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APPLIED DISTRIBUTED COMPUTING

 Homework 0 Posted
 Feedback from 1/14

 Types of distributed systems
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Chapter 2: Distributed System Architectures
 Architectural styles: Layered, Object-based, 

Resource-centered architectures, Event-based 

 Research directions
 Introduction to Serverless Computing
 Containerization
 Infrastructure-as-a-Service
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OBJECTIVES

 What is  the dif ference between RPC and RMI?
 RPC is remote procedure call, originally for modular (non-object 

oriented) languages. 
 Idea is to remotely invoke C functions on remote servers
 Parameters to make a local procedure call are “packaged up” 

and sent over the network

 RMI is remote method invocation in Java
 Servers host object instances
 Java applications can invoke methods of “remote” objects over 

the network

 BOTH provide abstraction as to where the actually code runs
 BOTH require intimate knowledge of the precise function and 

object interfaces of remote resources
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FEEDBACK – 1/14

 CORBA – Common object request broker architecture

 Provides a cross-language equivalent to RPC/RMI

 Languages:  Ada, C, C++, C++11, COBOL, Java, Lisp, PL/I, 
Object Pascal, Python, Ruby and Smalltalk

 RPC/RMI/CORBA
 Generally considered legacy technologies

 Serialization: RPC/RMI/CORBA technologies transfer data 
between nodes over the network.

 Network connections are byte streams

 Serialization is the “flattening” of classes and data 
structures (arrays) for transport over a byte stream
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FEEDBACK - 2

Support for sharing resources (accessibility)

Distribution transparency

Openness (avoiding vendor lock-in)

Scalability
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DESIGN GOALS 
OF DISTRIBUTED SYSTEMS

HPC, Cluster, Grid, Cloud

Distributed information systems

Pervasive Systems
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TYPES OF DISTRIBUTED SYSTEMS
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TYPES OF 
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L4.7

 Concept review:

 PaaS systems often implemented atop of IaaS

 Distributed systems use transactions

 Distributed transactions should follow ACID principles
 A – Atomic: transaction occurs indivisibly

 C – Consistent: replicas are consistent until all updated

 I – Isolated: transactions don’t interfere with each other

 D – Durable: change is permanent committed

 Nested transaction - building transactions as set of sub-
transactions
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FEEDBACK FROM 1/14

 TP Monitor – Transaction Processing Monitoring
 Facilitates implementation of the transaction across the nodes 

of the distributed system

 TP monitor may be centralized component

 Methods for node-to-node communication
 RPC/RMI – tight coupling to program code

 REST services

 MOM – message oriented middleware

 Publish/subscribe queues

 Supports message delivery for asynchronous (off-line) 
communication
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REVIEW - 2

 Fi le transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B 
data.  App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily offline 
later can receive messages
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CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

 Synchronous node communication

 Channel remains open for duration of transaction

 Asynchronous node communication

Message is sent to initiate work, channel closed

 Result is obtained via polling, or message exchange from
a message queue or storage facility (database or key-
value store)
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COMMUNICATION

TYPES OF 
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS
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 Ubiquitous computing systems

 Emphasis on integrating many heterogeneous devices to 
build cohesive collaborative systems

 Example: IoT systems that provide new levels of 
intelligence by integrating multiple sources of data to 
control/manage environment (e.g. heating, cooling)

 Mobile systems

 Emphasis on smartphones, tables, vehicles

 Devices are physically mobile

 Requires ad hoc networks to inter-node communication
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PERVASIVE SYSTEMS

 Sensor networks

 10 – 100 – 1000s of small nodes with varying 
memory/compute/communication capacity

 Different nodes collect different types of data

 Issues regarding how to transport data to the cloud

 Is all of the data needed?

 Can aggregate data on the device an send preprocessed 
results upstream

 Sensor network rely on unreliable adhoc networks
 Node battery failure may cause network reconfiguration
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PERVASIVE SYSTEMS - 2

 Centralized:

 Decentralized:
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CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage  ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic
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WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks 
middleware?

 Sensor networks may consist of different types of nodes 
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?
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SENSOR NETWORKS - 3

CH. 2: DISTRIBUTED 
SYSTEMS

ARCHITECTURES
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 Provides logical organization of a distributed system into 
software components

 Logical: How system is perceived, modeled 
 Object-oriented and component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated? 

 Provides “realization” of the architecture
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DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partitioned or replicated
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DISTRIBUTED SYSTEM ARCHITECTURES: 
CENTRALIZED VS. DECENTRALIZED

hybrid

 Component: modular unit with well-defined, required, and 
provided interfaces that is replaceable within its 
environment

 Components can be replaced while system is running
 Interfaces must remain the same
 Preserving interfaces across versions enables 

interoperability

 Connector: enables flow of control and data between 
components

 Distributed system architectures are conceived using 
components and connectors
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ARCHITECTURAL BUILDING BLOCKS

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Consider how the architecture may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 
TO CONSIDER
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 Components organized in layers

 Component at layer Lj downcalls to lower-level 
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls
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LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization
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LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Example: pure-layered organization

 Each layer offers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers
to reuse low level implementation

 Abstractions make it easier reuse existing layers
that already implement communication basics
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COMMUNICATION-PROTOCOL STACKS
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HOW A NETWORK PACKET IS BUILT

 Added in transport layer

Ports 

Pckt seq# 

Ackn # 
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TCP HEADER

 Added by network layer

 Source / Destination IP Address (no port)

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes   
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IP HEADER
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 TCP provides easy to use API 

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic 

 E.g. language agnostic

 What are we going to say?
 TCP does not dictate format or type/ordering of messages
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TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, SMTP, DNS, SNMP, TFTP, HTTP, 
DHCP, NTP, POP, RTP, Telnet, RPC, LDAP
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COMMON APPLICATION LAYER 
PROTOCOLS

 Distributed application example: Internet search engine
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APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level
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APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic
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APPLICATION LAYERING

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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 Enables loose and flexible component organization 

 Objects == components

 Enable distributed node interaction via function calls over the 
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over 

network, transfer results back
 Language independent 
 In contrast to web services, RPC calls originally were more 

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything
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OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method 
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats
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OBJECT-BASED 
ARCHITECTURES - 2
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DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not 
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node 
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference
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DISTRIBUTED OBJECTS - 2

 Services provide always-on encapsulated functions over 
the internet/web 

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating 
systems

 Include (wrap) legacy code

 Many software components may be involved in the 
implementation

 Application server(s), relational database(s), key-value 
stores, in memory-cache, queue/messaging services
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SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs. 
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the 
system

 An error calling a service (e.g. mismatching the interface) 
generally does not result in a system crash
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SERVICE ORIENTED ARCHITECTURE - 2
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 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols 
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate 

 Common 
architecture
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RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution
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REST SERVICES

 An ASCII-based request/reply protocol for transferring 
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body
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HYPERTEXT TRANSPORT PROTOCOL (HTTP)
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REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing 
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations 
(SDK for Python)

 SDKs for other languages
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 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined 
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text, 
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/
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REST - 2

L4.50

// WSDL Service Definition 
<?xml version="1.0" encoding="UTF-8"?> 
<definitions  name ="DayOfWeek"  
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.xmlsoap.org/wsdl/">  
<message name="DayOfWeekInput"> 
<part name="date" type="xsd:date"/> 

</message> 
<message name="DayOfWeekResponse"> 
<part name="dayOfWeek" type="xsd:string"/> 

</message> 
<portType name="DayOfWeekPortType"> 
<operation name="GetDayOfWeek"> 
<input message="tns:DayOfWeekInput"/> 
<output message="tns:DayOfWeekResponse"/> 

</operation> 
</portType> 
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType"> 
<soap:binding style="document"  
transport="http://schemas.xmlsoap.org/soap/http"/> 

<operation name="GetDayOfWeek"> 
<soap:operation soapAction="getdayofweek"/> 
<input> 
<soap:body use="encoded"  
namespace="http://www.roguewave.com/soapworx/examples"  
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</input> 
<output> 
<soap:body use="encoded"  
namespace="http://www.roguewave.com/soapworx/examples"   
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</output> 
</operation> 

</binding> 
<service name="DayOfWeekService" > 
<documentation> 
Returns the day-of-week name for a given date 

</documentation> 
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding"> 
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/> 

</port> 
</service> 

</definitions> 
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// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES

 Enables separation between processing and coordination

 Types of coordination:
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PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled 
(dependent on name)

Direct
Explicit synchronous 
service call

Mailbox
Asynchronous by 
name (address)

Referentially 
decoupled
(name not required)

Event-based
Event notices 
published to shared 
bus, w/o addressing

Shared data space
Processes write tuples 
to a shared data 
space

Not publish and subscribe

 Event-based coordination

 Processes do not know 
about each other explicitly

 Processes:

Publish: a notification 
describing an event

Subscribe: to receive 
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)
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PUBLISH-SUBSCRIBE ARCHITECTURES - 2
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 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples 

(subscribe)

 When tuples are added, 
subscribers are notified of 
matches

 Key characteristic: 
Processes have no explicit 
reference to each other
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PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil  
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of  a publish-and-
subscribe system?
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PUBLISH SUBSCRIBE ARCHITECTURES - 4

RESEARCH DIRECTIONS
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 Research group meetings

 Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312

 Bioinformatics – Wednesday 11:30-1:00pm, TLB 307C

 Goals: 
 Assemble ongoing agile research teams which maximize 

opportunities for student collaboration and sharing to lower 
the bar for student engagement in research

 Build on past successes through iterative student 
contributions

Maximize student learning and research outcomes 

 Provide students a practicum in cloud computing research to 
increase competitiveness in industry and graduate school 
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Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

Pay only for 
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING
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SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems, 
that are challenging to deliver, are 
provided automatically

…they are built into the platform

Refers to the avoidance of managing servers

Serverless can pertain to a variety of cloud 
services

Evolving technology
 Function-as-a-Service (FaaS)

 Database-as-a-Service (DBaaS)
 Amazon Aurora Serverless DB– general availability Aug 9

 Container-as-a-Service (CaaS)
 Google Kubernetes Engine serverless add-on

 Others…
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SERVERLESS COMPUTING

FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

SERVERLESS COMPUTING

Research Challenges

64

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires 
external services/components

 Increased dependencies  increased hosting costs

Client

Images credit: aws.amazon.com

 VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing: non-intuitive pricing policies

 FREE TIER:
first 1,000,000 function calls/month  FREE

first 400,000 GB-sec/month  FREE

 Afterwards:    obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

$0.00001667 GB /second
January 16, 2019
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WEBSERVICE HOSTING EXAMPLE

 ON AWS Lambda
 Each service call: 100% of 1 CPU-core

100% of 4GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM
 Hosting cost:   $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload 
cost on AWS Lambda?
January 16, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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PRICING OBFUSCATION

Workload: 10,368,000 GB-sec
FREE: - 400,000 GB-sec
Charge: 9,968,600 GB-sec
Memory: $166.17
 Invocations: 5,184,000 calls
FREE: - 1,000,000 calls
Charge: 4,184,000 calls
Calls: $.84
 Total: $167.01
BREAK-EVEN POINT:   ~4,319,136 GB-sec-month

~12.5 days  2 concurrent clients @ 2GB

Worst-case scenario = ~2.32x !

AWS EC2: $72.00
AWS Lambda: $167.01

Break Even: 4,319,136 GB-sec

Two threads
@2GB-ea: ~12.5 days

MEMORY RESERVATION 
QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s 
memory allocation 

 Resource capacity (CPU,
disk, network) coupled to 
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance
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 Order of magnitude performance gain ~ 10x 
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LAMBDA: PERFORMANCE VS MEMORY
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HOW MUCH FOR 1,000,000 CALLS?

 Coupling between classes/modules

 Degree dependence between software modules

 Measure of how closely connected two modules are

 Cohesion between classes/modules

 Strength of relationships between methods and data 

 How unified is the purpose or concepts of groupings

 Functional cohesion

 Object-Oriented Software Best Practice: 

Minimize Coupling, Maximize Cohesion

 Shown to correlate with software quality: 
maintainability, reusability, extensibility, understandability
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CLOUD NATIVE APPLICATIONS:
EVOLVING BEST PRACTICES
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SERVICE COMPOSITION

How should application code be composed for 
deployment to FaaS platforms? 

 Best practice: decompose into many microservices

 Platform limits: code + libraries  ~250MB 

How does FaaS function composition impact 
performance and cost of native cloud applications?

Performance
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APPLICATION FLOW CONTROL

INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance

SUMMARY OF FAAS CHALLENGES

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

App flow control – implications of implementation?

 Infrastructure freeze/thaw cycle – how to avoid?

Platform constraints – memory, runtime, codesize
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RESEARCH DIRECTIONS
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SERVERLESS COMPUTING

 *FaaS Inspector Project*–Mult i .Students ,  S h ru t i  R amesh ( M icrosof t )

https://github.com/wlloyduw/faas_inspector

 *Service composition* – Baojia Zhang

 Performance and cost implications of microservice 
disaggregation vs. composition

 FaaS Performance Simulation and Modeling – Lan Ly

 Freeze/Thaw Lifecycle Mitigation – Minh Vu

 Cloud vs Edge vs Device – Harrison Ross

 Unique applications of FaaS:
 Computer Vision Neural Networks – Vlad Kaganyuk (t-mobile)

 Gaming, Bioinformatics, others… 
 FaaS Application Migration – Baojia Zhang
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 Application system containers  - Docker
 Container orchestration framework(s) – Kubernetes, Docker 

Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

 *Container-as-a-Service* – “Serverless” alternative to 
container orchestration frameworks, looking for student to 
conduct MSCSS project to explore this new technology (AWS 
Fargate, Azure Container Instances, Google…)

 T-Mobile Container Platform Study– Garrett Lahmann
 Analyzing the gap between resource reservation and 

utilization on container platforms 

 Workflow Containerization: Resource profiling of Docker 
containers - Huazeng Deng
 https://github.com/wlloyduw/ContainerProfiler
 Project extensions: integrate with Prometheus, Grafana
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CONTAINERIZATION
INFRASTRUCTURE-AS-A-SERVICE
CLOUD RESEARCH

 Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)–

 Workflow scheduling - Zelun “Jim” Jiang

 Container checkpointing - Pai Zhang

 eScience Institute (UW Seattle)

 Rosetta (protein folding) – Srihari Vignesh

 Tsunami Modeling (on AWS GPU instances) – Shawn Qin

 Cloud vs.  Edge for mobile computing workloads – Harrison Ross 

 Intelligent deployment of bioinformatics workflows on the cloud 
to improve performance and cost

 Performance benchmarking Radhika Sridhar, Saranya Ravishankar

 Resource utilization profiling Radhika Sridhar

 Performance Modeling, Machine Learning

 Infrastructure management improvements

 Public cloud resource contention and avoidance –
Edward Han, Jugal Gandhi

 Lightweight alternative to containers and VMs

 Custom Cloud Operating System

 No/one process, multiple threads, run one program

 Launch separately atop of hypervisor (XEN/KVM)

 Reduce overhead, duplication of heavy weight OS

 Performance comparison to containers, virtual machines

Web application (services) and native Java application 
comparison (OSv) - Devin Durham

 Comparison study: unikernels vs. containers vs. VMs

 *(NEW!)* Micro VMs: AWS Firecracker 
https://github.com/firecracker-microvm/firecracker
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VIRTUALIZATION / UNIKERNELS

 Clouds abstract infrastructure implementation from end 
users

 Design goal of  distributed systems – transparency

 Users access abstract infrastructure via software services

 As-a-service: IaaS, PaaS, SaaS, FaaS, DBaaS, CaaS, cache 
services, storage, NoSQL-databases

 How do we best leverage abstract infrastructure?

 What performance and cost implications result from 
ignoring abstraction?

 What “value” does the service really provide? Is it worth it?

 What can we infer about abstract infrastructure that can 
help the users of cloud services? (cloud consumers)
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REVERSE ENGINEERING

CLOUD FEDERATION / ENERGY

Cloud federation and resource abstraction

 How can we dynamically harness resources from diverse 
clouds to enable cost savings and high availability 
improvements?  (SERVERLESS FAAS / IAAS)

 Containers are a key enabling technology for platform 
independence 
 Bioinformatics applications 

Support green computing goals:
 Opportunistic workload consolidation and migration to 

the most sustainable, economical, and energy efficient 
resources, T-Mobile

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.84
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 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 
TO CONSIDER

MIDDLEWARE
ORGANIZATION
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 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at 
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for 
fulfillment
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MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate 
with the broker
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MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other 
application code to be executed

 Enables remote procedure calls (RPC), remote method 
invocation (RMI)

 Object A can call a method belonging to object B on a 
different machine than A.
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MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation” 
by the middleware 

 The “generic object invocation” is transformed into a 
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to 
object replicas
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MIDDLEWARE INTERCEPTION - METHOD
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 It should be possible to modify middleware without loss of 
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime 
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support 
modifiability at runtime ?
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MODIFIABLE MIDDLEWARE
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MIDDLEWARE: INTERCEPTORS - 2

QUESTIONS
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EXTRA SLIDES

94

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended 

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in 

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the 

distribution cannot be seen
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FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the 

middleware/framework)
 That fact that the distributed system has replica nodes is 

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across 

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires 

synchronization of copies
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FEEDBACK - 2
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 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profiling, Measurement, Cloud System Data 

Analytics
 Application performance and cost modeling
 Autonomic infrastructure management to optimize cost and 

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)
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RESEARCH DIRECTIONS IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application 
Deployment
Performance modeling
Models to predict performance of alternate 

deployment schemes
Cost modeling
Models to predict costs of alternative deployment 

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?


