
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.1

Distributed Systems:
Goals and Types

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 1/7

 Design goals of distributed systems
 Resource sharing / availability
 Distribution transparency
 Openness
 Scalability

 Types of distributed systems
 HPC, cluster, grid, cloud
 Distributed information systems
 Pervasive systems

 Research directions
 Chapter 2: Distributed System Architectures

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES

 Key concepts from Jan 7th:

 ACCESSIBILITY in distributed systems

 The idea of making resources accessible to users

 Examples: GPU servers, FPGA servers

 These are unique and expensive compute resources

 The cloud makes these accessible via middleware
(Amazon EC2 API)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

FEEDBACK – 1/7

 Why is it called DISTRIBUTION TRANSPARENCY, if many of
the aspects are obscured from the user?

 In distributed systems, “hidden features” are considered to
be transparent to users.

 Transparent means “clear” or “lucid”

 The details of the distribution are hidden in lower
architectural layers (i.e. not exposed to users – they can’t
interact with the configuration) the distribution is
considered to be transparent

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

FEEDBACK - 2

 FAILURE TRANSPARENCY

 Instances of HW or SW failure are hidden from users

 POLICY vs. MECHANISM

 Policy – rules or business logic

Mechanism – technology used for system implementation

 OPENNESS

We will review again today…

 SCALABILITY

 Covered today…

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

FEEDBACK - 3

 What is considered a good time for eventual consistency?
 It depends on:

 #1 – the number of replicas involved (how many)

 #2 – the distribution of the replicas (how far apart)

 #3 – the degree of connectedness of the replicas (networking)

 Communication is generally limited by light speed

 See paper:

 Benchmarking Eventual Consistency - Lessons Learned from
Long-Term Experimental Studies
 Paper relates to NoSQL key-value store databases (e.g. AWS S3)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK - 4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.2

How many tutorials will we have?

 Assignment 0 is very tutorial like

Will midterm and final be open book?

 Final – yes – book + notes

Midterm – TBD

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 5

Support for sharing resources (accessibility)

Distribution transparency

Openness (avoiding vendor lock-in)

Scalability

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

DESIGN GOALS
OF DISTRIBUTED SYSTEMS

 System with components that are easily used by, or integrated
into other systems

 Key aspects of openness:
 Interoperability, portability, extensibility

 Interfaces: provide general syntax and semantics to interact
with distributed components

 Services expose interfaces: functions, parameters, return
values

 Semantics: describe what the services do
 Often informally specified (via documentation)

 General interfaces enable alternate component
implementations

January 7, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
Institute of Technology, University of Washington - Tacoma

L1.9

OPENNESS

 Interoperability: ability for components from separate
systems to work together (different vendors?)

 Though implementation of a common interface

 How could we measure interoperability of components?

 Portability: degree that an application developed for
distributed system A can be executed without
modification on distributed system B

 How could we evaluate portability of a component?

 What percentage of portability is expected?

January 7, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
Institute of Technology, University of Washington - Tacoma

L1.10

OPENNESS - 2

 Extensible: easy to reconfigure, add, remove, replace
components from different developers

 Example: replace the underlying file system of a distributed
system

 To be open, we would like to separate policy from mechanism

 Policy may change

 Mechanism is the technological implementation

 Avoid coupling policy and mechanism

 Enables flexibility
 Similar to separation of concerns, modular/OO design principle

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

OPENNESS

 Example: web browser caching

 Mechanism: browser provides facility for storing documents
 Policy: Users decide which documents, for how long, …

 Goal: Enable users to set policies dynamically
 For example: browser may allow separate component plugin

to specify policies

 Tradeoff: management complexity vs. policy flexibility
 Static policies are inflexible, but are easy to manage as

features are barely revealed.

 AWS Lambda (Function-as-a-Service) abstracts configuration
polices from the user resulting in management simplicity

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

SEPARATING POLICY FROM MECHANISM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.3

Which of the following designs is more open?

 Acme software corporation hosts a set of public weather web
services (e.g. web service API)

 DESIGN A: API is implemented using MS .NET Remoting

 .NET Remoting is a mechanism for communicating between
objects which are not in the same process. It is a generic
system for different applications to communicate with one
another. .NET objects are exposed to remote processes, thus
allowing inter process communication. The applications can
be located on the same computer, different computers on the
same network, or on computers across separate networks.

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

OPENNESS EXAMPLE

 DESIGN B: API is implemented using Java RMI

 The Java Remote Method Invocation (RMI) is a Java API that
performs remote method invocation to allow Java objects to
be distributed across different Java program instances on the
same or different computers. RMI is the Java equivalent of C
remote procedure calls, which includes support for transfer of
serialized Java classes and distributed garbage-collection.

 DESIGN C: API is implemented as HTTP/RESTful web interface

 A RESTful API is an API that uses HTTP requests to GET, PUT,
POST and DELETE data. RESTful APIs are referred to as a
RESTful web services

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OPENNESS EXAMPLE - 2

 Size scalability: distributed system can grow easily without
impacting performance
 Supports adding new users, processes, resources

 Geographical scalability: users and resources may be
dispersed, but communication delays are negligible

 Administrative scalabil ity: Policies are scalable as the
distributed system grows… (security, configuration
management policies are agile enough to deal with growth)
Goal: have administratively scalable systems !

 Most systems only account for size scalability

 One solution is to operate multiple parallel independent nodes

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

TYPES OF SCALABILITY

Centralized architectures have limitations

At some point a single central
coordinator/arbitrator node can’t keep up
Centralized server: limited CPU, disk, network capacity

Scaling requires surmounting bottlenecks

Lloyd W, Pa l l icka ra S, Dav id O , Lyon J , A r abi M, Ro jas K . Mig rat io n of m ul t i - t ie r appl icat io ns
to inf rast ruc ture - as -a - se r v ic e c louds : A n inve st ig at io n using ke rne l -b ase d vi r tual m ach ine s.
InGr id Com put ing (GR ID) , 2011 12th IEEE/AC M Inte rna t ional Conference on 2011 Sep 21 (pp.
137 -144) . IEEE .

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

SIZE SCALABILITY

 Nodes dispersed by great distances

 Communication is slower, less reliable

 Bandwidth may be constrained

 How do you support synchronous communication?

 Latencies may be higher

 Synchronous communication may be too slow and timeout

WAN links can be unreliable

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

GEOGRAPHIC SCALABILITY

 Conflicting policies regarding usage (payment),
management, and security

 How do you manage security for multiple, discrete data
centers?

 Grid computing: how can resources be shared across
disparate systems at different domains, etc. ?

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

ADMINISTRATIVE SCALABILITY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.4

 Hide communication latencies
 Use asynchronous communication to do other work and hide latency

 Remote server runs in parallel in the background – client not locked

 Separate event handler captures return response from server

 Hide latency by moving key press validation to client:

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

APPROACHES TO SCALING

 Partitioning data and computations across machines

 Just one copy
 Where is the copy?

 Move computations to the client
 Thin client thick client

 Edge, fog, cloud….

 Decentralized naming services (DNS)

 Decentralized information services (WWW)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

APPROACHES TO SCALING - 2

Replication and caching – make copies of data
available at different machines

Replicated file servers and databases

Mirrored web sites

Web caches (in browsers and proxies)

File caches (at server and client)

 LOAD BALANCER (or proxy server)
Commonly used to distribute user requests to nodes of

a distributed system

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

APPROACHES TO SCALING - 3

 Having multiple copies leads to inconsistency
(cached or replicated)

 Modifying one copy invalidates all of the others

 Keeping copies consistent requires global synchronization

 Global-synchronization prohibits large-scale up
 Best to synchronize just a few copies or synchronization latency

becomes too long, entire system slows down!

 Consider how synchronization t ime increases with system size

 Can these inconsistencies be tolerated?

1. Current temperature and wind speed from weather.com

2. Bank account balance – for a read only statement

3. Bank account balance – for a transfer/withdrawal
transaction
January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L2.22

PROBLEMS WITH REPLICATION

Developing a distributed system is a formidable
task

Many issues to consider:

Reliable networks do not exist

Networked communication is inherently insecure

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

DEVELOPING DISTRIBUTED SYSTEMS

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

FALSE ASSUMPTIONS ABOUT
DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.5

TYPES OF
DISTRIBUTED SYSTEMS:

HPC, CLUSTER, GRID, CLOUD

L2.25

 Super computers
 Huge multiprocessor system which shares RAM

 Technically “not distributed”

 Hardware all in one location

 High performance distributed computing
 Cluster computing

 Grid computing

 Cloud computing

 Virtualization

 Others

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

TECHNOLOGY INNOVATIONS
LEADING TO CLOUD COMPUTING

 Inktomi search engine on Network of Workstations (NOW)
@ UC Berkeley in 1996

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

EARLY CLUSTER - 1996

 Cluster computing (clustering)
 Cluster is a group of independent IT resources

interconnected as a single system

 Off-the-shelf computers connected via a high-speed network

 Servers configured with homogeneous hardware and software

 Identical or similar RAM, CPU, HDDs

 Design emphasizes redundancy as server components are easily
interchanged to keep overall system running

 Example: if a RAID card fails on a key server, the card can be
swapped from another redundant server

 Clusters provide “warm” replication of servers

 Key servers are duplicated to provide
HW failover to ensure high availability (HA)

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

CLUSTER COMPUTING

 Clusters: Commodity computers connected by Ethernet
switches

More scalable than conventional servers

Much cheaper than conventional servers

 Dependability through extensive redundancy

 Few administrators for 1000s servers

 Careful selection of identical HW/SW

 Interchangeable components

 Virtual Machine Monitors simplify operation

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

COMPUTER CLUSTERS

 On going research area since early 1990s

 Distributed heterogeneous computing resources organized into
logical pools of loosely coupled resources

 For example: heterogeneous servers connected by the internet

 Resources are heterogeneous and geographically dispersed

 Grids use middleware software layer to support workload
distribution and coordination functions

 Aspects: load balancing, failover control, autonomic
configuration management

 Grids have influenced clouds contributing common features:
networked access to machines, resource pooling, scalability,
and resiliency

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

GRID COMPUTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.6

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

GRID COMPUTING - 2

 Grids are built by federating compute resources together from
many organizations

 Vir tual organization
 Users from different organizations participate together in a virtual

organization

 Jobs belonging to a virtual organization can harness resources
owned by the virtual organization

 Grids bring together heterogeneous hardware owned by many
organizations

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

GRID COMPUTING - 3

 Application layer
 Applications operating within a virtual

organization sharing grid resources
 Middleware layers

 Collective layer
 Provides access to multiple resources
 Services for discovery, allocation,

scheduling, data replication, etc.

 Connectivity layer
 Communication protocols to support transactions across grid
 Data transfer, access to resources, security (authentication) protocols

 Resource layer
 Manages access to a single resource via fabric layer
 Configuration of a specific resource
 Security (access control)

 Fabric layer

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

GRID COMPUTING LAYERS
CLOUD COMPUTING

NIST GENERAL DEFINITION

“Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources
(networks, servers, storage, applications and
services) that can be rapidly provisioned and
reused with minimal management effort or service
provider interaction”…

MICROPROCESSORS
ADVANCEMENTS

 Smaller die sizes (microns)
 Lower voltages

 Improved heat dissipation

 Energy conservation

More transistors, but with similar clock rates

 Leads to multicore CPUs

Means to harness new transistor density
 Improve overall computational throughput

How do we utilize many-core
processors?

VIRTUALIZATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.7

VIRTUALIZATION CONTAINERIZATION

Virtualization Containerization

Operating System

Clusters grew from 1,000 servers to 100,000+
based on customer demand for SaaS apps

Economies of scale pushed down costs by 3X to 8X
Purchase, house, operate 100K vs. 1K computers
Traditional datacenters utilization is ~ 10% - 20%

Earn $ offering pay-as-you-go computing at prices
lower than customer’s costs;
Scalable as many computers as customer needs

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

HOW WAREHOUSE SCALE COMPUTING
BECAME THE CLOUD CLOUD COMPUTING STACK

Infrastructure

Platform

Software

CLOUD COMPUTING STACK

IaaS

User manages:
Application Services,

Application Infrastructure,
Virtual Servers

PaaS

User manages:
Application Services

SaaS

IaaS

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.8

PUBLIC CLOUD EXAMPLE: NETFLIX

Amazon Elastic Compute Cloud (EC2)
 Continuously run 20,000 to 90,000 VM instances

 Across 3 regions

 Host 100s of microservices

 Process over 100,000 requests/second

 Host over 1 billion hours of monthly content

 Offers computing, storage, communication at ¢ per hour
 No premium to scale:

1000 computers @ 1 hour
= 1 computer @ 1000 hours

 Il lusion of infinite scalability to cloud user
 As many computers as you can afford
 Leading examples:

Amazon Web Services, Google App Engine, Microsoft Azure

 Amazon runs its own e-commerce on AWS!
 Billing models are becoming increasingly granular
 By the minute, second, tenth of a second
 Obfuscated pricing-Lambda $0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

PUBLIC CLOUD COMPUTING

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

PUBLIC CLOUD COMPUTING

m4.large ec2 virtual machine:
2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3
10¢ an hour, 24 hrs/day,
30 days/month $72.00/month

on-demand EC2 instance

AWS Lambda Function-as-a-Service (FaaS):
2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3
as 2,592,000 x 1-sec service calls
24 hrs/day, 30 days/month:

$130.14 (8GB = $347.04)

PaaS services often built atop of IaaS
Amazon RDS, Heroku, Amazon Elasticache

Scalability

VM resources can support fluctuations in demand

Dependability.

PaaS services built on highly available IaaS
resources

January 9, 2019 TCSS 558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

PAAS SERVICES IMPLEMENTATION

TYPES OF
DISTRIBUTED SYSTEMS:

DISTRIBUTED INFORMATION SYSTEMS

L2.47

 Enterprise-wide integrated applications
 Organizations confronted with too many applications
 Interoperability among applications was difficult
 Lead to many middleware-based solutions

 Key concepts
 Component based architectures - database components, processing

components
 Distributed transaction – Client wraps requests together, sends as

single aggregated request
 Atomic: all or none of the individual requests should be executed

 Different systems define different action primitives
 Components of the atomic transaction
 Examples: send, receive, forward, READ, WRITE, etc.

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

DISTRIBUTED INFORMATION SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.9

 Transaction primitives

 Transactions are all-or-nothing
 All operations are executed

 None are executed

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

DISTRIBUTED INFORMATION SYSTEMS - 2

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

 Atomic: The transaction occurs indivisibly

 Consistent: The transaction does not violate system invariants
 Replicas remain constant until all updated

 Isolated: Transactions do not interfere with each other

 Durable: Once a transaction commits, change are permanent

 Nested transaction: transaction constructed with many sub-
transactions

 Follows a logical division of work

 Must support “rollback” of sub-transactions

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

TRANSACTIONS: ACID PROPERTIES

 Allow an application to access multiple DBs via a
transactional programming model

 TP monitor: coordinates commitment of sub-transactions
using a distributed commit protocol (Ch. 8)

 Save application complexity from having to coordinate

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

TRANSACTION PROCESSING MONITOR

 Support application components direct communication with
each other, not via databases

 Communication mechanisms:

 Remote procedure call (RPC)
 Local procedure call packaged as a message and sent to server

 Supports distribution of function call processing

 Remote method invocations (RMI)
 Operates on objects instead of functions

 RPC and RMI – lead to tight coupling

 Client and server endpoints must be up and running

 Interfaces not so interoperable

 Leads to Message-oriented middleware (MOM)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

ENTERPRISE APPLICATION INTEGRATION

Publish and subscribe systems:
 Rabbit MQ, Apache Kafka, AWS SQS

Reduces tight coupling of RPC/RMI

Applications indicate interest for specific type(s)
of message by sending requests to logical contact
points

Communication middleware delivers messages to
subscribing applications

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

MESSAGE-ORIENTED MIDDLEWARE

 File transfer
 Shared data files (e.g. XML)

 Leads to file management challenges

 Shared database
 Centralized DB, transactions to coordinate changes among users

 Common data schema required – can be challenging to derive

 For many reads and updates, shared DB becomes bottleneck

 Remote procedure call – app A executes on and against app B
data. App A lacks direct access to app B data.

 Messaging middleware - ensures nodes temporarily offline
later can receive messages

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

CHALLENGES WITH VARIOUS
APPLICATION INTEGRATION METHODS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.10

TYPES OF
DISTRIBUTED SYSTEMS:

PERVASIVE SYSTEMS

L2.55

 Existing everywhere, widely adopted…

 Combine current network technologies, wireless
computing, voice recognition, internet capabilities and AI
to create an environment where connectivity of devices is
embedded, unobtrusive, and always available

 Many sensors infer various aspects of a user’s behavior
 Myriad of actuators to collect information, provide feedback

 T YPES OF PERVASIVE SYSTEMS:

 Ubiquitous computing systems

 Mobile systems

 Sensor networks
January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L2.56

PERVASIVE SYSTEMS

 Pervasive and continuously present

 Goal: embed processors everywhere (day-to-day objects)
enabling them to communicate information

 Requirements for a ubiquitous computing system:
 Distribution – devices are networked, distributed, and

accessible transparently

 Interaction – unobtrusive (low-key) between users and devices

 Context awareness – optimizes interaction

 Autonomy – devices operate autonomously, self-managed

 Intelligence – system can handle wide range of dynamic
actions and interactions

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

PERVASIVE SYSTEM TYPE:

UBIQUITOUS COMPUTING SYSTEMS

 Domestic ubiquitous computing environment example:

 Interconnect lighting and environmental controls with
personal biometric monitors woven into clothing so that
illumination and heating conditions in a room might be
modulated, continuously and imperceptibly

 IoT technology helps enable ubiquitous computing

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

UBIQUITOUS COMPUTING
SYSTEM EXAMPLE

 Emphasis on mobile devices, e.g. smartphones, tablet
computers

 New devices: remote controls, pagers, active badges, car
equipment, various GPS-enabled devices,

 Devices move, where is the device?

 Changing location: leverage mobile adhoc network (MANET)

 MANET is an ad hoc network that can change locations and
configure itself on the fly. MANETS are mobile, they use
wireless connections to connect to various networks.

 VANET (Vehicular Ad Hoc Network), is a type of MANET that
allows vehicles to communicate with roadside equipment.

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

PERVASIVE SYSTEM TYPE:

MOBILE SYSTEMS

 Tens, to hundreds, to thousands of small nodes

 Simple: small memory/compute/communication capacity

 Wireless, battery powered (or battery-less)

 Limited: restricted communication, constrained power

 Equipped with sensing devices

 Some can act as actuators (control systems)

 Example: enable sprinklers upon fire detection

 Sensor nodes organized in neighborhoods

 Scope of communication:

 Node – neighborhood – system-wide

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.11

 Collaborate to process sensor data in app-specific manner

 Provide mix of data collection and processing

 Nodes may implement a distributed database

 Database organization: centralized to decentralized

 In network processing: forward query to all sensor nodes
along a tree to aggregate results and propagate to root

 Is aggregation simply data collection?

 Are all nodes homogeneous?

 Are all network links homogeneous?

 How do we setup a tree when nodes have heterogeneous
power and network connection quality?

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

PERVASIVE SYSTEM TYPE:

SENSOR NETWORKS - 2

 Centralized:

 Decentralized:

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

CENTRALIZED VS. DECENTRALIZED
DATA STORAGE

 Consider the tradeoff space for:
 sensor network data storage and processing

Centralized Decentralized

● Single point-of-failure ● Nodes require high compute
● No node coordination power
● No node processing or storage ● “Smart” nodes
● “Dumb” nodes ● Expensive nodes
● Less expensive node ● Less network traffic
● More network traffic

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

WHO AGGREGATES AND STORES DATA?

 What are some unique requirements for sensor networks
middleware?

 Sensor networks may consist of different types of nodes
with different functions

 Nodes may often be in suspended state to save power
 Duty cycles (1 to 30%), strict energy budgets

 Synchronize communication with duty cycles

 How do we manage membership when devices are offline?

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

SENSOR NETWORKS - 3

RESEARCH DIRECTIONS

October 5, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.65

 Research group meetings

 Cloud/Distributed Sys - Tuesdays 12:00-1:30pm, MDS 312

 Bioinformatics – Wednesday 11:30-1:00pm, TLB 307C

 Goals:
 Assemble ongoing agile research teams which maximize

opportunities for student collaboration and sharing to lower
the bar for student engagement in research

 Build on past successes through iterative student
contributions

Maximize student learning and research outcomes

 Provide students a practicum in cloud computing research to
increase competitiveness in industry and graduate school

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

66

THIS WINTER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.12

Serverless Computing

67

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

Pay only for
CPU/memory utilization

High Availability

Fault Tolerance

Infrastructure Elasticity

Function-as-a-Service
(FAAS)

No Setup

SERVERLESS COMPUTING

SERVERLESS COMPUTING

Why Serverless Computing?

Many features of distributed systems,
that are challenging to deliver, are
provided automatically

…they are built into the platform

Refers to the avoidance of managing servers

Serverless can pertain to a variety of cloud
services

Evolving technology
 Function-as-a-Service (FaaS)

 Database-as-a-Service (DBaaS)
 Amazon Aurora Serverless DB– general availability Aug 9

 Container-as-a-Service (CaaS)
 Google Kubernetes Engine serverless add-on

 Others…

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

70

SERVERLESS COMPUTING

FAAS PLATFORMS

AWS Lambda

Azure Functions

IBM Cloud Functions

Google Cloud Functions

Fn (Oracle)

Apache OpenWhisk
Open Source

Commercial

SERVERLESS COMPUTING

Research Challenges

72

Image from: https://mobisoftinfotech.com/resources/blog/serverless-computing-deploy-applications-without-fiddling-with-servers/

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.13

VENDOR ARCHITECTURAL LOCK-IN

 Cloud native (FaaS) software architecture requires
external services/components

 Increased dependencies increased hosting costs

Client

Images credit: aws.amazon.com

 VM pricing: hourly rental pricing, billed to
nearest second is intuitive…

 FaaS pricing: non-intuitive pricing policies

 FREE TIER:
first 1,000,000 function calls/month FREE

first 400,000 GB-sec/month FREE

 Afterwards: obfuscated pricing (AWS Lambda):

$0.0000002 per request

$0.000000208 to rent 128MB / 100-ms

$0.00001667 GB /second
January 9, 2019

PRICING OBFUSCATION

TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

74

WEBSERVICE HOSTING EXAMPLE

 ON AWS Lambda
 Each service call: 100% of 1 CPU-core

100% of 4GB of memory
 Workload: 2 continuous client threads
 Duration: 1 month (30 days)

 ON AWS EC2:
 Amazon EC2 c4.large 2-vCPU VM
 Hosting cost: $72/month

c4.large: 10¢/hour, 24 hrs/day x 30 days

How much would hosting this workload
cost on AWS Lambda?

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

75

PRICING OBFUSCATION

Workload: 10,368,000 GB-sec
FREE: - 400,000 GB-sec
Charge: 9,968,600 GB-sec
Memory: $166.17
 Invocations: 5,184,000 calls
FREE: - 1,000,000 calls
Charge: 4,184,000 calls
Calls: $.84
 Total: $167.01
BREAK-EVEN POINT: ~4,319,136 GB-sec-month

~12.5 days 2 concurrent clients @ 2GB

Worst-case scenario = ~2.32x !

AWS EC2: $72.00
AWS Lambda: $167.01

Break Even: 4,319,136 GB-sec

Two threads
@2GB-ea: ~12.5 days

MEMORY RESERVATION
QUESTION…

 Lambda memory
reserved for functions

 UI provides “slider bar”
to set function’s
memory allocation

 Resource capacity (CPU,
disk, network) coupled to
slider bar:
“every doubling of memory,
doubles CPU…”

 But how much memory do model services require?

Performance

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

77

 Order of magnitude performance gain ~ 10x

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

78

LAMBDA: PERFORMANCE VS MEMORY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.14

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

79

HOW MUCH FOR 1,000,000 CALLS?

 Coupling between classes/modules

 Degree dependence between software modules

 Measure of how closely connected two modules are

 Cohesion between classes/modules

 Strength of relationships between methods and data

 How unified is the purpose or concepts of groupings

 Functional cohesion

 Object-Oriented Software Best Practice:

Minimize Coupling, Maximize Cohesion

 Shown to correlate with software quality:
maintainability, reusability, extensibility, understandability

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

80

CLOUD NATIVE APPLICATIONS:
EVOLVING BEST PRACTICES

SERVICE COMPOSITION

How should application code be composed for
deployment to FaaS platforms?

 Best practice: decompose into many microservices

 Platform limits: code + libraries ~250MB

How does FaaS function composition impact
performance and cost of native cloud applications?

Performance

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

82

APPLICATION FLOW CONTROL

INFRASTRUCTURE FREEZE/THAW CYCLE

Image from: Denver7 – The Denver Channel News

 Unused infrastructure is deprecated
 But after how long?

 Infrastructure: VMs, “containers”

 Provider-COLD / VM-COLD
 “Container” images - built/transferred to VMs

 Container-COLD
 Image cached on VM

 Container-WARM
 “Container” running on VM

Performance

SUMMARY OF FAAS CHALLENGES

Vendor architectural lock-in – how to migrate?

Pricing obfuscation – is it cost effective?

Memory reservation – how much to reserve?

Service composition – how to compose software?

App flow control – implications of implementation?

 Infrastructure freeze/thaw cycle – how to avoid?

Platform constraints – memory, runtime, codesize

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

84

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.15

SERVERLESS COMPUTING

Microservices:

 Service composition – Baojia Zhang

 Performance and cost implications of microservice
disaggregation vs. composition

 FaaS Application Migration – Baojia Zhang

 FaaS Platform Simulation and Modeling – Lan Ly

 Freeze/Thaw Lifecycle Mitigation – Minh Vu

 Cloud vs Edge vs Device – Harrison Ross

 Leveraging Serverless Computing for Computer
Vision Neural Networks – Vlad Kaganyuk (t-mobile)

 FaaS Inspector Toolkit - Shruti Ramesh (Microsoft)
https://github.com/wlloyduw/faas_inspector

 Application system containers - Docker

 Container orchestration framework(s) – Kubernetes, Docker
Swarm, Apache Mesos/Marathon, AWS Elastic Container Service

 T-Mobile Container Platform Study– Garrett Lahmann
 Analyzing the gap between resource reservation and

utilization on container platforms

 Workflow Containerization: Resource profiling of Docker
containers - Huazeng Deng

 https://github.com/wlloyduw/ContainerProfiler

 Project extensions: integrate with Prometheus, Grafana

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

86

CONTAINERIZATION

INFRASTRUCTURE-AS-A-SERVICE
CLOUD RESEARCH

 Bioinformatics (w/ Kayee Yeung-Rhee, Ling-Hong Hung)–
 Workflow scheduling - Zelun “Jim” Jiang
 Container checkpointing - Pai Zhang

 eScience Institute (UW Seattle)
 Rosetta (protein folding) – Srihari Vignesh

 Cloud vs. Edge for mobile computing workloads – Harrison
Ross

 Intelligent deployment of bioinformatics workflows on the
cloud to improve performance and cost
 Performance benchmarking Radhika Sridhar, Saranya

Ravishankar
 Resource utilization profiling Radhika Sridhar
 Performance Modeling, Machine Learning

 Infrastructure management improvements
 Public cloud resource contention and avoidance –

Edward Han, Jugal Gandhi

IAAS CLOUD - 2

 Infrastructure-as-a-Service Cloud Application
Deployment
Performance modeling
Models to predict performance of alternate

deployment schemes
Cost modeling
Models to predict costs of alternative deployment

schemes
What is the best infrastructure for my workload?
What is the cost of deployment?
Should I migrate to containers, serverless

computing?

 Reverse engineering of IaaS, PaaS, SaaS
What service level is best for my workload?

 Clouds abstract infrastructure implementation from end
users

 Design goal of distributed systems – transparency

 Users access abstract infrastructure via software services

 As-a-service: IaaS, PaaS, SaaS, FaaS, DBaaS, CaaS, cache
services, storage, NoSQL-databases

 How do we best leverage abstract infrastructure?

 What performance and cost implications result from
ignoring abstraction?

 What “value” does the service really provide? Is it worth it?

 What can we infer about abstract infrastructure that can
help the users of cloud services? (cloud consumers)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

89

REVERSE ENGINEERING CLOUD FEDERATION / ENERGY

Cloud federation and resource abstraction

 How can we dynamically harness resources from diverse
clouds to enable cost savings and high availability
improvements?

 Containers are a key enabling technology for platform
independence
 Bioinformatics applications

Support green computing goals:
 Opportunistic workload consolidation and migration to

the most sustainable, economical, and energy efficient
resources, T-Mobile

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.16

 Lightweight alternative to containers and VMs
 Custom Cloud Operating System
 No process, multiple threads, run one program
 Launch separately atop of hypervisor (XEN)
 Reduce overhead, duplication of heavy weight OS

 Performance comparison to containers, virtual machines
Web application (services) and native Java application

comparison - Devin Durham
 Java Spring boot microservices on unikernels vs.

containers
Much lower launch latency
 Application performance is variable

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

91

VIRTUALIZATION / UNIKERNELS

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L2.92

 Logical organization of a distributed system into software
components

 Logical: How system is perceived, modeled
 The OO/component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.93

DISTRIBUTED SYSTEM ARCHITECTURES

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: vertical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Rolling updates

● No data partitions ● Data partitioned or replicated

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.94

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

 Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving interfaces enables interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.95

ARCHITECTURAL BUILDING BLOCKS

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.96

ARCHITECTURAL STYLES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.17

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.97

LAYERED ARCHITECTURES

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.98

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Example: pure-layered organization

 Each layer offers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers to reuse low
level implementation

 Abstractions make it easier reuse existing layers which
already implement communication basics

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.99

COMMUNICATION-PROTOCOL STACKS

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.100

HOW A NETWORK PACKET IS BUILT

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.101

TCP HEADER

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.102

IP HEADER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.18

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.103

TRANSMISSION CONTROL PROTOCOL (TCP)

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.104

COMMON APPLICATION LAYER
PROTOCOLS

 Distributed application example: Internet search engine

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.105

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.106

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.107

APPLICATION LAYERING

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.108

OBJECT-BASED ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.19

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.109

OBJECT-BASED ARCHITECTURES - 2

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.110

DISTRIBUTED OBJECTS

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.111

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.112

SERVICE ORIENTED ARCHITECTURE - 2

QUESTIONS

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.113

EXTRA SLIDES

114

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

January 9, 2019

Slides by Wes J. Lloyd L2.20

 What is the difference between extensibility and scalability?
 Extensibility – ability for a system implementation to be extended

with additional functionality
 Scalability – ability for a distributed system to scale (up or down) in

response to client demand

 What is the loss of availability in a distributed system?
 Availability refers to “uptime”
 How many 9s
 (1 – (down time/ total time)) * 100%

 Transparency: term is confusing
 Generally means “exposing everything”, obfuscation is better
 Distribution transparency means the implementation of the

distribution cannot be seen

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.115

FEEDBACK – 9/28

 What do we mean by replication transparency?
 Resources are automatically replicated (by the

middleware/framework)
 That fact that the distributed system has replica nodes is

unbeknownst to the users

 How does replication improve system performance?
 By replicating nodes, system load is “distributed” across

replicas
 Distributed reads – many concurrent users can read
 Distributed writes – when replicating data, requires

synchronization of copies

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.116

FEEDBACK - 2

 Serverless Computing: FaaS, CaaS, DBaaS
 Containerization, Container Platforms
 Infrastructure-as-a-Service (IaaS) Cloud
 Resource profiling, Measurement, Cloud System Data

Analytics
 Application performance and cost modeling
 Autonomic infrastructure management to optimize cost and

performance

 Cloud Federation, Workload Consolidation, Green Computing
 Virtualization / Unikernel operating systems

 Domains:
 Bioinformatics (genomic sequencing)
 Environmental modeling (USDA, USGS modeling applications)

January 9, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

117

RESEARCH DIRECTIONS

