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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

Homework 2

Extra Credit Assignment Posted

Ch. 6 – Coordination
 6.2 Logical clocks, Lamport clocks, Vector clocks

 6.3 Distributed mutual exclusion

 6.4 Election algorithms

 RAFT Consensus algorithm

 Chapter 7 Consistency and Replication
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 Write up to be posted - Available unti l  Friday 03/22 @ 11:59pm

 Review TCSS 562 Tutorial #4:
 http://faculty.washington.edu/wl loyd/courses/tcss562/

tutorials/TCSS562_f2018_tutorial_4.pdf

 Choose one resource: CPU, memory,  disk, or network
 Develop original AWS Lambda service in Java using the FaaS Inspector 

framework with per formance bound by CPU, memory,  disk, or network
 Run par testcpu.sh script on laptop, or ec2 instance with <=4 vCPUs

 ./partestcpu.sh 100 100

 Capture output using the “parTestCpu.sh script”  and paste into a 
spreadsheet (xlsx) 

 Verify that the number of containers is  100 (last row of output)
 Modify  your service unti l it  is  suf f iciently resource bound to achieve 

100 containers with single partestcpu.sh 100 100 script run
 Submit spreadsheet, and Java project source code
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EXTRA CREDIT – 20 PTS (FINAL)

 Extension to Thursday 3/14 @ 11:59pm

 Please use extra time to ensure support for 
multithreading and concurrency

 More time to implement extra credit membership tracking 
methods

 5 points extra credit for providing Maven build files 
(pom.xml)
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HOMEWORK 2 UPDATE
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 Include readme.txt or doc fi le with instructions in submission
 Must document membership tracking method 
 S-1: Static f i le membership tracking only = 0 pts
 T-1: TCP membership tracking only = +5 pts (should be dynamic 

once servers point to membership server)
 U-1: UDP membership tracking only = +10 pts (automatical ly 

discovers nodes with no configuration )
 S+T-2: Static f ile + TCP membership tracking  = +15 pts (Static f i le 

is not reread to refresh membership during operation)
 S+U-2: Static f i le + UDP membership tracking = +15 pts (Static f i le 

is not reread to refresh membership during operation)
 SD+T-2:  Static f i le + TCP membership tracking = +20 pts (Static f ile 

is periodically reread to refresh membership during operation)
 SD+U-2: Static f ile + UDP membership tracking = +20 pts (Static 

f i le is periodical ly reread to refresh membership during operation)
 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic )
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SHORT-HAND-CODES FOR MEMBERSHIP 
TRACKING APPROACHES

CH. 6.2: LOGICAL
CLOCKS

L16.6
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 To order events across nodes (processes), using NTP to 
synchronize clocks is one approach

 But using monotonically increasing event counters (e.g. logical 
clocks) may be easier and sufficient to order events

 We would like to understand two conditions:

 Are events causally related?
 Event A causally happens before event B

 Or are events considered concurrent?
 Happening at the same time
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ORDERING EVENTS IN 
DISTRIBUTED SYSTEMS

 If an event A causally happens before another event B, then 
timestamp (A) < timestamp (B)

 When entering a house, must first unlock the door
 Event (A): Unlocking the door

 Event (B): Enter the house

 Unlocking the door happens before entering the house

 You receive a letter, after it has been sent
 Event (A): Letter has been sent

 Event (B): Letter is received

 Letter being sent happens before letter being received
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WHAT IS CAUSALITY?
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 What are the causal relationships on the graph?
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CAUSALITY

P1

P2

A                     B              C                       D              E

E                  F            G

P3

H                                 I                                            J

• A  B
• B  F
• A  F

• H  G
• F  J
• H  J
• C  J

• I  G ?
• H  G ?
• C  G ?
• B  G ?

 A pair of concurrent events doesn’t have a causal path from 
one event to another

 Lamport timestamps or vector clocks are not guaranteed to be 
ordered or unequal for concurrent events

 Clock values from different processes can’t be compared

 The clock values may suggest that one event “happens before” 
another, but because they are from different processes they 
can’t be trusted…
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WHAT ARE CONCURRENT EVENTS?
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 Are these relationships causal or concurrent?
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CONCURRENT EVENTS

P1

P2

A                     B              C                       D              E

E                     F          G

P3

H                                 I                                            J

• C  F ?
• 3 == 3

• H  C
• 1 < 3

H & C appear 
concurrent

• H  F ?
• B  F ?
Don’t know how 
long delivery of B 
to P2 takes.

3

3

1

21

2

 Are these relationships causal or concurrent?
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CONCURRENT EVENTS

P1

P2

A                     B              C                       D              E

E                     F          G

P3

H                                 I                                            J

• C  F ?
• 3 == 3

• H  C
• 1 < 3

H & C appear 
concurrent

• H  F ?
• B  F ?
Don’t know how 
long delivery of B 
to P2 takes.

3

3

1

21

2

Simply having a local time stamp
less than the time stamp of another

process does not guarantee causality

Here for H  C the events are concurrent



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.7

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?
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CAUSALITY - 2

YES

 Lamport clocks (global sense of logical time) does not help to 
determine causal ordering of messages

 Vector clocks incorporate local time and support capturing 
causal histories and offer an alternative
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VECTOR CLOCKS
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 Vector clocks keep track of causal history

 If two local events happened at process P, then the 
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process
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VECTOR CLOCKS - 2

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded 
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)
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VECTOR CLOCKS - 3

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1
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 Pj knows the # of events at Pi based on the timestamps of the  
received message

 Pj learns how many events have occurred at other processes 
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 
message(s) to be sent…
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VECTOR CLOCKS - 4

 Is m4 causally dependent on m2?

Local 

clock is 

Underlined
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VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITYYES
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 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

YES

m4 and m2
may be concurrent

Is m4 causally dependent on m2?

 Disclaimer:

 Without knowing actual information contained in messages, it  
is not possible to state with cer tainty that there is a causal 
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…
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VECTOR CLOCKS - 5



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.11

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L16.21

 Coordinating access among distributed processes to a 
shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS
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 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid
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TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated 
around ring
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TOKEN-RING ALGORITHM
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1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a 
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message 
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes 
before first acquiring access to the resource
 CONTRAST: Token-ring did not ask nodes for permission 

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 
resource(s)

 Manage mutual exclusion on a distributed system similar 
to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”
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DISTRIBUTED MUTUAL EXCLUSION 
ALGORITHMS - 3
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 When resource not available, coordinator can block the 
requesting process, or respond with a reject message

 P2 must poll the coordinator if it  responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission 
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives
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CENTRALIZED MUTUAL EXCLUSION - 2



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.15

 Ricart and Agrawala [1981], use total ordering of all  events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all  nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost
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DISTRIBUTED ALGORITHM

 When each node receives a request message they will :

1. Say OK ( i f  the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison ( i f  node is waiting to 
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all  nodes to grant permission

 Requirement: every node must know the entire membership 
l ist of the distributed system
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DISTRIBUTED ALGORITHM - 2
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 If Node 0 and Node 2 simultaneously request access

 Node 0’s t ime stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of confl ict, lowest t imestamp wins!
 As seen in step (c)
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DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does 
not respond

 Lack of response can be confused with failure

 Possible Solution: When node receives request for 
resource it is accessing, always send a reply either 
granting or denying permission (ACK)

 Enables requester to determine when nodes have died
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM
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 Problem: Multicast communication required –or- each node 
must maintain full  group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement 
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed 
when a simple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote: 
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give 
permission to access a resource (because it is busy) it will 
inform the requester
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DECENTRALIZED ALGORITHM
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 Assumption #2: When a coordinator crashes, it recovers 
quickly, but wil l  have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 
permission to the shared resource, and on recovery it errantly 
grants permission again

 The Hope: if  coordinator crashes, upon recovery , the node 
granted access to the resource has already f inished before the 
restored coordinator grants access again . .  .
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DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of 
violating correctness is so low it can be neglected in 
comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to 
access resource, which requires t ime
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
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 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 
process can poll  to gain access again with a random delay 
(known as back-of f)

 If too many nodes compete to gain access to a resource, 
majority vote can lead to low resource util ization

 No one can achieve majority vote to obtain access to the 
shared resource

 Problem Solution detailed in [Lin et al. 2014]

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION 
ALGORITHMS

L16.38

1
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 Many distr ibuted systems require one process to act as a 
coordinator, init iator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements 

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all  nodes agree on a 
coordinator
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ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest 
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems
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ELECTION ALGORITHMS
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 When any process notices the coordinator is no longer 
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher 

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes 

coordinator
3. If one of the higher-ups answers, it takes over and runs the 

election.
 When the higher numbered process receives an ELECTION 

message from a lower-numbered colleague, it responds 
with “OK”, indicating it’s alive, and it takes over the 
election.
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BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining 
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a 
message stating it is star ting as the coordinator.

 If a higher numbered node that was previously down comes 
back up, it holds an election, and ultimately takes over the 
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm
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BULLY ALGORITHM - 2
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BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4 
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and 
6 each hold an 
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins 
and tells everyone

 Every node knows who is participating in the distributed 
system
 Each node has a group membership directory

 First process to notice the leader is of fline launches a new 
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”
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BULLY SUMMARY
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 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator 
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node 
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own 
identifier in the active node l ist.  Message is changed to 
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator
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RING ALGORITHM

 PROBLEM: Two nodes star t election at the same time: P3 and P6

 P3  sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is  an act ive node l ist

 Each node adds itself to the act ive node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the highest ID
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 Assumptions made by traditional election algorithms not 
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad 
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes 
and partitioning networks.

 Best leader can be elected, rather than just a random one
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ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) star ts the e lection by sending an ELECTION 
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors,  but not to parent

4. Node (R), receives message, designates (Q) as parent,  and 
spreads ELECTION message, but not to  parent

5. Neighbors that have already selected a parent immediately 
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report 

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life 
and resource capacity

6. Q eventually  acknowledges the ELECTION message sent by P, and 
also indicates the most eligible node (based on battery & 
resource capacity)
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Node [A] 
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then 
facil itates Node H
becoming leader
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WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique 
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the 
network partitions, and when nodes join and leave
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WIRELESS ELECTION - 3
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 Large systems often require several nodes to serve as 
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must 
be low

2. Super peers should be evenly distributed across the 
overlay network (ensures proper load balancing, 
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes
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ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier 
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per 

node
 Required number of super peers is 2(k – m) ▪ N, where N is 

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes
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ELECTIONS FOR DHT BASED SYSTEMS
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 Given an overlay network, the idea is to position 
superpeers throughout the network so they are evenly 
disbursed 

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”.  Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay 
network
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SUPER PEERS IN 
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and 
force information across the network

 If forces acting on a node with a token exceed a threshold, 
token is moved away

 Once nodes hold token for awhile they become superpeers
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OVERLAY TOKEN DISTRIBUTION



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.28

RAFT CONSENSUS

L16.55

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for 
consensus

 Single decree Paxos: supports reaching agreement on a single 
decision
 To agree on contents of a single log entry 

 Multiple decree Paxos: use multiple instances of the protocol 
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct”  (e.g. via proofs)
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CONSENSUS IN DISTRIBUTED SYSTEMS
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 As reported by the inventors of RAFT . .  .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users 
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers
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PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical 
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi -Paxos description has missing detail
 Mostly focused on single decree
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 Other attempts to flesh out details are divergent from 
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building 
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential 
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions
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PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each 
develops a different architecture for solving the difficult 
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about 
correctness, but challenging to use for implementing real 
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems 
Demystified

 Observation: significant gaps between the description of 
the algorithm and the needs of a real-world system, result 
in final systems based on divergent, unproven protocols
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RESULTING PROBLEMS
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 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in 
real world scenarios
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DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems: 

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates 
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no 
other server can apply a different log entry for the same 
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way
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DESIGN GOALS FOR RAFT - 2
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 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent 
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DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state 
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader  to nodes

When leader fails, a new leader is elected
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 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits 
votes

More than one candidate can be conducting an election at 
the same time
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RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new 
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication
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TERMS
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 If a larger term # is found, then all nodes update term # 
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will 
immediately become a follower node

 If server receives request with stale term #, then request 
is rejected
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TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP 
stream by marshalling data inputs/outputs

 RequestVote()
 Init iated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to follower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads 

(performance)
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RAFT METHODS



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.35

 Every node has a randomized ElectionTimeout value
 If a node (follower) receives no heartbeat from the leader

after the timeout, node expects the leader has gone offline
 NEW ELECTION:
 (1) The node begins a new election as candidate, sending 

RequestVote() to every node in the system
 Candidate immediately votes for itself
 RequestVote() sent in parallel to all nodes

 (2) Follower votes for fi rst candidate a RequestVote() is 
received from only i f  the candidate’s log is at  least (or more) 
up-to-date
 Inspect candidate provided last log index and log term values

 (3) If candidate obtains a majority of the votes (determined by 
calculating majority total from node directory) i t  wins the 
election!!!
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RAFT ELECTIONS

 Election outcomes

 A – Candidate wins

 B – Another server establishes leadership

 C – There is no winner

 Servers vote for only one candidate

 Only (1) winner per election

 Only (1) leader per term

 “Election safety property”

 New leader sends empty heartbeat to nodes to establish 
leadership
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ELECTIONS - 2
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 While a candidate waits for votes, it may receive an 
AppendEntries() call from another leader
 If the leader’s term >= candidate’s term then the candidate

concedes the election and returns to Follower state

 If multiple elections, then no one candidate may receive a 
majority vote.  One election times out f irst based on a 
randomized-election-timeout value
 Random timeout values help spread out the candidates to prevent 

endless looping

 KEY IDEA:  by using random timeouts,
when no majority vote occurs, a random 
node times out first and starts a new election before anyone 
else by incrementing the term #, and sending RequestVote() 
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ELECTIONS - 3

Election

Timeout

Election

Timeout

Candidate 1 Candidate 2

 Randomized timeout values should be reset every time

 Paper suggests a min timeout of 150ms, and max of 
300ms

 Timeout should be “an order of magnitude” greater (10x) 
than the node-to-node communication latency

 I’m presently using 500 – 1000ms

 Can experiment with different values
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ELECTIONS - 4
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 RAFT enforces leader logs to be up-to-date during an election

 Nodes ONLY vote for a candidate *if* :

 Candidate local term and log number >= follower

 Candidate’s log *must be* at least as up-to-date as the 
majority of follower’s log

 MORE up-to-date log is defined as log with:

 Higher term # in last log entry

 - -- OR ---

 When term of last log entries match, log with more entires

 E.g. longer log
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ELECTIONS - 5

 Term 1: normal election

 Term 2: normal election

 Term 3: SPLIT VOTE, no leader emerges, election times out

 Term 4: normal election
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TYPICAL ELECTION SEQUENCE
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 Raft guarantees that each of these properties is always true
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RAFT SAFETY

 Leader receives commands forwarded from followers

 Ways logs can diverge
 (a) Follower may be missing entries present on leader
 (b) Follower may have extra entries not present on the 

leader
 (c) Both A and B

 Because raft uses a “coordinator” node to achieve 
consensus the number of possible ways logs can diverge 
is limited

 Raft leaders FORCE followers logs to match its own
 Conflicting entries in follower logs are overwritten
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LOG REPLICATION



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.39

 FOR THE WHOLE SYSTEM THERE IS JUST ONE 
MONOTONICALLY INCREASING LOG INDEX

 Akin to Lamport’s Clocks

 Possible follower states at start of new term

 (a) Missing entries

 (b) Extra uncommitted entries

 (c) Both
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LOG REPLICATION - 2

 Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)

3. Sends AppendEntries() to followers

 Leader tracks index of its highest committed log entry

 Provides this index to followers in AppendEntries() RPC

 Leader commit to state machine:

 (1) When log entries replicated at a majority of the 
followers, leader commits to its state machine (KV-store)
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RAFT - LOG REPLICATION ALGORITHM
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 Synchronizing follower logs

 (2) If fol lower rejects AppendEntries() then leader decrements 
its “follower-nextIndex” by one, and retries AppendEntries().
 “follower-nextIndex” tracks which logs entries are sent to the 

follower for each AppendEntries() RPC call

 Loop continues unti l leader walks back i ts “follower-
nextIndex” until  it matches what is committed at the follower
 Follower has a commitIndex

 Tracks 1st phase of a “two-phase” commit

 Follower has a lastApplied index

 Tracks 2nd phase of “two-phase” commit

 Once leader matches follower-nextIndex, the follower accepts 
the AppendEntries() RPC, and writes data to its log
 Conflicting log entries are overwritten 
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LOG REPLICATION ALGORITHM - 2

 Leader based consensus algorithms require the leader to 
“eventually store” all committed log entries

 Raft handles follower node failure by retrying 
communication indefinitely  

 If crashed server restarts, the log will be resurrected, and 
the follower’s state machine will be restored (kv-store)
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LOG REPLICATION ALGORITHM - 3
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 Each node keeps a commitIndex and lastApplied index variable

 PHASE I
 Leader: when log message replicated at a majority of follower 

logs (not state machines)   **- described next  sl ide

 Leader increments its commitIndex
 Followers set commitIndex to

Min (leader-commitIndex , index of last new log entry)

 PHASE II
 For any node (follower, leader):
 If commitIndex > lastApplied
 Increment lastApplied by 1
 commit log[lastApplied] to state machine (kv-store)
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COMMITTING LOG ENTRIES

 How leader determines when to update it ’s commitIndex

 Use a majority consensus of what has been committed at 
follower logs

 Leader maintains follower state arrays:

 nextIndex[]:    index of next log entry to send to follower 

 matchIndex[]: index of highest log entry known to be 
replicated (to log) at follower

 Find N, such that N > commitIndexleader

 and a majority of matchIndex[i] ≥ N     (from followers)

 and log_entryleader[N].term == currentTermleader

 then set commitIndexleader = N
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UPDATING COMMIT-INDEX OF LEADER
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 Cluster discovery performed at startup

 Use any method:

 Static file, UDP discovery (kv-store), TCP discovery (kv-
store)

 One membership is discovered, it can remain static/fixed

 Nodes can go offline, come back online

 One a common configuration is propagated across the 
system, it can not be changed without restarting

 RAFT specifies a configuration change protocol where the 
system does a “hand-off” between an old and new 
configuration (section 6 of the paper)
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RAFT CLUSTER MEMBERSHIP – A3

 RequestVote() can be single threaded
 AppendEntries() probably should have one thread per follower

 TCP client catch exceptions:
 IOExcpetion – newSocket()

 IOException – getOutputStream()

 IOException – getInputStream()

 Leader should catch exceptions, and retry requests indefinitely

 Use socket method .setSoTimeout() to set a socket timeout in MS

 Node directory should generate and track nodeIDs
 E.g. 1, 2, 3, 4, … n

 Node directory should retrieve a node by ID, or IP/PORT 
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A3 RAFT SIMPLIFICATIONS
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 Leader election: if using a single thread for election candidate
should retry RequestVote() up to 10 times for a follower then 
give-up and move to next follower

 Instead of pushing data to followers when put() or del() is 
received by leader, can wait unti l next scheduled heartbeat to 
follower
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A3 RAFT SIMPLIFICATIONS - 2

CONSISTENCY AND 
REPLICATION

L19.86
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(1) Fault tolerance: continue working after one replica 
crashes

(2) Provide better protection against corrupted data

(3) Performance

(3a) Scaling up systems (scalability)

 Replicate server, load balance workload across replicas

(3b) For providing geographically close replicas

 Replicas at the edge

MOVE DATA TO THE COMPUTATION

 Performance perceived at the edge increases

 But what is the cost of localized replication?

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.87

WHY REPLICATE DATA?

 Network bandwidth consumed maintaining replicas
 Updates must be sent out and coordinated

 Maintaining consistency may be dif ficult
 All copies must be updated to ensure consistency

 WHEN and HOW updates need to be performed determines the 
prices of data replication…

 Web caching example
 Web browser caches local content to improve per formance
 Doesn’t know when content is “stale”
 Solution: Place server in charge of replication not browser
 Server invalidates and updates client cached copies
 Track how current copies are
 Degrades server performance  overhead from tracking, etc.
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DATA REPLICATION COSTS
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 Process P accesses a local replica N times per second
 Replica is updated M times per second
 Updates involve complete refreshes of the data
 If N << M (very low access rate) many updates M are never 

accessed by P.
 Network communication overhead for most updates is useless.

 TRADEOFFS:
 Either move the replica away from P
 So the total number of accesses from multiple processes is higher

 Or, apply a different strategy for updating the replica
 i.e. less frequent updates, possibly need based

 BALANCE TRADEOFF BETWEEN REPLICA ACCESS FREQUENCY 
AND COSTS OF REPLICATION (communication overhead)
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REPLICATION TRADEOFF EXAMPLE

 TIGHT CONSISTENCY
 Reads must return same result
 Replication must occur after an update, before a read
 Provided by synchronous replication
 Update is performed across all copies as a single atomic 

operation (or transaction)
 Assignment 2 replication is with t ight consistency.

 Keeping multiple copies consistent is subject to scalability 
problems

 May need global ordering of operations (e.g. Lamport clocks), 
or the use of a coordinator to assign order

 Global synchronization across a wide area network is time 
consuming  (network latency)
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REPLICATION: SCALABILITY ISSUES
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 Only solution is often to relax the consistency constraints
 Updates do not need to be executed as atomic operations
 Try to avoid instantaneous global synchronizations
 TRADEOFF: consistency
 Not all copies may always be the same everywhere

 Whether consistency requirements can be relaxed 
depends on:
 Access and update patterns
 Use cases of the data

 Range of consistency models exist
 Implemented with distribution and consistency protocols
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REPLICATION SCALABILITY - 2

DATA CENTRIC 
CONSISTENCY MODELS

L19.92
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 Data consistency is discussed in the context of 
 Distributed shared memory

 Distributed shared database

 Distributed shared file system

 Generically referred to as a “data store”

 Each process has a nearby replica:
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DATA-CONSISTENCY MODELS

 CONSISTENCY MODEL

 Rules that must be followed to ensure consistency

 Represents a contract between processes and data store

 If processes agree to obey cer tain rules, store promises to 
work correctly

 No general rules for loosening consistency

 What can be tolerated is highly application dependent

 Three types of inconsistencies

 Data variation

 Staleness

 Ordering of update operations
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DATA-CONSISTENCY MODELS
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 Ranges assigned to “what is allowed” for these deviations:
 How much data variation?
 How old/stale can the data be? 
 How much can ordering of update operations vary?

 Idea is to specify bounds for numeric deviation:
 Relative numeric deviation: 2% (percent)
 Absolute numeric deviation: .2 (implies a particular scale)

 Numeric deviation: may also refer to the number of updates 
applied to a replica

 Staleness: specifies bounds relative to time, e.g. how old?
 Ordering of updates: updates applied tentatively to local copy; 

may later be rolled back and applied in dif ferent order before 
becoming permanent 
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CONTINUOUS CONSISTENCY

 Abbreviated as “Conit”

 Specified the unit to measure consistency

 Example: Tracking fleet of rental cars

 Variables for a “conit”: 

 (g) gasoline consumed

 (p) price paid for gasoline

 (d) distance traveled 

 Server keep conit consistently replicated
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CONSISTENCY UNITS (CONIT)
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 Each process has vector clock (known t ime @A,  known t ime @B)
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CONSISTENCY UNIT (CONIT)

committed

Log
of

Events
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 Result of any execution is the same as if the operations of all 
processes were executed in some sequential order, and the 
operations of each individual process appear in this sequence 
in the order specified by its program.

 Exact order seen by processes DOES NOT MATTER

 As long as they all  agree

 Processes here must see: R(x)b, then R(x)a
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SEQUENTIAL CONSISTENCY

Sequentially Consistent NOT Sequentially Consistent
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 Writes that are potentially causally related must be seen by all  
processes in the same order . 

 Concurrent writes may be seen in a dif ferent order by 
different processes.

 Concurrent writes happen with no READS in between
 Events can be seen as “concurrent events”

 Which writes are concurrent?

 Note how the reads after the concurrent write for P3 and P4 
are in a different order.

 This is ok with causal consistency
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CAUSAL CONSISTENCY

 Which timing graphs uphold causal consistency?

 (A)

 (B)

 Which writes are concurrent?

 For (B), since R(x)a can influence W(x)b, the subsequent reads 
by P3 and P4 must be in the same order . .  .
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CAUSAL CONSISTENCY - 2
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 Locks can be used to control access to data members

 Releasing a lock tells the distributed system that a 
variable needs to be synchronized / updated.

 A simple read without obtaining a lock may result in a 
stale value

 Here P2 does not obtain L(y) before reading y R(y)

 P2 receives a stale/old value
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ENTRY CONSISTENCY

 Consistency models define what to expect when processes 
concurrently operate on distr ibuted data

 Data is consistent, if  it adheres to the rules of the model

 Coherence models: describe what can be expected for only a 
single data item

 Data item is replicated

 Data item is coherent when copies adhere to consistency 
model rules

 Coherence often uses sequential consistency applied to a 
single data item

 For concurrent writes, all  processes eventually see the same 
order of updates
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CONSISTENCY VS. COHERENCE
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 If no new updates are made to a given data item, 
eventually all accesses to that item will return the last 
updated value.

 System must reconcile differences between multiple 
distributed copies of data

 Servers must exchange data updates
 Servers must reconcile updates to agree on final state
 Read repair: correction done when read finds 

inconsistency
Write repair: correct done on write operation
 Asynchronous repair: correction done independently from 

read and write
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EVENTUAL CONSISTENCY

 Most processes mainly read from data store

 Rarely update data

 How fast should updates be made to read-only processes?

 Example: Content Delivery Networks (video streaming)

 Updates are propagated slowly

 Conflicts: write-write and read-write (most common)

 Often acceptable to propagate updates in a lazy manner 
when most processes perform only READ-ONLY access

 All replica gradually (eventually) become consistent
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EVENTUAL CONSISTENCY - 2
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QUESTIONS
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