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Distributed Systems:
Goals and Types

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/7

 Design goals of distributed systems
 Resource sharing / availability
 Distribution transparency
 Openness
 Scalability

 Types of distributed systems
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Research directions
 Chapter 2: Distributed System Architectures 
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 Key concepts from Jan 7th:

 ACCESSIBILITY in distributed systems

 The idea of making resources accessible to users

 Examples: GPU servers, FPGA servers

 These are unique and expensive compute resources

 The cloud makes these accessible via middleware 
(Amazon EC2 API)
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FEEDBACK – 1/7

 Why is it called DISTRIBUTION TRANSPARENCY, if many of 
the aspects are obscured from the user?

 In distributed systems, “hidden features” are considered to 
be transparent to users.  

 Transparent means “clear” or “lucid”

 The details of the distribution are hidden in lower 
architectural layers (i.e. not exposed to users – they can’t 
interact with the configuration)   the distribution is 
considered to be transparent
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 FAILURE TRANSPARENCY

 Instances of HW or SW failure are hidden from users

 POLICY vs. MECHANISM

 Policy – rules or business logic

Mechanism – technology used for system implementation

 OPENNESS

We will review again today…

 SCALABILITY

 Covered today…
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FEEDBACK - 3

 What is considered a good time for eventual consistency?
 It depends on:

 #1 – the number of replicas involved (how many)

 #2 – the distribution of the replicas (how far apart)

 #3 – the degree of connectedness of the replicas (networking)

 Communication is generally limited by light speed

 See paper:

 Benchmarking Eventual Consistency - Lessons Learned from 
Long-Term Experimental Studies
 Paper relates to NoSQL key-value store databases  (e.g. AWS S3)
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How many tutorials will we have?

 Assignment 0 is very tutorial like

Will midterm and final be open book?

 Final – yes – book + notes

Midterm – TBD
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FEEDBACK - 5

Support for sharing resources (accessibility)

Distribution transparency

Openness (avoiding vendor lock-in)

Scalability
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DESIGN GOALS 
OF DISTRIBUTED SYSTEMS
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 System with components that are easily used by, or integrated 
into other systems

 Key aspects of openness:
 Interoperability, portability, extensibility

 Interfaces: provide general syntax and semantics to interact 
with distr ibuted components

 Services expose interfaces: functions, parameters, return 
values

 Semantics: describe what the services do
 Often informally specified (via documentation)

 General interfaces enable alternate component 
implementations
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OPENNESS

 Interoperability: ability for components from separate 
systems to work together (different vendors?) 

 Though implementation of a common interface

 How could we measure interoperability of components?

 Portability: degree that an application developed for 
distributed system A can be executed without 
modification on distributed system B

 How could we evaluate portability of a component?

 What percentage of portability is expected?
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 Extensible: easy to reconfigure, add, remove, replace 
components from different developers

 Example: replace the underlying fi le system of a distr ibuted 
system

 To be open, we would like to separate policy from mechanism

 Policy may change

 Mechanism is the technological implementation

 Avoid coupling policy and mechanism

 Enables flexibility
 Similar to separation of concerns, modular/OO design principle
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OPENNESS

 Example: web browser caching

 Mechanism: browser provides facility for storing documents
 Policy: Users decide which documents, for how long, …

 Goal: Enable users to set policies dynamically
 For example: browser may allow separate component plugin 

to specify policies

 Tradeoff: management complexity vs. policy flexibility
 Static policies are inflexible, but are easy to manage as 

features are barely revealed.

 AWS Lambda (Function-as-a-Service) abstracts configuration 
polices from the user resulting in management simplicity 
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SEPARATING POLICY FROM MECHANISM
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Which of the following designs is more open?

 Acme software corporation hosts a set of public weather web 
services (e.g. web service API)

 DESIGN A: API is implemented using MS .NET Remoting

 .NET Remoting is a mechanism for communicating between 
objects which are not in the same process. It is a generic 
system for different applications to communicate with one 
another. .NET objects are exposed to remote processes, thus 
allowing inter process communication. The applications can 
be located on the same computer, different computers on the 
same network, or on computers across separate networks.
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OPENNESS EXAMPLE

 DESIGN B: API is implemented using Java RMI

 The Java Remote Method Invocation (RMI) is a Java API that 
performs remote method invocation to allow Java objects to
be distributed across different Java program instances on the
same or dif ferent computers.  RMI is the Java equivalent of C 
remote procedure calls, which includes support for transfer of 
serialized Java classes and distributed garbage-collection.

 DESIGN C: API is implemented as HTTP/RESTful web interface

 A RESTful API is an API that uses HTTP requests to GET, PUT, 
POST and DELETE data. RESTful APIs are referred to as a 
RESTful web services
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OPENNESS EXAMPLE - 2
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 Size scalability: distributed system can grow easily without
impacting performance
 Supports adding new users, processes, resources

 Geographical scalabil ity: users and resources may be 
dispersed, but communication delays are negligible 

 Administrative scalability: Policies are scalable as the 
distributed system grows… (security, configuration 
management policies are agile enough to deal with growth) 
Goal: have administratively scalable systems !

 Most systems only account for size scalability

 One solution is to operate multiple parallel independent nodes
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TYPES OF SCALABILITY

Centralized architectures have limitations

At some point a single central 
coordinator/arbitrator node can’t keep up
Centralized server: limited CPU, disk, network capacity

Scaling requires surmounting bottlenecks

Lloy d W, Pal l i ck ara S , Dav id O, Lyo n J , Arabi M, Ro j a s K . Mig r a t ion of mul t i - t ie r appl icat io ns
to in f ras t ruc tu re - as - a - s er v i c e c louds : An i nv est igat io n us i ng k ern e l -b as ed v i r tua l m ac hin es .
In Gr id C omput ing (GRID) , 2011 1 2t h IEEE/AC M Inter n at io na l C o nfer enc e on 2011 Sep 21 ( pp .
137 -144) . IEEE .
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SIZE SCALABILITY
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 Nodes dispersed by great distances 

 Communication is slower, less reliable

 Bandwidth may be constrained

 How do you support synchronous communication?

 Latencies may be higher

 Synchronous communication may be too slow and timeout

WAN links can be unreliable
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GEOGRAPHIC SCALABILITY

 Conflicting policies regarding usage (payment), 
management, and security

 How do you manage security for multiple, discrete data 
centers?

 Grid computing: how can resources be shared across 
disparate systems at different domains, etc. ?
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ADMINISTRATIVE SCALABILITY
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 Hide communication latencies
 Use asynchronous communication to do other work and hide latency

 Remote server runs in parallel in the background – client not locked

 Separate event handler captures return response from server

 Hide latency by moving key press validation to cl ient:
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APPROACHES TO SCALING

 Partitioning data and computations across machines

 Just one copy
 Where is the copy?

 Move computations to the client
 Thin client  thick client

 Edge, fog, cloud….

 Decentralized naming services (DNS)

 Decentralized information services (WWW)
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APPROACHES TO SCALING - 2
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Replication and caching – make copies of data 
available at different machines

Replicated file servers and databases

Mirrored web sites

Web caches (in browsers and proxies)

 File caches (at server and client)

 LOAD BALANCER (or proxy server)
Commonly used to distribute user requests to nodes of 

a distributed system

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

APPROACHES TO SCALING - 3

 Having multiple copies leads to inconsistency 
(cached or replicated)

 Modifying one copy invalidates all  of the others

 Keeping copies consistent requires global synchronization

 Global-synchronization prohibits large-scale up
 Best to synchronize just a few copies or synchronization latency 

becomes too long, entire system slows down!

 Consider how synchronization time increases with system size

 Can these inconsistencies be tolerated?

1. Current temperature and wind speed from weather.com

2. Bank account balance – for a read only statement

3. Bank account balance – for a transfer/withdrawal 
transaction
January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
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PROBLEMS WITH REPLICATION
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Developing a distributed system is a formidable 
task

Many issues to consider:

Reliable networks do not exist

Networked communication is inherently insecure
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DEVELOPING DISTRIBUTED SYSTEMS

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator
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FALSE ASSUMPTIONS ABOUT 
DISTRIBUTED SYSTEMS
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TYPES OF 
DISTRIBUTED SYSTEMS:

HPC, CLUSTER, GRID, CLOUD

L2.25

 Super computers
 Huge multiprocessor system which shares RAM

 Technically “not distributed”

 Hardware all in one location

 High per formance distributed computing
 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Others
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TECHNOLOGY INNOVATIONS 
LEADING TO CLOUD COMPUTING
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 Inktomi search engine on Network of Workstations (NOW) 
@ UC Berkeley in 1996 
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EARLY CLUSTER - 1996

 Cluster computing (clustering)
 Cluster is a group of independent IT resources 

interconnected as a single system

 Off-the-shelf computers connected via a high-speed network

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily 
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be 
swapped from another redundant server

 Clusters provide “warm” replication of servers

 Key servers are duplicated to provide 
HW failover to ensure high availability (HA)
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CLUSTER COMPUTING
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 Clusters: Commodity computers connected by Ethernet 
switches

More scalable than conventional servers

Much cheaper than conventional servers

 Dependability through extensive redundancy

 Few administrators for 1000s servers

 Careful selection of identical HW/SW

 Interchangeable components

 Virtual Machine Monitors simplify operation
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COMPUTER CLUSTERS

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into 
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload 
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic 
configuration management

 Grids have influenced clouds contributing common features: 
networked access to machines, resource pooling, scalability, 
and resil iency
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GRID COMPUTING 
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GRID COMPUTING - 2

 Grids are built by federating compute resources together from 
many organizations

 Virtual organization
 Users from different organizations participate together in a virtual 

organization

 Jobs belonging to a virtual organization can harness resources 
owned by the virtual organization

 Grids bring together heterogeneous hardware owned by many 
organizations
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GRID COMPUTING - 3



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.17

 Application layer
 Applications operating within a virtual 

organization sharing grid resources
 Middleware layers

 Collective layer
 Provides access to multiple resources
 Services for discovery, allocation, 

scheduling, data replication, etc.

 Connectivity layer
 Communication protocols to support transactions across grid
 Data transfer, access to resources, security (authentication) protocols

 Resource layer
 Manages access to a single resource via fabric layer
 Configuration of a specific resource
 Security (access control)

 Fabric layer
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GRID COMPUTING LAYERS

CLOUD COMPUTING
NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…
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MICROPROCESSORS 
ADVANCEMENTS

 Smaller die sizes (microns)
 Lower voltages

 Improved heat dissipation

 Energy conservation

More transistors, but with similar clock rates

 Leads to multicore CPUs

Means to harness new transistor density
 Improve overall computational throughput

How do we utilize many-core 
processors?

VIRTUALIZATION
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VIRTUALIZATION

CONTAINERIZATION

Virtualization Containerization

Operating System
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Clusters grew from 1,000 servers to 100,000+ 
based on customer demand for SaaS apps

Economies of scale pushed down costs by 3X to 8X
Purchase, house, operate 100K vs. 1K computers
Traditional datacenters utilization is ~ 10% - 20%

Earn $ offering pay-as-you-go computing at prices 
lower than customer’s costs; 
Scalable  as many computers as customer needs
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HOW WAREHOUSE SCALE COMPUTING 
BECAME THE CLOUD

CLOUD COMPUTING STACK

Infrastructure

Platform

Software
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CLOUD COMPUTING STACK

IaaS

User manages:
Application Services, 

Application Infrastructure, 
Virtual Servers

PaaS

User manages:
Application Services 

SaaS

IaaS
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PUBLIC CLOUD EXAMPLE: NETFLIX

Amazon Elastic Compute Cloud (EC2)
 Continuously run 20,000 to 90,000 VM instances

 Across 3 regions

 Host 100s of microservices

 Process over 100,000 requests/second

 Host over 1 billion hours of monthly content

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers   @   1 hour 
=       1 computer      @ 1000 hours

 I l lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples: 

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Obfuscated pricing-Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms
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PUBLIC CLOUD COMPUTING
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PUBLIC CLOUD COMPUTING

m4.large ec2 virtual machine: 
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour, 24 hrs/day, 
30 days/month  $72.00/month 

on-demand EC2 instance

AWS Lambda Function-as-a-Service (FaaS):
2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3
as 2,592,000 x 1-sec service calls
24 hrs/day, 30 days/month:

$130.14  (8GB = $347.04)

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability.

PaaS services built on highly available IaaS 
resources
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PAAS SERVICES IMPLEMENTATION
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TYPES OF 
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L2.47

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Lead to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing 

components
 Distributed transaction – Client wraps requests together, sends as 

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Dif ferent systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.
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DISTRIBUTED INFORMATION SYSTEMS
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 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed
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DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

 Atomic: The transaction occurs indivisibly

 Consistent: The transaction does not violate system invariants
 Replicas remain constant until all updated 

 Isolated: Transactions do not inter fere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed with many sub-
transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions
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TRANSACTIONS: ACID PROPERTIES
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 Allow an application to access multiple DBs via a 
transactional programming model

 TP monitor: coordinates commitment of sub-transactions 
using a distr ibuted commit protocol  (Ch. 8)

 Save application complexity from having to coordinate
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TRANSACTION PROCESSING MONITOR

 Support application components direct communication with 
each other, not via databases

 Communication mechanisms:

 Remote procedure call  (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – lead to tight coupling

 Client and server endpoints must be up and running

 Interfaces not so interoperable

 Leads to Message-oriented middleware (MOM)
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ENTERPRISE APPLICATION INTEGRATION



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.27

Publish and subscribe systems:
 Rabbit MQ, Apache Kafka, AWS SQS

Reduces tight coupling of RPC/RMI

Applications indicate interest for specific type(s) 
of message by sending requests to logical contact 
points

Communication middleware delivers messages to 
subscribing applications
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MESSAGE-ORIENTED MIDDLEWARE

 File transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call  – app A executes on and against app B 
data.  App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily of fline 
later can receive messages
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APPLICATION INTEGRATION METHODS
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TYPES OF 
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L2.55

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless 
computing, voice recognition, internet capabilities and AI 
to create an environment where connectivity of devices is 
embedded, unobtrusive, and always available

 Many sensors infer various aspects of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 TYPES OF PERVASIVE SYSTEMS:

 Ubiquitous computing systems

 Mobile systems

 Sensor networks
January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects) 
enabling them to communicate information 

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and 

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction 

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic 
actions and interactions
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PERVASIVE SYSTEM TYPE:

UBIQUITOUS COMPUTING SYSTEMS

 Domestic ubiquitous computing environment example:

 Interconnect lighting and environmental controls with 
personal biometric monitors woven into clothing so that 
illumination and heating conditions in a room might be 
modulated, continuously and imperceptibly

 IoT technology helps enable ubiquitous computing
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 Emphasis on mobile devices, e.g. smartphones, tablet 
computers

 New devices: remote controls, pagers, active badges, car 
equipment, various GPS-enabled devices, 

 Devices move, where is the device?

 Changing location: leverage mobile adhoc network (MANET)

 MANET is an ad hoc network that can change locations and 
configure itself on the fly. MANETS are mobile, they use 
wireless connections to connect to various networks. 

 VANET (Vehicular Ad Hoc Network), is a type of MANET that 
allows vehicles to communicate with roadside equipment.
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PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery -less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide
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 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes 
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous 
power and network connection quality?
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PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:
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DATA STORAGE
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 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage  ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic
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WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks 
middleware?

 Sensor networks may consist of different types of nodes 
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?
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SENSOR NETWORKS - 3



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.33

RESEARCH DIRECTIONS

October 5, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.65

 Research group meetings

 Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312

 Bioinformatics – Wednesday 11:30-1:00pm, TLB 307C

 Goals: 
 Assemble ongoing agile research teams which maximize 

opportunities for student collaboration and sharing to lower 
the bar for student engagement in research

 Build on past successes through iterative student 
contributions

Maximize student learning and research outcomes 

 Provide students a practicum in cloud computing research to 
increase competitiveness in industry and graduate school 
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Serverless Computing
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Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

Pay only for 
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING
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SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems, 
that are challenging to deliver, are 
provided automatically

…they are built into the platform

Refers to the avoidance of managing servers

Serverless can pertain to a variety of cloud 
services

Evolving technology
 Function-as-a-Service (FaaS)

 Database-as-a-Service (DBaaS)
 Amazon Aurora Serverless DB– general availability Aug 9

 Container-as-a-Service (CaaS)
 Google Kubernetes Engine serverless add-on

 Others…
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FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

SERVERLESS COMPUTING

Research Challenges
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VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires 
external services/components

 Increased dependencies  increased hosting costs

Client

Images credit: aws.amazon.com

 VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing: non-intuitive pricing policies

 FREE TIER:
first 1,000,000 function calls/month  FREE

first 400,000 GB-sec/month  FREE

 Afterwards:    obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

$0.00001667 GB /second

January 9, 2019

PRICING OBFUSCATION
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WEBSERVICE HOSTING EXAMPLE

 ON AWS Lambda
 Each service call : 100% of 1 CPU-core

100% of 4GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM
 Hosting cost:   $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload 
cost on AWS Lambda?

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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PRICING OBFUSCATION

Workload: 10,368,000 GB-sec
 FREE: - 400,000 GB-sec
Charge: 9,968,600 GB-sec
Memory: $166.17
 Invocations: 5,184,000 calls
 FREE: - 1,000,000 calls
Charge: 4,184,000 calls
Calls: $.84
 Total: $167.01
BREAK-EVEN POINT:   ~4,319,136 GB-sec-month

~12.5 days  2 concurrent clients @ 2GB

Worst-case scenario = ~2.32x !

AWS EC2: $72.00
AWS Lambda: $167.01

Break Even: 4,319,136 GB-sec

Two threads
@2GB-ea: ~12.5 days
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MEMORY RESERVATION 
QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s 
memory allocation 

 Resource capacity (CPU,
disk, network) coupled to 
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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 Order of magnitude performance gain ~ 10x 
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LAMBDA: PERFORMANCE VS MEMORY
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HOW MUCH FOR 1,000,000 CALLS?

 Coupling between classes/modules

 Degree dependence between software modules

 Measure of how closely connected two modules are

 Cohesion between classes/modules

 Strength of relationships between methods and data 

 How unified is the purpose or concepts of groupings

 Functional cohesion

 Object-Oriented Software Best Practice: 

Minimize Coupling, Maximize Cohesion

 Shown to correlate with software quality: 
maintainability, reusability, extensibility, understandability

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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CLOUD NATIVE APPLICATIONS:
EVOLVING BEST PRACTICES
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SERVICE COMPOSITION

How should application code be composed for 
deployment to FaaS platforms? 

 Best practice: decompose into many microservices

 Platform limits: code + libraries  ~250MB 

How does FaaS function composition impact 
performance and cost of native cloud applications?

Performance

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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APPLICATION FLOW CONTROL
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INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance

SUMMARY OF FAAS CHALLENGES

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

App flow control – implications of implementation?

 Infrastructure freeze/thaw cycle – how to avoid?

Platform constraints – memory, runtime, codesize

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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SERVERLESS COMPUTING

Microservices:

 Service composition – Baojia Zhang

 Performance and cost implications of microservice 
disaggregation vs. composition

 FaaS Application Migration – Baojia Zhang

 FaaS Platform Simulation and Modeling – Lan Ly

 Freeze/Thaw Lifecycle Mitigation – Minh Vu

 Cloud vs Edge vs Device – Harrison Ross

 Leveraging Serverless Computing for Computer 
Vision Neural Networks – Vlad Kaganyuk (t-mobile)

 FaaS Inspector Toolkit - Shruti Ramesh (Microsoft)
https://github.com/wlloyduw/faas_inspector

 Application system containers  - Docker

 Container orchestration framework(s) – Kubernetes, Docker 
Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

 T-Mobile Container Platform Study– Garrett Lahmann
 Analyzing the gap between resource reservation and 

uti lization on container platforms 

 Workflow Containerization: Resource profi ling of Docker 
containers - Huazeng Deng

 https://github.com/wlloyduw/ContainerProfi ler

 Project extensions: integrate with Prometheus, Grafana

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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INFRASTRUCTURE-AS-A-SERVICE
CLOUD RESEARCH

 Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)–
 Workflow scheduling - Zelun “Jim” Jiang
 Container checkpointing - Pai Zhang

 eScience Institute (UW Seattle)
 Rosetta (protein folding) – Srihari Vignesh

 Cloud vs. Edge for mobile computing workloads – Harrison 
Ross 

 Intelligent deployment of bioinformatics workflows on the 
cloud to improve performance and cost
 Performance benchmarking Radhika Sridhar, Saranya 

Ravishankar
 Resource utilization profiling Radhika Sridhar
 Performance Modeling, Machine Learning

 Infrastructure management improvements
 Public cloud resource contention and avoidance –

Edward Han, Jugal Gandhi

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application 
Deployment
Performance modeling
Models to predict performance of alternate 

deployment schemes
Cost modeling
Models to predict costs of alternative deployment 

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?
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 Clouds abstract infrastructure implementation from end 
users

 Design goal of distributed systems – transparency

 Users access abstract infrastructure via software services

 As-a-service: IaaS, PaaS, SaaS, FaaS, DBaaS, CaaS, cache 
services, storage, NoSQL-databases

 How do we best leverage abstract infrastructure?

 What performance and cost implications result from 
ignoring abstraction?

 What “value” does the service really provide? Is it worth it?

 What can we infer about abstract infrastructure that can 
help the users of cloud services? (cloud consumers)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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REVERSE ENGINEERING

CLOUD FEDERATION / ENERGY

Cloud federation and resource abstraction

 How can we dynamically harness resources from diverse 
clouds to enable cost savings and high availability 
improvements?  

 Containers are a key enabling technology for platform 
independence 
 Bioinformatics applications 

Support green computing goals:
 Opportunistic workload consolidation and migration to 

the most sustainable, economical, and energy efficient 
resources, T-Mobile
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 Lightweight alternative to containers and VMs
 Custom Cloud Operating System
 No process, multiple threads, run one program
 Launch separately atop of hypervisor (XEN)
 Reduce overhead, duplication of heavy weight OS

 Performance comparison to containers, virtual machines
Web application (services) and native Java application 

comparison - Devin Durham
 Java Spring boot microservices on unikernels vs. 

containers
Much lower launch latency
 Application performance is variable
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VIRTUALIZATION / UNIKERNELS

CH. 2: DISTRIBUTED 
SYSTEMS

ARCHITECTURES

L2.92



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.47

 Logical organization of a distributed system into software 
components

 Logical: How system is perceived, modeled 
 The OO/component abstractions

 Physical – how it  really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated? 

 Provides “realization” of the architecture
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DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: ver tical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Roll ing updates

● No data partitions ● Data partitioned or replicated
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CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid
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 Component: modular unit with well -defined, required, and 
provided interfaces that is replaceable within its environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving inter faces enables interoperability

 Connector: enables flow of control and data between 
components

 Distributed system architectures are conceived using 
components and connectors
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ARCHITECTURAL BUILDING BLOCKS

 Layered 

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based 
 Publish and subscribe (Rich Site Summary RSS feeds)
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ARCHITECTURAL STYLES
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 Components organized in layers

 Component at layer Lj downcalls to lower-level 
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls
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LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization
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LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events
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 Example: pure-layered organization

 Each layer of fers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built  atop of existing layers to reuse low 
level implementation

 Abstractions make it easier reuse existing layers which 
already implement communication basics
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COMMUNICATION-PROTOCOL STACKS

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.100

HOW A NETWORK PACKET IS BUILT
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TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes   
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IP HEADER
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 TCP provides easy to use API 

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic 

 E.g. language agnostic

 What are we going to say?
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TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP, 
RTP, SMTP, Telnet, RPC, LDAP
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COMMON APPLICATION LAYER 
PROTOCOLS



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.53

 Distributed application example: Internet search engine
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APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level
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APPLICATION LAYERING
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 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic
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APPLICATION LAYERING

 Enables loose and flexible component organization 

 Objects == components

 Enable distributed node interaction via function calls over the 
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over 

network, transfer results back
 Language independent 
 In contrast to web services, RPC calls originally were more 

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything
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 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method 
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats
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OBJECT-BASED ARCHITECTURES - 2

 A counterintuitive features is that state is not 
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node 
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference
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 Services provide always-on encapsulated functions over 
the internet/web 

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating 
systems

 Include (wrap) legacy code

 Many software components may be involved in the 
implementation

 Application server(s), relational database(s), key-value 
stores, in memory-cache, queue/messaging services
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SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs. 
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the 
system

 An error calling a service (e.g. mismatching the interface) 
generally does not result in a system crash
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 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended 

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in 

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the 

distribution cannot be seen
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FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the 

middleware/framework)
 That fact that the distributed system has replica nodes is 

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across 

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires 

synchronization of copies
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 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profi ling, Measurement, Cloud System Data 

Analytics
 Application per formance and cost modeling
 Autonomic infrastructure management to optimize cost and 

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)
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