
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 0 Posted
 Feedback from 1/14

 Types of distributed systems
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Chapter 2: Distributed System Architectures
 Architectural styles: Layered, Object-based,

Resource-centered architectures, Event-based

 Research directions
 Introduction to Serverless Computing
 Containerization
 Infrastructure-as-a-Service

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES

 What is the dif ference between RPC and RMI?
 RPC is remote procedure call, originally for modular (non-object

oriented) languages.
 Idea is to remotely invoke C functions on remote servers
 Parameters to make a local procedure call are “packaged up”

and sent over the network

 RMI is remote method invocation in Java
 Servers host object instances
 Java applications can invoke methods of “remote” objects over

the network

 BOTH provide abstraction as to where the actually code runs
 BOTH require intimate knowledge of the precise function and

object interfaces of remote resources

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

FEEDBACK – 1/14

 CORBA – Common object request broker architecture

 Provides a cross-language equivalent to RPC/RMI

 Languages: Ada, C, C++, C++11, COBOL, Java, Lisp, PL/I,
Object Pascal, Python, Ruby and Smalltalk

 RPC/RMI/CORBA
 Generally considered legacy technologies

 Serialization: RPC/RMI/CORBA technologies transfer data
between nodes over the network.

 Network connections are byte streams

 Serialization is the “flattening” of classes and data
structures (arrays) for transport over a byte stream

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK - 2

Support for sharing resources (accessibility)

Distribution transparency

Openness (avoiding vendor lock-in)

Scalability

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

DESIGN GOALS
OF DISTRIBUTED SYSTEMS

HPC, Cluster, Grid, Cloud

Distributed information systems

Pervasive Systems

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

TYPES OF DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.2

TYPES OF
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L4.7

 Concept review:

 PaaS systems often implemented atop of IaaS

 Distributed systems use transactions

 Distributed transactions should follow ACID principles
 A – Atomic: transaction occurs indivisibly

 C – Consistent: replicas are consistent until all updated

 I – Isolated: transactions don’t interfere with each other

 D – Durable: change is permanent committed

 Nested transaction - building transactions as set of sub-
transactions

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

FEEDBACK FROM 1/14

 TP Monitor – Transaction Processing Monitoring
 Facilitates implementation of the transaction across the nodes

of the distributed system

 TP monitor may be centralized component

 Methods for node-to-node communication
 RPC/RMI – tight coupling to program code

 REST services

 MOM – message oriented middleware

 Publish/subscribe queues

 Supports message delivery for asynchronous (off-line)
communication

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

REVIEW - 2

 Fi le transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily offline
later can receive messages

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

 Synchronous node communication

 Channel remains open for duration of transaction

 Asynchronous node communication

Message is sent to initiate work, channel closed

 Result is obtained via polling, or message exchange from
a message queue or storage facility (database or key-
value store)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

COMMUNICATION

TYPES OF
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L4.12

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.3

 Ubiquitous computing systems

 Emphasis on integrating many heterogeneous devices to
build cohesive collaborative systems

 Example: IoT systems that provide new levels of
intelligence by integrating multiple sources of data to
control/manage environment (e.g. heating, cooling)

 Mobile systems

 Emphasis on smartphones, tables, vehicles

 Devices are physically mobile

 Requires ad hoc networks to inter-node communication

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

PERVASIVE SYSTEMS

 Sensor networks

 10 – 100 – 1000s of small nodes with varying
memory/compute/communication capacity

 Different nodes collect different types of data

 Issues regarding how to transport data to the cloud

 Is all of the data needed?

 Can aggregate data on the device an send preprocessed
results upstream

 Sensor network rely on unreliable adhoc networks
 Node battery failure may cause network reconfiguration

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

PERVASIVE SYSTEMS - 2

 Centralized:

 Decentralized:

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

SENSOR NETWORKS - 3

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L4.18

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.4

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 Object-oriented and component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partitioned or replicated

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

DISTRIBUTED SYSTEM ARCHITECTURES:
CENTRALIZED VS. DECENTRALIZED

hybrid

 Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running
 Interfaces must remain the same
 Preserving interfaces across versions enables

interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

ARCHITECTURAL BUILDING BLOCKS

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

ARCHITECTURAL STYLES

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

ARCHITECTURAL STYLES

 Consider how the architecture may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.5

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Example: pure-layered organization

 Each layer offers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers
to reuse low level implementation

 Abstractions make it easier reuse existing layers
that already implement communication basics

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

COMMUNICATION-PROTOCOL STACKS

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

HOW A NETWORK PACKET IS BUILT

 Added in transport layer

Ports

Pckt seq#

Ackn #

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

TCP HEADER

 Added by network layer

 Source / Destination IP Address (no port)

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

IP HEADER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.6

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?
 TCP does not dictate format or type/ordering of messages

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, SMTP, DNS, SNMP, TFTP, HTTP,
DHCP, NTP, POP, RTP, Telnet, RPC, LDAP

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

COMMON APPLICATION LAYER
PROTOCOLS

 Distributed application example: Internet search engine

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.7

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

OBJECT-BASED
ARCHITECTURES - 2

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

DISTRIBUTED OBJECTS - 2

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

SERVICE ORIENTED ARCHITECTURE - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.8

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

ARCHITECTURAL STYLES

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate

 Common
architecture

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

EXAMPLE: AMAZON S3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.9

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

REST - 2

L4.50

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

L4.51

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.53

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.10

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

PUBLISH SUBSCRIBE ARCHITECTURES - 4

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.57

 Research group meetings

 Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312

 Bioinformatics – Wednesday 11:30-1:00pm, TLB 307C

 Goals:
 Assemble ongoing agile research teams which maximize

opportunities for student collaboration and sharing to lower
the bar for student engagement in research

 Build on past successes through iterative student
contributions

Maximize student learning and research outcomes

 Provide students a practicum in cloud computing research to
increase competitiveness in industry and graduate school

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

58

THIS WINTER

Serverless Computing

59

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

Pay only for
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.11

SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems,
that are challenging to deliver, are
provided automatically

…they are built into the platform

Refers to the avoidance of managing servers

Serverless can pertain to a variety of cloud
services

Evolving technology
 Function-as-a-Service (FaaS)

 Database-as-a-Service (DBaaS)
 Amazon Aurora Serverless DB– general availability Aug 9

 Container-as-a-Service (CaaS)
 Google Kubernetes Engine serverless add-on

 Others…

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

62

SERVERLESS COMPUTING

FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

SERVERLESS COMPUTING

Research Challenges

64

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires
external services/components

 Increased dependencies increased hosting costs

Client

Images credit: aws.amazon.com

 VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing: non-intuitive pricing policies

 FREE TIER:
first 1,000,000 function calls/month FREE

first 400,000 GB-sec/month FREE

 Afterwards: obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

$0.00001667 GB /second
January 16, 2019

PRICING OBFUSCATION

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

66

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.12

WEBSERVICE HOSTING EXAMPLE

 ON AWS Lambda
 Each service call: 100% of 1 CPU-core

100% of 4GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM
 Hosting cost: $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload
cost on AWS Lambda?
January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
67

PRICING OBFUSCATION

Workload: 10,368,000 GB-sec
FREE: - 400,000 GB-sec
Charge: 9,968,600 GB-sec
Memory: $166.17
 Invocations: 5,184,000 calls
FREE: - 1,000,000 calls
Charge: 4,184,000 calls
Calls: $.84
 Total: $167.01
BREAK-EVEN POINT: ~4,319,136 GB-sec-month

~12.5 days 2 concurrent clients @ 2GB

Worst-case scenario = ~2.32x !

AWS EC2: $72.00
AWS Lambda: $167.01

Break Even: 4,319,136 GB-sec

Two threads
@2GB-ea: ~12.5 days

MEMORY RESERVATION
QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s
memory allocation

 Resource capacity (CPU,
disk, network) coupled to
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

69

 Order of magnitude performance gain ~ 10x

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

70

LAMBDA: PERFORMANCE VS MEMORY

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

71

HOW MUCH FOR 1,000,000 CALLS?

 Coupling between classes/modules

 Degree dependence between software modules

 Measure of how closely connected two modules are

 Cohesion between classes/modules

 Strength of relationships between methods and data

 How unified is the purpose or concepts of groupings

 Functional cohesion

 Object-Oriented Software Best Practice:

Minimize Coupling, Maximize Cohesion

 Shown to correlate with software quality:
maintainability, reusability, extensibility, understandability

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

72

CLOUD NATIVE APPLICATIONS:
EVOLVING BEST PRACTICES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.13

SERVICE COMPOSITION

How should application code be composed for
deployment to FaaS platforms?

 Best practice: decompose into many microservices

 Platform limits: code + libraries ~250MB

How does FaaS function composition impact
performance and cost of native cloud applications?

Performance

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

74

APPLICATION FLOW CONTROL

INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance

SUMMARY OF FAAS CHALLENGES

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

App flow control – implications of implementation?

 Infrastructure freeze/thaw cycle – how to avoid?

Platform constraints – memory, runtime, codesize

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

76

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.77

SERVERLESS COMPUTING

 FaaS Inspector Project–Mult i .Students , S h ru t i R amesh (M icrosof t)

https://github.com/wlloyduw/faas_inspector

 Service composition – Baojia Zhang

 Performance and cost implications of microservice
disaggregation vs. composition

 FaaS Performance Simulation and Modeling – Lan Ly

 Freeze/Thaw Lifecycle Mitigation – Minh Vu

 Cloud vs Edge vs Device – Harrison Ross

 Unique applications of FaaS:
 Computer Vision Neural Networks – Vlad Kaganyuk (t-mobile)

 Gaming, Bioinformatics, others…
 FaaS Application Migration – Baojia Zhang

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.14

 Application system containers - Docker
 Container orchestration framework(s) – Kubernetes, Docker

Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

 Container-as-a-Service – “Serverless” alternative to
container orchestration frameworks, looking for student to
conduct MSCSS project to explore this new technology (AWS
Fargate, Azure Container Instances, Google…)

 T-Mobile Container Platform Study– Garrett Lahmann
 Analyzing the gap between resource reservation and

utilization on container platforms

 Workflow Containerization: Resource profiling of Docker
containers - Huazeng Deng
 https://github.com/wlloyduw/ContainerProfiler
 Project extensions: integrate with Prometheus, Grafana

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

79

CONTAINERIZATION
INFRASTRUCTURE-AS-A-SERVICE
CLOUD RESEARCH

 Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)–

 Workflow scheduling - Zelun “Jim” Jiang

 Container checkpointing - Pai Zhang

 eScience Institute (UW Seattle)

 Rosetta (protein folding) – Srihari Vignesh

 Tsunami Modeling (on AWS GPU instances) – Shawn Qin

 Cloud vs. Edge for mobile computing workloads – Harrison Ross

 Intelligent deployment of bioinformatics workflows on the cloud
to improve performance and cost

 Performance benchmarking Radhika Sridhar, Saranya Ravishankar

 Resource utilization profiling Radhika Sridhar

 Performance Modeling, Machine Learning

 Infrastructure management improvements

 Public cloud resource contention and avoidance –
Edward Han, Jugal Gandhi

 Lightweight alternative to containers and VMs

 Custom Cloud Operating System

 No/one process, multiple threads, run one program

 Launch separately atop of hypervisor (XEN/KVM)

 Reduce overhead, duplication of heavy weight OS

 Performance comparison to containers, virtual machines

Web application (services) and native Java application
comparison (OSv) - Devin Durham

 Comparison study: unikernels vs. containers vs. VMs

 (NEW!) Micro VMs: AWS Firecracker
https://github.com/firecracker-microvm/firecracker

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

81

VIRTUALIZATION / UNIKERNELS

 Clouds abstract infrastructure implementation from end
users

 Design goal of distributed systems – transparency

 Users access abstract infrastructure via software services

 As-a-service: IaaS, PaaS, SaaS, FaaS, DBaaS, CaaS, cache
services, storage, NoSQL-databases

 How do we best leverage abstract infrastructure?

 What performance and cost implications result from
ignoring abstraction?

 What “value” does the service really provide? Is it worth it?

 What can we infer about abstract infrastructure that can
help the users of cloud services? (cloud consumers)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

82

REVERSE ENGINEERING

CLOUD FEDERATION / ENERGY

Cloud federation and resource abstraction

 How can we dynamically harness resources from diverse
clouds to enable cost savings and high availability
improvements? (SERVERLESS FAAS / IAAS)

 Containers are a key enabling technology for platform
independence
 Bioinformatics applications

Support green computing goals:
 Opportunistic workload consolidation and migration to

the most sustainable, economical, and energy efficient
resources, T-Mobile

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.84

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.15

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.85

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

MIDDLEWARE
ORGANIZATION

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.86

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for
fulfillment

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.87

MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.88

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.89

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.90

MIDDLEWARE INTERCEPTION - METHOD

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.16

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.91

MODIFIABLE MIDDLEWARE

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.92

MIDDLEWARE: INTERCEPTORS - 2

QUESTIONS

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L4.93

EXTRA SLIDES

94

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.95

FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L4.96

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 16, 2019

Slides by Wes J. Lloyd L4.17

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profiling, Measurement, Cloud System Data

Analytics
 Application performance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

97

RESEARCH DIRECTIONS IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

