Delete a resource (D)elete

= Resources often implemented as objects in 00 languages
= REST is weak for tracking state
= Generic REST interfaces enable ubiquitous “so many” clients

TCSS558: Applied Distributed Computing [Winter 2019]
LRy 28, 2 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

a7

EXAMPLE: AMAZON S3

= Amazon S3 offers a REST-based interface

= Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

& Aws SDKs and Explorers

= REST: GET/PUT/POST/DELETE O setup the AWs CLI

= SOAP: 16 operations, moving toward [Usingthe AWS SDK for java
deprecation

= Python boto ~50 operations
(SDK for Python)

= SDKs for other languages

O Using the AWS SDK for .NET

O using the AWS SDK for PHP
and Running PHP Examples

O Using the AWS SDK for Ruby
Version 3

O Using the AWS SDK for Python
(Boto)

Slides by Wes J. Lloyd

TCSS558: Applied Distributed Computing [Winter 2019]
TG) ISehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma Lede

L4.8

TCSS 558: Applied Distributed Computing January 16, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"

p:/ /1 av
mlns http: /. A1
REST - 2 AR e e ey
http: //www.w3.0rg/2001/XMLSchema"
ttp://schemas . xmlsoap.org/wsdl/">

T ane=rDayoteaskansponsa™

. <t ="dayOfWeek" ="xsd:string" /;

= Defacto web services protocol o
etTuse name="DayOfsakPortTypa>

(&p%ratien ‘name="Ge tDayOfWes

s
. . g <input 'tns :DayOfWeekInput"/>
= Requests made to a URI - uniform resource identifier /<m'x'§§:::-§§3- e bayofieskResponse” />
</porttvpes
. . inaing nane os " typas
= Supersedes SOAP - Simple Object Access Protocol S O s
<oparation namectGetDayomiask>
1 />
= Access and manipulate web resources with a predefined ey e
set of stateless operations (known as web services) , e 2 7S
</inputs
LEE
; body use="encoded®
= Responses most often in JSON, also HTML, ASCII text, e '5»7737 suevave. < "
=
XML, no real limits as long as text-based R,
Harvice wamemDagomestsarvice” >
= curl - generic command-line REST client: s 5 (et o 2 0 G
</documentation>
https://curl.haxx.se S & "
</port> o
</service>
TCSS558: Applied Distributed Ce iting [Winter 2019] </definitions>
LR 28 2D School of Er‘:gir'\eeeri:g:n: ?ech:c';‘lzzy:r:fnive"r‘sif; of Washington - Tacoma a9 ‘

L4.50

ARCHITECTURAL STYLES
// REST/JSON

// Request climate data for Washington

{ = Layered
"parameter": [
{ .
"name": "latitude", = QObject-based
, "value":47.2529 = Service oriented architecture (SOA)
{
"name": "longitude", = Resource-centered architectures
"value":-122.4443
} = Representational state transfer (REST)
1
}

= Event-based

= Publish and subscribe (Rich Site Summary RSS feeds)

1451 ‘ January 16, 2019

TCS5558: Applied Distributed Computing [Winter 2019] ss
School of Engineering and Technology, University of Washington - Tacoma

PUBLISH-SUBSCRIBE ARCHITECTURES

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

= Enables separation between processing and coordination

= Event-based coordination | Gomponsnt | | Component ‘
= Types of coordination: = Processes do not know Subscribe ! y;:\vﬁ:;tion
Temporally coupled | Temporally decoupled about each other explicitly
(at the same time) (at different times) Publish
Referentially coupled _ Direct Mailbox " Processes:
(dependenton name) Expl!clt synchronous Asynchronous by = Publish: a notification
service call name (address) describing an event
: Eventbased oNared data space 5
Referentially Ever!t based Shared dat? Space =Subscrlbe: to receive
decounled Event notices Processes write tuples ifi . ¢ ific kinds of
(namepnot required) published to shared to a shared data notification of specific kinds of events
bus, w/o0 addressing _ space = Assumes subscriber is presently up (temporally coupled)
Not publish and subscribe
October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

A, P TCsS558: Applied Distributed Computing [Winter 2019] | st |

Slides by Wes J. Lloyd L4.9

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

= Shared data space
= Full decoupling (name and time)

= Processes provide search pattern to find tuples
(subscribe)

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Processes publish “tuples” to shared dataspace (publish)

= Key characteristic:
Processes have no explicit

reference to each other

I Component I | Component |
= When tuples are added,
subscribers are notified of Publish Subscribe Data
matches y Seliver
< ——

Shared (persistent) data space

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversi i

October 12, 2017 Technology, v jfacoma

.55

PUBLISH SUBSCRIBE ARCHITECTURES - 4

= Subscriber describes events interested in
= Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
= Publish matching notification and data to subscribers
= Common if middleware lacks storage
= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

= Publish and subscribe systems are generally scalable

= What would reduce the scalabllity of a publish-and-
subscribe system?

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri Technology, Universi i Tacoma

October 12, 2017

RESEARCH DIRECTIONS

TCSS558: Applied Distributed Computing [Winter 2019]

(T e 2000 School of Engineering and Technology, University of Washington -

THIS WINTER

= Research group meetings
= Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312
= Bioinformatics - Wednesday 11:30-1:00pm, TLB 307C

= Goals:

= Assemble ongoing agile research teams which maximize
opportunities for student collaboration and sharing to lower
the bar for student engagement in research

= Build on past successes through iterative student
contributions

= Maximize student learning and research outcomes

= Provide students a practicum in cloud computing research to
increase competitiveness in industry and graduate school

TCS5558: Applied Distributed Computing [Winter 2019] %
School of Engineeri Technology, University i Tacoma

January 16, 2019

Serverless Computing

Serverless Computing
ithout

SERVERLESS COMPUTING

[Pay only for J
CPU/memory utilization

| High Availability |
[Fault Tolerance

Infrastructure Elasﬁcity] [No Setup]

J Function-as-a-Service J
(FAAS)

_—

Slides by Wes J. Lloyd

L4.10

TCSS 558: Applied Distributed Computing January 16, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

SERVERLESS COMPUTING SERVERLESS COMPUTING

= Refers to the avoidance of managing servers

Why Serverless Computing? ‘ =Serverless can pertain to a variety of cloud

Many features of distributed systems, Semfes
that are challenging to deliver, are sl oy

provided automatically = Function—as—a—Servi(.:e (FaaS)
= Database-as-a-Service (DBaaS)

...they are built into the platform) Amazon Aurora Serverless DB- general availability Aug 9
4 = Container-as-a-Service (CaaS)
Google Kubernetes Engine serverless add-on
= Others...

TCS5558: Applied Distributed Computing [Winter 2019]

TG) Sehoalor T TRy T

FAAS PLATFORMS
SERVERLESS COMPUTING

AWS Lambda
[Azure Functfions J
[IBM Cloud Functions]
[Google Cloud Functions

Apache OpenWhisk]
Fn (Oracle)

Research Challenges

hout

Open Source

VENDOR ARCHITECTURAL LOCK-IN PRICING OBFUSCATION
= Cloud native (FaaS) software architecture requires = VM pricing: hourly rental pricing, billed to
external services/components nearest second is intuitive...
Example: Weath = Faa$ pricing: non-intuitive pricing policies
s Client s = FREE TIER:
first 1,000,000 function calls/month > FREE
D -------- » a E¢ --------- > g first 400,000 GB-sec/month > FREE

API GATEWAY DYNAMODB

= Afterwards: obfuscated pricing (AWS Lambda):
$0.0000002 per request
$0.000000208 to rent 128MB / 100-ms
$0.00001667 GB /second

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri iversity of Washi

Images credit: aws.amazon.com

= Increased dependencies - increased hosting costs

January 16, 2019 ‘ Tacoma | * |

Slides by Wes J. Lloyd L4.11

TCSS 558: Applied Distributed Computing January 16, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

WEBSERVICE HOSTING EXAMPLE PRICING OBFUSCATION
= ON AWS Lambda m\| N
= Each service call: 100% of 1 CPU-core uf Worst-case scenario = ~2.32x ! [
100% of 4GB of memory =
= Workload: 2 continuous client threads L AWS EC2:
= Duration: 1 month (30 days) AWS Lambda, $-|67 O-I
= ON AWS EC2: " |
. Amazon EC2 c4.large 2-vCPU VM . Break Even: 4,319,136 GB-sec
= Hosti t: $72/ th
c:.slalrngi:cos 1o¢/rToznr, 24 hrs/day x 30 days :: Two threads
@2GB-ea: ~12.5 days .
"How much would hosting this workload 1 L
cost on AWS Lambda? = BREAK-EVEN POINT: ~4,319,136 GB_-sec-month
| January 16, 2019 |TCSSSSE:AppIiedDis(ribuledCompuling[Win(e12019] | ‘ ~12.5 days 2 concurrent clients @ 2GB
ARy School of Engineeri Technology, University i Tacoma e

QUESTION LAMBDA: PERFORMANCE VS MEMORY
= Lambda memory + Basic settings = Order of magnitude performance gain ~ 10x
reserved for functions PRMS AWS Lambda Perfor (100 rent req)
Temory (MB) nfo
= Ul provides “slider bar” —
to set function 5 —— _ F 27500 - c4.2xlarge client
memory allocation = s I [£ : ;
min T 22500 ¢ c4.8xlarge client
= Resource capacity (CPU, Description 3 § 17500
disk, network) coupled to § 12500
slider bar: Performance 3 7500
“every doubling of memory, 2 20
doubles CPU...” FCEIECEFELSLESETTESTEES
= But how much memory do model services require? Memory Reservation Size (MB)
January 16, 2019 ;I:SS?B;App‘IiedI:}istribut:d(':‘onwlputing[‘Wint‘er2019]) . | 60 ‘ January 16, 2019 Iﬁzifi;kpp_liedI?islﬁbu(?:cﬁf‘r;z:;ing[_Wint_erZUlQ]) . | 70 |
ool o rechnology, y acoma , University of acoma

CLOUD NATIVE APPLICATIONS:

2
HOW MUCH FOR 1,000,000 CALLS? EVOLVING BEST PRACTICES

B)
1,000,000 PRMS Model Runs - AWS Lambda Coupling between classes/modules

$140.00 8.00 = Degree dependence between software modules
$120.00 7.00 = Measure of how closely connected two modules are
$10000 GM,E = Cohesion between classes/modules
2 ssam0 5°°§ = Strength of relationships between methods and data
.5 $50.66 ~Deployment Cost ($) “°°'§ = How unified is the purpose or concepts of groupings
$ \ ~Runtime (hours) aooé = Functional cohesion

e
/
N
8

— \\ = Object-Oriented Software Best Practice:
Minimize Coupling, Maximize Coheslon

g

0 0.00
128 384 640 896 1152 1408 1664 1920 2176 2432 2688 2944 . P
Memory Reservation Size (MB) = Shown to correlate with software quality:

maintainability, reusability, extensibility, understandability

January 16, 2019 TCsS558: Applied Distributed Computing [_Wilmher 2.019])

School of Technology, Uni

TCSS558: Applied Distributed Computing [Winter 2019]
LRy 28, 2 Seoolof Ensineera endTechnoloayiUniversty q Tacoma "

7
Tacoma | |

Slides by Wes J. Lloyd L4.12

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

SERVICE COMPOSITION

= How should application code be composed for
deployment to FaaS platforms?

e ’ 4
g Monolithic g
(I]a) oo = . —
z
5 . 83
: i | -

4 © .
Performance

APl Gateway

®) H

e grained | Remote
services Client (@) Switchboard

= Best practice: decompose into many microservices
= Platform limits: code + libraries ~250MB

= How does Faa$S function composition impact
performance and cost of native cloud applications?

APPLICATION FLOW CONTROL

s e
o —® =@
Remote APl Q REmote APl cnntml:l\\
Client Gateway, Client Gateway Q

(a) N .
Microservices (€ Microservices

/e Microservices

AWS Step Function Remote
Client Folling

Remote
Client

Message
Queue

(o) Microservices @

TCS5558: Applied Distributed Computing [Winter 2019]

January 16, 2019 School of Technology, ington - Tacoma | ™ |

INFRASTRUCTURE FREEZE/THAW CYCLE

* Unused infrastructure is deprecated &
* But after how long? ?
¢ Infrastructure: VMs, “containers” A
* Provider-COLD / VM-COLD Performance
* “Container” images - built/transferred to VMs
¢ Container-COLD
¢ Image cached on VM
¢ Container-WARM
e “Container” running on VM

FREEZE-THAW CYCLE C/
7 A

Image from: Denver7 — The Denver Channel News.

SUMMARY OF FAAS CHALLENGES

mVendor architectural lock-in - how to migrate?

= Pricing obfuscation - is it cost effective?

= Memory reservation - how much to reserve?
mService composition - how to compose software?
= App flow control - implications of implementation?
= Infrastructure freeze/thaw cycle - how to avoid?

= Platform constraints - memory, runtime, codesize

January 16, 2019 TCSS58: Applied Distributed Computing [Winter 2019] | N |

School of Technology, i Tacoma

RESEARCH DIRECTIONS

TCSS558: Applied Distributed Computing [Winter 2019]

(SR o 2 School of Engineering and Technology, University of Washington -

SERVERLESS COMPUTING

= *Faa$ Inspector Project* -muiu Shrutl (microsory)
https://github.com/wlloyduw/faas_inspector
= *Service compaosition* - Baojia Zhang
= Performance and cost implications of microservice
disaggregation vs. composition

= FaaS Performance Simulation and Modeling - Lan Ly
= Freeze/Thaw Lifecycle Mitigation - Minh Vu
= Cloud vs Edge vs Device - Harrison Ross
= Unique applications of FaaS:
= Computer Vision Neural Networks - Vliad Kaganyuk (t-moblle)

= Gaming, Bioinformatics, others...
= Faa$S Application Migration - Baojia Zhang

Slides by Wes J. Lloyd

L4.13

TCSS 558: Applied Distributed Computing January 16, 2019
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

INFRASTRUCTURE-AS-A-SERVICE

CONTAINERIZATION
CLOUD RESEARCH
= Application system containers - Docker = Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)-
= Container orchestration framework(s) - Kubernetes, Docker = Workflow scheduling - Zelun “JIm” Jlang
Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

= Container checkpointing - Pai Zhang
" “Container-as-a-Service® - “Serverless” alternative to = eScience Institute (UW Seattle)
container orchestration frameworks, looking for student to S o T o ST O o
conduct MSCSS project to explore this new technology (AWS B (e HEEHE) = ST s
Fargate, Azure Container Instances, Google...) * Tsunami Modeling (on AWS GPU instances) - Shawn Qin

= T-Mobile Container Platform Study- Garrett Lahmann = Cloud vs. Edge for mobile computing workloads - Harrison Ross
= Analyzing the gap between resource reservation and u Int'elllgent deployment of bioinformatics workflows on the cloud
utilization on container platforms to improve performance and cost
= Performance benchmarking Radhika Sridhar, Saranya Ravishankar
= Workflow Containerization: Resource profiling of Docker = Resource utilization profiling Radhika Sridhar
containers - Huazeng Deng

= Performance Modeling, Machine Learning
= https://github.com/wlloyduw/ContainerProfiler

= Project extensions: integrate with Prometheus, Grafana = Infrastructure management improvements
January 16, 2019 TCS5558: Applied Distributed Computing [Winter 2019] N = Publlc cloud resource contentlon and avoldance -
7% School of Engineeri rechnology, University i Tacoma

Edward Han, Jugal Gandhl

| 9219VS
VIRTUALIZATION / UNIKERNELS REVERSE ENGINEERING
= Lightweight alternative to containers and VMs = Clouds abstract infrastructure implementation from end
= Custom Cloud Operating System users
= No/one process, multiple threads, run one program = Deslign goal of distributed systems - transparency
= Launch separately atop of hypervisor (XEN/KVM) = Users access abstract infrastructure via software services
= Reduce overhead, duplication of heavy weight 0S = As-a-service: laaS, Paa$, Saa$, FaaS, DBaa$, Caa$, cache
services, storage, NoSQL-databases
= Performance comparison to containers, virtual machines = How do we best leverage abstract infrastructure?
= Web application (services) and native Java application = What performance and cost implications result from
comparison (OSv) - Devin Durham ignoring abstraction?
= Comparison study: unikernels vs. containers vs. VMs = What “value” does the service really provide? Is it worth it?
= *(NEW!)* Micro VMs: AWS Firecracker = What can we infer about abstract infrastructure that can
https://github.com/firecracker-microvm/firecracker help the users of cloud services? (cloud consumers)
| January 16,2019 |;crs‘22|5:;Apglied qis(ributeiﬁ?‘r;z;‘jng[_Wim_e,vzolsl) o | N ‘ January 16, 2019 Iﬁiilsif Applied l?istribut_?:cf‘:r:ﬁ::nglI[EWilmherzlch]) o | - |

CLOUD FEDERATION / ENERGY

= Cloud federation and resource abstraction

= How can we dynamically harness resources from diverse
clouds to enable cost savings and high availability
improvements? (SERVERLESS FAAS / IAAS)

= Containers are a key enabling technology for platform w
independence DISTRIBUTED S STEMS

Bioinformatics applications
=Support green computing goals: ARCHITECTURES

= Opportunistic workload consolidation and migration to
the most sustainable, economical, and energy efficient
resources, T-Moblle

Slides by Wes J. Lloyd L4.14

TCSS 558: Applied Distributed Computing

[Winter 2019] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architectural change may impact:
= Availability

= Accessibility

= Responsiveness

= Scalability

= Openness

= Distribution transparency

ESupporting resource sharing

= Other factors...

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of

chnology, y Tacoma

January 16, 2019

MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2019]

(SRR T 200 School of Engineering and Technology, University of Washington -

MIDDLEWARE: WRAPPERS

= Wrappers (adapters)
= Special “frontend” components that provide interfaces to client
= Interface wrappers transform client requests to “implementation” at
the component-level
= Provide modern services interfaces for legacy code/systems
= Enable meeting all preconditions for legacy code to operate
= Parameterization of functions, configuration of environment
= Contributes towards system openness

= Example: Amazon S3
= Client uses REST interface to GET/PUT/DELETE/POST data

= S3 adapts and hands off REST requests to system for
fulfillment

October 12, 2017 1587

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineeri chnology, University i Tacoma

MIDDLEWARE: WRAPPERS - 2

Wrapper
= [nter-application communication

= Application provides unique interface for
every application
= Scalability suffers
= N applications > O(N2) wrappers

= Broker
= Provide a common intermediary
= Broker knows how to communicate with
every application
= Applications only know how to communicate Broker

with the broker O/ \O

October 12, 2017

TCS5558: Applied Distributed Computing [Winter 2019]
School of Engineeri Technology, University of Washi Tacoma

MIDDLEWARE: INTERCEPTORS

= Interceptor
= Software construct, breaks flow of control, allows other
application code to be executed

= Enables remote procedure calls (RPC), remote method
invocation (RMI)

= Object A can call a method belonging to object B on a
different machine than A.

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of

1589
chnology, y Tacoma

MIDDLEWARE INTERCEPTION - METHOD

= Local interface matching Object B is provided to Object A
= Object A calls method in this interface

= A’s call is transformed into a “generic object invocation”
by the middleware

= The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

= Request-level interceptor automatically routes all calls to
object replicas

TCS5558: Applied Distributed Computing [Winter 2019]

(i, 2 Schoolof echnoloayUniversityof Tacoma

Slides by Wes J. Lloyd

L4.15

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 16, 2019

MODIFIABLE MIDDLEWARE

= |t should be possible to modify middleware without loss of
availability
= Software components can be replaced at runtime
= Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration of components
= Dynamic configuration requires late binding
= Components can be changed at runtime

= Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a mlcroservices archltecture (e.g. AWS Lambda) support
modifiability at runtime ?

591

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of

chnology, y Tacoma

MIDDLEWARE: INTERCEPTORS - 2

Client application
Intercepted call
Application stub
Request-level intercaptor g
v
J l v
send(B, “doit”, val)
Local 0§
¥ ToobjectB
S, P TCSS558: Applied Distibuted Computing [Winter 2019] oo
Sehoalor Ty, T

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2019]

SENITER 1 20D School of Engineering and Technology, University of Washington -

EXTRA SLIDES

FEEDBACK - 9/28

= What is the difference between extensibility and scalability?
= Extensibility - ability for a system implementation to be extended
with additional functionality

= Scalability - ability for a distributed system to scale (up or down) in
response to client demand

= What is the loss of availability in a distributed system?
= Availability refers to “uptime”
= How many 9s
= (1 - (down time/ total time)) * 100%

= Transparency: term is confusing
= Generally means “exposing everything”, obfuscation is better

= Distribution transparency means the implementation of the
distribution cannot be seen

s

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of

chnology, y Tacoma

FEEDBACK - 2

= What do we mean by replication transparency?
= Resources are automatically replicated (by the
middleware/framework)
=That fact that the distributed system has replica nodes is
unbeknownst to the users

= How does replication improve system performance?
= By replicating nodes, system load is “distributed” across
replicas
= Distributed reads - many concurrent users can read
= Distributed writes - when replicating data, requires
synchronization of copies

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019] B | Lo |
y racoma

School of

Slides by Wes J. Lloyd

L4.16

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,
UW-Tacoma

January 16, 2019

RESEARCH DIRECTIONS

= Serverless Computing: FaaS, CaaS, DBaaS
= Containerization, Container Platforms
= |nfrastructure-as-a-Service (laaS) Cloud

= Resource profiling, Measurement, Cloud System Data
Analytics

= Application performance and cost modeling

= Autonomic infrastructure management to optimize cost and
performance

= Cloud Federation, Workload Consolidation, Green Computing
= Virtualization / Unikernel operating systems

= Domalns:
= Bjoinformatics (genomic sequencing)
= Environmental modeling (USDA, USGS modeling applications)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of

Technology, y Tacoma

Slides by Wes J. Lloyd

IAAS CLOUD - 2

= [nfrastructure-as-a-Service Cloud Application
Deployment

= Performance modeling

Models to predict performance of alternate
deployment schemes

= Cost modeling

Models to predict costs of alternative deployment
schemes

®» What is the best infrastructure for my workload?
®» What is the cost of deployment?
® Should | migrate to containers, serverless
computing?
= Reverse engineering of laaS, PaaS, SaaS
®» What service level is best for my workload?

L4.17

