
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.1

Distributed Systems:
Types and
Architectures

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Homework 0 Posted
 Feedback from 1/9

 Types of distributed systems
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Research directions
 Serverless Computing
 Containerization
 Infrastructure-as-a-Service
 Others

 Chapter 2: Distributed System Architectures

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES

 Meetings on Tuesdays from 12 to 1:30pm
 THIS TUESDAY: MDS 202
 REST OF QUARTER: MDS 312
 MDS is just south of Cherry Parkes

The CDS group collaborates on research projects spanning
Serverless computing (FaaS), Containerization, Infrastructure-
as-a-Service (IaaS) cloud, virtualization, infrastructure
management, and performance and cost modeling of
application deployments. Our research aims to demystify the
myriad of options to guide software developers, engineers,
scientists, and practitioners to intelligently harness cloud
computing to improve performance and scalability of their
applications, while reducing hosting costs.

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

CLOUD AND DISTRIBUTED SYSTEMS
RESEARCH GROUP

 Please classify your perspective on material covered in today’s
class:

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.32

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.92

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

MATERIAL / PACE

 Definitions:

 Geographic scalability

 Nodes are dispersed over large distances

 Communication less reliable

 Bandwidth constraints

 Higher communication latency

 Synchronous communication may time out, be impractical

 Administrative scalability

 security, configuration, management polices
support/adapt as the system scales

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

FEEDBACK FROM 1/9

 Grid computing

 Cloud computing architecture
 Question?? IaaS, PaaS, SaaS ??

 Is proxy server a kind of “cloud”?
 Proxy server provides layer above lower server layer

 Within the layer, can implement security policies, load
balancing, tracking user session information, routing

 How do hypervisors work (e.g. KVM) ?

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.2

ASIDE:
KERNEL BASED VIRTUAL MACHINES (KVM)

 x86 HW notoriously difficult to virtualize

Extensions added to 64-bit Intel/AMD CPUs

Provides hardware assisted virtualization

New “guest” operating mode

Hardware state switch

Exit reason reporting

 Intel/AMD implementations different

Linux uses vendor specific kernel modules

See KVM paper
January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L3.7

KVM – 2

KVM – 3

KVM provides /dev/kvm device file node:

Linux character device, with operations:
 Create new VM

 Allocate memory to VM

 Read/write virtual CPU registers

 Inject interrupts into vCPUs

 Running vCPUs

VMs run as Linux processes

Scheduled by host Linux OS

Can be pinned to specific cores with “taskset”

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

KVM DIFFERENCES FROM XEN

 KVM requires CPU VMX support
 Virtualization management extensions

 KVM can virtualize any OS without special kernels
 Less invasive

 KVM was originally separate from the Linux kernel,
but then integrated

 Different than XEN because XEN kernel alone is not a
full-fledged OS

 KVM is type 1 hypervisor because the machine boots
Linux which has integrated support for virtualization

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

 Host OS and VMs run atop the hypervisor

 The boot OS is the hypervisor kernel

 Examples: Xen dom0, KVM

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

TYPE 1 HYPERVISOR

 Adds additional layer

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

TYPE 2 HYPERVISOR

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.3

KVM ENHANCEMENTS

 Paravirtualized device drivers
 Virtio: enhanced performance 

I/O instructions run directly on the CPU…

 Guest Symmetric Multiprocessor (SMP) support
 Leverages multiple on-board CPUs
Supported as of Linux 2.6.23

 VM Live Migration

 Linux scheduler integration
Optimize scheduler with knowledge that KVM

processes are virtual machines

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

 Examples of production-level distributed systems

 The concepts of the lectures are so new. What should I
do? Can you suggest any solution?

 ACTIVELY Read textbook chapters covered in class

 <LINK to ACTIVE READING technique>

 Primarily Chapters 1,2,3,4, sections of 6, 7, bits of 8

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

FEEDBACK - 2

Support for sharing resources (accessibility)

Distribution transparency

Openness (avoiding vendor lock-in)

Scalability

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

DESIGN GOALS
OF DISTRIBUTED SYSTEMS

HPC, Cluster, Grid, Cloud

Distributed information systems

Pervasive Systems

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

TYPES OF DISTRIBUTED SYSTEMS

TYPES OF
DISTRIBUTED SYSTEMS:

HPC, CLUSTER, GRID, CLOUD

L3.17

 Super computers
 Huge multiprocessor system which shares RAM

 Technically “not distributed”

 Hardware all in one location

 High performance distributed computing
 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Others

January 14, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD COMPUTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.4

VIRTUALIZATION VIRTUALIZATION

CONTAINERIZATION

Virtualization Containerization

Operating System

Clusters grew from 1,000 servers to 100,000+
based on customer demand for SaaS apps

Economies of scale pushed down costs by 3X to 8X
Purchase, house, operate 100K vs. 1K computers
Traditional datacenters utilization is ~ 10% - 20%

Earn $ offering pay-as-you-go computing at prices
lower than customer’s costs;
Scalable  as many computers as customer needs

January 14, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

HOW WAREHOUSE SCALE COMPUTING
BECAME THE CLOUD

CLOUD COMPUTING STACK

Infrastructure

Platform

Software

CLOUD COMPUTING STACK

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

User manages:
Application Services

SaaS

IaaS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.5

January 14, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

PUBLIC CLOUD EXAMPLE: NETFLIX

Amazon Elastic Compute Cloud (EC2)
 Continuously run 20,000 to 90,000 VM instances

 Across 3 regions

 Host 100s of microservices

 Process over 100,000 requests/second

 Host over 1 billion hours of monthly content

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 Il lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Obfuscated pricing-Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

January 14, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

PUBLIC CLOUD COMPUTING

January 14, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PUBLIC CLOUD COMPUTING

m4.large ec2 virtual machine:
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour, 24 hrs/day,
30 days/month  $72.00/month

on-demand EC2 instance

AWS Lambda Function-as-a-Service (FaaS):
2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3
as 2,592,000 x 1-sec service calls
24 hrs/day, 30 days/month:

$130.14 (8GB = $347.04)

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability.

PaaS services built on highly available IaaS
resources

January 14, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

PAAS SERVICES IMPLEMENTATION

TYPES OF
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L3.30

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.6

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Lead to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing

components
 Distributed transaction – Client wraps requests together, sends as

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Different systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

DISTRIBUTED INFORMATION SYSTEMS

 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

 Atomic: The transaction occurs indivisibly

 Consistent: The transaction does not violate system invariants
 Replicas remain constant until all updated

 Isolated: Transactions do not interfere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed with many sub-
transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

TRANSACTIONS: ACID PROPERTIES

 Allow an application to access multiple DBs via a
transactional programming model

 TP monitor: coordinates commitment of sub-transactions
using a distributed commit protocol (Ch. 8)

 Save application complexity from having to coordinate

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

TRANSACTION PROCESSING MONITOR

 Support application components direct communication with
each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – lead to tight coupling

 Client and server endpoints must be up and running

 Interfaces not so interoperable

 Leads to Message-oriented middleware (MOM)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

ENTERPRISE APPLICATION INTEGRATION

Publish and subscribe systems:
 Rabbit MQ, Apache Kafka, AWS SQS

Reduces tight coupling of RPC/RMI

Applications indicate interest for specific type(s)
of message by sending requests to logical contact
points

Communication middleware delivers messages to
subscribing applications

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

MESSAGE-ORIENTED MIDDLEWARE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.7

 File transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily offline
later can receive messages

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

TYPES OF
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L3.38

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless
computing, voice recognition, internet capabilities and AI
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

 Many sensors infer various aspects of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 T YPES OF PERVASIVE SYSTEMS:

 Ubiquitous computing systems

 Mobile systems

 Sensor networks
January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L3.39

PERVASIVE SYSTEMS

 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic
actions and interactions

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

PERVASIVE SYSTEM TYPE:

UBIQUITOUS COMPUTING SYSTEMS

 Domestic ubiquitous computing environment example:

 Interconnect lighting and environmental controls with
personal biometric monitors woven into clothing so that
illumination and heating conditions in a room might be
modulated, continuously and imperceptibly

 IoT technology helps enable ubiquitous computing

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

UBIQUITOUS COMPUTING
SYSTEM EXAMPLE

 Emphasis on mobile devices, e.g. smartphones, tablet
computers

 New devices: remote controls, pagers, active badges, car
equipment, various GPS-enabled devices,

 Devices move, where is the device?

 Changing location: leverage mobile adhoc network (MANET)

 MANET is an ad hoc network that can change locations and
configure itself on the fly. MANETS are mobile, they use
wireless connections to connect to various networks.

 VANET (Vehicular Ad Hoc Network), is a type of MANET that
allows vehicles to communicate with roadside equipment.

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.8

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery-less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous
power and network connection quality?

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

SENSOR NETWORKS - 3

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.48

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.9

 Research group meetings

 Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312

 Bioinformatics – Wednesday 11:30-1:00pm, TLB 307C

 Goals:
 Assemble ongoing agile research teams which maximize

opportunities for student collaboration and sharing to lower
the bar for student engagement in research

 Build on past successes through iterative student
contributions

Maximize student learning and research outcomes

 Provide students a practicum in cloud computing research to
increase competitiveness in industry and graduate school

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

49

THIS WINTER

Serverless Computing

50

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

Pay only for
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems,
that are challenging to deliver, are
provided automatically

…they are built into the platform

Refers to the avoidance of managing servers

Serverless can pertain to a variety of cloud
services

Evolving technology
 Function-as-a-Service (FaaS)

 Database-as-a-Service (DBaaS)
 Amazon Aurora Serverless DB– general availability Aug 9

 Container-as-a-Service (CaaS)
 Google Kubernetes Engine serverless add-on

 Others…

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

53

SERVERLESS COMPUTING FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.10

SERVERLESS COMPUTING

Research Challenges

55

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires
external services/components

 Increased dependencies  increased hosting costs

Client

Images credit: aws.amazon.com

 VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing: non-intuitive pricing policies

 FREE TIER:
first 1,000,000 function calls/month  FREE

first 400,000 GB-sec/month  FREE

 Afterwards: obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

$0.00001667 GB /second
January 14, 2019

PRICING OBFUSCATION

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

57

WEBSERVICE HOSTING EXAMPLE

 ON AWS Lambda
 Each service call: 100% of 1 CPU-core

100% of 4GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM
 Hosting cost: $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload
cost on AWS Lambda?
January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
58

PRICING OBFUSCATION

Workload: 10,368,000 GB-sec
FREE: - 400,000 GB-sec
Charge: 9,968,600 GB-sec
Memory: $166.17
 Invocations: 5,184,000 calls
FREE: - 1,000,000 calls
Charge: 4,184,000 calls
Calls: $.84
 Total: $167.01
BREAK-EVEN POINT: ~4,319,136 GB-sec-month

~12.5 days 2 concurrent clients @ 2GB

Worst-case scenario = ~2.32x !

AWS EC2: $72.00
AWS Lambda: $167.01

Break Even: 4,319,136 GB-sec

Two threads
@2GB-ea: ~12.5 days

MEMORY RESERVATION
QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s
memory allocation

 Resource capacity (CPU,
disk, network) coupled to
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

60

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.11

 Order of magnitude performance gain ~ 10x

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

61

LAMBDA: PERFORMANCE VS MEMORY

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

62

HOW MUCH FOR 1,000,000 CALLS?

 Coupling between classes/modules

 Degree dependence between software modules

 Measure of how closely connected two modules are

 Cohesion between classes/modules

 Strength of relationships between methods and data

 How unified is the purpose or concepts of groupings

 Functional cohesion

 Object-Oriented Software Best Practice:

Minimize Coupling, Maximize Cohesion

 Shown to correlate with software quality:
maintainability, reusability, extensibility, understandability

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

63

CLOUD NATIVE APPLICATIONS:
EVOLVING BEST PRACTICES

SERVICE COMPOSITION

How should application code be composed for
deployment to FaaS platforms?

 Best practice: decompose into many microservices

 Platform limits: code + libraries ~250MB

How does FaaS function composition impact
performance and cost of native cloud applications?

Performance

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

65

APPLICATION FLOW CONTROL INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.12

SUMMARY OF FAAS CHALLENGES

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

App flow control – implications of implementation?

 Infrastructure freeze/thaw cycle – how to avoid?

Platform constraints – memory, runtime, codesize

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

67

SERVERLESS COMPUTING

 *FaaS Inspector Project*–Mult i .Students , S h ru t i R amesh (M icrosof t)

https://github.com/wlloyduw/faas_inspector

 *Service composition* – Baojia Zhang

 Performance and cost implications of microservice
disaggregation vs. composition

 FaaS Performance Simulation and Modeling – Lan Ly

 Freeze/Thaw Lifecycle Mitigation – Minh Vu

 Cloud vs Edge vs Device – Harrison Ross

 Unique applications of FaaS:
 Computer Vision Neural Networks – Vlad Kaganyuk (t-mobile)

 Gaming, Bioinformatics, others…
 FaaS Application Migration – Baojia Zhang

 Application system containers - Docker
 Container orchestration framework(s) – Kubernetes, Docker

Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

 *Container-as-a-Service* – “Serverless” alternative to
container orchestration frameworks, looking for student to
conduct MSCSS project to explore this new technology (AWS
Fargate, Azure Container Instances, Google…)

 T-Mobile Container Platform Study– Garrett Lahmann
 Analyzing the gap between resource reservation and

utilization on container platforms

 Workflow Containerization: Resource profiling of Docker
containers - Huazeng Deng
 https://github.com/wlloyduw/ContainerProfiler
 Project extensions: integrate with Prometheus, Grafana

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

69

CONTAINERIZATION
INFRASTRUCTURE-AS-A-SERVICE
CLOUD RESEARCH

 Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)–

 Workflow scheduling - Zelun “Jim” Jiang

 Container checkpointing - Pai Zhang

 eScience Institute (UW Seattle)

 Rosetta (protein folding) – Srihari Vignesh

 Tsunami Modeling (on AWS GPU instances) – Shawn Qin

 Cloud vs. Edge for mobile computing workloads – Harrison Ross

 Intelligent deployment of bioinformatics workflows on the cloud
to improve performance and cost

 Performance benchmarking Radhika Sridhar, Saranya Ravishankar

 Resource utilization profiling Radhika Sridhar

 Performance Modeling, Machine Learning

 Infrastructure management improvements

 Public cloud resource contention and avoidance –
Edward Han, Jugal Gandhi

 Lightweight alternative to containers and VMs

 Custom Cloud Operating System

 No/one process, multiple threads, run one program

 Launch separately atop of hypervisor (XEN/KVM)

 Reduce overhead, duplication of heavy weight OS

 Performance comparison to containers, virtual machines

Web application (services) and native Java application
comparison (OSv) - Devin Durham

 Comparison study: unikernels vs. containers vs. VMs

 *(NEW!)* Micro VMs: AWS Firecracker
https://github.com/firecracker-microvm/firecracker

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

71

VIRTUALIZATION / UNIKERNELS

 Clouds abstract infrastructure implementation from end
users

 Design goal of distributed systems – transparency

 Users access abstract infrastructure via software services

 As-a-service: IaaS, PaaS, SaaS, FaaS, DBaaS, CaaS, cache
services, storage, NoSQL-databases

 How do we best leverage abstract infrastructure?

 What performance and cost implications result from
ignoring abstraction?

 What “value” does the service really provide? Is it worth it?

 What can we infer about abstract infrastructure that can
help the users of cloud services? (cloud consumers)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

72

REVERSE ENGINEERING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.13

CLOUD FEDERATION / ENERGY

Cloud federation and resource abstraction

 How can we dynamically harness resources from diverse
clouds to enable cost savings and high availability
improvements? (SERVERLESS FAAS / IAAS)

 Containers are a key enabling technology for platform
independence
 Bioinformatics applications

Support green computing goals:
 Opportunistic workload consolidation and migration to

the most sustainable, economical, and energy efficient
resources, T-Mobile

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L3.74

 Provides logical organization of a distributed system into
software components

 Logical: How system is perceived, modeled
 The OO/component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.75

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partitioned or replicated

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.76

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

 Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its
environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.77

ARCHITECTURAL BUILDING BLOCKS

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.78

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.14

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.79

ARCHITECTURAL STYLES

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.80

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.81

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.82

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Example: pure-layered organization

 Each layer offers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers to reuse low
level implementation

 Abstractions make it easier reuse existing layers which
already implement communication basics

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.83

COMMUNICATION-PROTOCOL STACKS

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.84

HOW A NETWORK PACKET IS BUILT

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.15

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.85

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.86

IP HEADER

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.87

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.88

COMMON APPLICATION LAYER
PROTOCOLS

 Distributed application example: Internet search engine

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.89

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.90

APPLICATION LAYERING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.16

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.91

APPLICATION LAYERING

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.92

ARCHITECTURAL STYLES

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.93

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.94

OBJECT-BASED
ARCHITECTURES - 2

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.95

DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.96

DISTRIBUTED OBJECTS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.17

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.97

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.98

SERVICE ORIENTED ARCHITECTURE - 2

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.99

ARCHITECTURAL STYLES

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate

 Common
architecture

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.100

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.101

REST SERVICES

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code 

 Response headers

 Response body

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.102

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.18

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.103

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.104

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.105

REST - 2

L3.106

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

L3.107

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{
"name": "latitude",
"value":47.2529

},
{
"name": "longitude",
"value":-122.4443

}
]

}

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.108

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.19

 Enables separation between processing and coordination

 Types of coordination:

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.109

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.110

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.111

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.112

PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.113

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.114

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.20

MIDDLEWARE
ORGANIZATION

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L10.11

5

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for
fulfillment

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.116

MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.117

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.118

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.119

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.120

MODIFIABLE MIDDLEWARE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.21

October 12, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L5.121

MIDDLEWARE: INTERCEPTORS - 2 QUESTIONS

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L3.122

EXTRA SLIDES

123

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.124

FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L3.125

FEEDBACK - 2

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profiling, Measurement, Cloud System Data

Analytics
 Application performance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 14, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

126

RESEARCH DIRECTIONS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 14, 2019

Slides by Wes J. Lloyd L3.22

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

