
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.1

Chapter 6: Coordination

Consensus Algorithms
Chapter 7: Consistency and
Replication

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Homework 2

Extra Credit Assignment Posted

Ch. 6 – Coordination
 6.2 Logical clocks, Lamport clocks, Vector clocks

 6.3 Distributed mutual exclusion

 6.4 Election algorithms

 RAFT Consensus algorithm

 Chapter 7 Consistency and Replication

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.2

 Write up to be posted - Available unti l Friday 03/22 @ 11:59pm

 Review TCSS 562 Tutorial #4:
 http://faculty.washington.edu/wl loyd/courses/tcss562/

tutorials/TCSS562_f2018_tutorial_4.pdf

 Choose one resource: CPU, memory, disk, or network
 Develop original AWS Lambda service in Java using the FaaS Inspector

framework with per formance bound by CPU, memory, disk, or network
 Run par testcpu.sh script on laptop, or ec2 instance with <=4 vCPUs

 ./partestcpu.sh 100 100

 Capture output using the “parTestCpu.sh script” and paste into a
spreadsheet (xlsx)

 Verify that the number of containers is 100 (last row of output)
 Modify your service unti l it is suf f iciently resource bound to achieve

100 containers with single partestcpu.sh 100 100 script run
 Submit spreadsheet, and Java project source code

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

EXTRA CREDIT – 20 PTS (FINAL)

 Extension to Thursday 3/14 @ 11:59pm

 Please use extra time to ensure support for
multithreading and concurrency

 More time to implement extra credit membership tracking
methods

 5 points extra credit for providing Maven build files
(pom.xml)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

HOMEWORK 2 UPDATE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.3

 Include readme.txt or doc fi le with instructions in submission
 Must document membership tracking method
 S-1: Static f i le membership tracking only = 0 pts
 T-1: TCP membership tracking only = +5 pts (should be dynamic

once servers point to membership server)
 U-1: UDP membership tracking only = +10 pts (automatical ly

discovers nodes with no configuration)
 S+T-2: Static f ile + TCP membership tracking = +15 pts (Static f i le

is not reread to refresh membership during operation)
 S+U-2: Static f i le + UDP membership tracking = +15 pts (Static f i le

is not reread to refresh membership during operation)
 SD+T-2: Static f i le + TCP membership tracking = +20 pts (Static f ile

is periodically reread to refresh membership during operation)
 SD+U-2: Static f ile + UDP membership tracking = +20 pts (Static

f i le is periodical ly reread to refresh membership during operation)
 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

SHORT-HAND-CODES FOR MEMBERSHIP
TRACKING APPROACHES

CH. 6.2: LOGICAL
CLOCKS

L16.6

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.4

 To order events across nodes (processes), using NTP to
synchronize clocks is one approach

 But using monotonically increasing event counters (e.g. logical
clocks) may be easier and sufficient to order events

 We would like to understand two conditions:

 Are events causally related?
 Event A causally happens before event B

 Or are events considered concurrent?
 Happening at the same time

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

ORDERING EVENTS IN
DISTRIBUTED SYSTEMS

 If an event A causally happens before another event B, then
timestamp (A) < timestamp (B)

 When entering a house, must first unlock the door
 Event (A): Unlocking the door

 Event (B): Enter the house

 Unlocking the door happens before entering the house

 You receive a letter, after it has been sent
 Event (A): Letter has been sent

 Event (B): Letter is received

 Letter being sent happens before letter being received

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

WHAT IS CAUSALITY?

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.5

 What are the causal relationships on the graph?

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

CAUSALITY

P1

P2

A B C D E

E F G

P3

H I J

• A  B
• B  F
• A  F

• H  G
• F  J
• H  J
• C  J

• I  G ?
• H  G ?
• C  G ?
• B  G ?

 A pair of concurrent events doesn’t have a causal path from
one event to another

 Lamport timestamps or vector clocks are not guaranteed to be
ordered or unequal for concurrent events

 Clock values from different processes can’t be compared

 The clock values may suggest that one event “happens before”
another, but because they are from different processes they
can’t be trusted…

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

WHAT ARE CONCURRENT EVENTS?

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.6

 Are these relationships causal or concurrent?

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

CONCURRENT EVENTS

P1

P2

A B C D E

E F G

P3

H I J

• C  F ?
• 3 == 3

• H  C
• 1 < 3

H & C appear
concurrent

• H  F ?
• B  F ?
Don’t know how
long delivery of B
to P2 takes.

3

3

1

21

2

 Are these relationships causal or concurrent?

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

CONCURRENT EVENTS

P1

P2

A B C D E

E F G

P3

H I J

• C  F ?
• 3 == 3

• H  C
• 1 < 3

H & C appear
concurrent

• H  F ?
• B  F ?
Don’t know how
long delivery of B
to P2 takes.

3

3

1

21

2

Simply having a local time stamp
less than the time stamp of another

process does not guarantee causality

Here for H  C the events are concurrent

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.7

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

CAUSALITY - 2

YES

 Lamport clocks (global sense of logical time) does not help to
determine causal ordering of messages

 Vector clocks incorporate local time and support capturing
causal histories and offer an alternative

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

VECTOR CLOCKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.8

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

VECTOR CLOCKS - 2

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

VECTOR CLOCKS - 3

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.9

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

VECTOR CLOCKS - 4

 Is m4 causally dependent on m2?

Local

clock is

Underlined

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITYYES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.10

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

YES

m4 and m2
may be concurrent

Is m4 causally dependent on m2?

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with cer tainty that there is a causal
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

VECTOR CLOCKS - 5

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.11

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L16.21

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.12

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated
around ring

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.24

TOKEN-RING ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.13

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes
before first acquiring access to the resource
 CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared
resource(s)

 Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.14

 When resource not available, coordinator can block the
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

CENTRALIZED MUTUAL EXCLUSION - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.15

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

DISTRIBUTED ALGORITHM

 When each node receives a request message they will :

1. Say OK (i f the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison (i f node is waiting to
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership
l ist of the distributed system

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

DISTRIBUTED ALGORITHM - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.16

 If Node 0 and Node 2 simultaneously request access

 Node 0’s t ime stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of confl ict, lowest t imestamp wins!
 As seen in step (c)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does
not respond

 Lack of response can be confused with failure

 Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

 Enables requester to determine when nodes have died

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

CHALLENGES WITH
DISTRIBUTED ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.17

 Problem: Multicast communication required –or- each node
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote:
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

DECENTRALIZED ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.18

 Assumption #2: When a coordinator crashes, it recovers
quickly, but wil l have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

 The Hope: if coordinator crashes, upon recovery , the node
granted access to the resource has already f inished before the
restored coordinator grants access again . . .

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of
violating correctness is so low it can be neglected in
comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to
access resource, which requires t ime

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.19

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-of f)

 If too many nodes compete to gain access to a resource,
majority vote can lead to low resource util ization

 No one can achieve majority vote to obtain access to the
shared resource

 Problem Solution detailed in [Lin et al. 2014]

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION
ALGORITHMS

L16.38

1

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.20

 Many distr ibuted systems require one process to act as a
coordinator, init iator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a
coordinator

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

ELECTION ALGORITHMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.21

 When any process notices the coordinator is no longer
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes

coordinator
3. If one of the higher-ups answers, it takes over and runs the

election.
 When the higher numbered process receives an ELECTION

message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a
message stating it is star ting as the coordinator.

 If a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

BULLY ALGORITHM - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.22

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and
6 each hold an
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins
and tells everyone

 Every node knows who is participating in the distributed
system
 Each node has a group membership directory

 First process to notice the leader is of fline launches a new
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

BULLY SUMMARY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.23

 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own
identifier in the active node l ist. Message is changed to
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

RING ALGORITHM

 PROBLEM: Two nodes star t election at the same time: P3 and P6

 P3 sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is an act ive node l ist

 Each node adds itself to the act ive node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the highest ID

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

RING: MULTIPLE ELECTION EXAMPLE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.24

 Assumptions made by traditional election algorithms not
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes
and partitioning networks.

 Best leader can be elected, rather than just a random one

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) star ts the e lection by sending an ELECTION
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors, but not to parent

4. Node (R), receives message, designates (Q) as parent, and
spreads ELECTION message, but not to parent

5. Neighbors that have already selected a parent immediately
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life
and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and
also indicates the most eligible node (based on battery &
resource capacity)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

VASUDEVAN ET AL. WIRELESS ELECTION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.25

Node [A]
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then
facil itates Node H
becoming leader

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the
network partitions, and when nodes join and leave

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

WIRELESS ELECTION - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.26

 Large systems often require several nodes to serve as
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must
be low

2. Super peers should be evenly distributed across the
overlay network (ensures proper load balancing,
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per

node
 Required number of super peers is 2(k – m) ▪ N, where N is

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

ELECTIONS FOR DHT BASED SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.27

 Given an overlay network, the idea is to position
superpeers throughout the network so they are evenly
disbursed

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”. Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay
network

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

SUPER PEERS IN
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and
force information across the network

 If forces acting on a node with a token exceed a threshold,
token is moved away

 Once nodes hold token for awhile they become superpeers

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

OVERLAY TOKEN DISTRIBUTION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.28

RAFT CONSENSUS

L16.55

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for
consensus

 Single decree Paxos: supports reaching agreement on a single
decision
 To agree on contents of a single log entry

 Multiple decree Paxos: use multiple instances of the protocol
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct” (e.g. via proofs)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

CONSENSUS IN DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.29

 As reported by the inventors of RAFT . . .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi -Paxos description has missing detail
 Mostly focused on single decree

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

PROBLEMS WITH PAXOS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.30

 Other attempts to flesh out details are divergent from
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each
develops a different architecture for solving the difficult
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about
correctness, but challenging to use for implementing real
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems
Demystified

 Observation: significant gaps between the description of
the algorithm and the needs of a real-world system, result
in final systems based on divergent, unproven protocols

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

RESULTING PROBLEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.31

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in
real world scenarios

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems:

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

DESIGN GOALS FOR RAFT - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.32

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader  to nodes

When leader fails, a new leader is elected

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

RAFT ALGORITHM BASICS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.33

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits
votes

More than one candidate can be conducting an election at
the same time

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

TERMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.34

 If a larger term # is found, then all nodes update term #
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will
immediately become a follower node

 If server receives request with stale term #, then request
is rejected

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

 RequestVote()
 Init iated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to follower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads

(performance)

March 13, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

RAFT METHODS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.35

 Every node has a randomized ElectionTimeout value
 If a node (follower) receives no heartbeat from the leader

after the timeout, node expects the leader has gone offline
 NEW ELECTION:
 (1) The node begins a new election as candidate, sending

RequestVote() to every node in the system
 Candidate immediately votes for itself
 RequestVote() sent in parallel to all nodes

 (2) Follower votes for fi rst candidate a RequestVote() is
received from only i f the candidate’s log is at least (or more)
up-to-date
 Inspect candidate provided last log index and log term values

 (3) If candidate obtains a majority of the votes (determined by
calculating majority total from node directory) i t wins the
election!!!

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.69

RAFT ELECTIONS

 Election outcomes

 A – Candidate wins

 B – Another server establishes leadership

 C – There is no winner

 Servers vote for only one candidate

 Only (1) winner per election

 Only (1) leader per term

 “Election safety property”

 New leader sends empty heartbeat to nodes to establish
leadership

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.70

ELECTIONS - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.36

 While a candidate waits for votes, it may receive an
AppendEntries() call from another leader
 If the leader’s term >= candidate’s term then the candidate

concedes the election and returns to Follower state

 If multiple elections, then no one candidate may receive a
majority vote. One election times out f irst based on a
randomized-election-timeout value
 Random timeout values help spread out the candidates to prevent

endless looping

 KEY IDEA: by using random timeouts,
when no majority vote occurs, a random
node times out first and starts a new election before anyone
else by incrementing the term #, and sending RequestVote()

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.71

ELECTIONS - 3

Election

Timeout

Election

Timeout

Candidate 1 Candidate 2

 Randomized timeout values should be reset every time

 Paper suggests a min timeout of 150ms, and max of
300ms

 Timeout should be “an order of magnitude” greater (10x)
than the node-to-node communication latency

 I’m presently using 500 – 1000ms

 Can experiment with different values

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.72

ELECTIONS - 4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.37

 RAFT enforces leader logs to be up-to-date during an election

 Nodes ONLY vote for a candidate *if* :

 Candidate local term and log number >= follower

 Candidate’s log *must be* at least as up-to-date as the
majority of follower’s log

 MORE up-to-date log is defined as log with:

 Higher term # in last log entry

 - -- OR ---

 When term of last log entries match, log with more entires

 E.g. longer log

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.73

ELECTIONS - 5

 Term 1: normal election

 Term 2: normal election

 Term 3: SPLIT VOTE, no leader emerges, election times out

 Term 4: normal election

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.74

TYPICAL ELECTION SEQUENCE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.38

 Raft guarantees that each of these properties is always true

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.75

RAFT SAFETY

 Leader receives commands forwarded from followers

 Ways logs can diverge
 (a) Follower may be missing entries present on leader
 (b) Follower may have extra entries not present on the

leader
 (c) Both A and B

 Because raft uses a “coordinator” node to achieve
consensus the number of possible ways logs can diverge
is limited

 Raft leaders FORCE followers logs to match its own
 Conflicting entries in follower logs are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.76

LOG REPLICATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.39

 FOR THE WHOLE SYSTEM THERE IS JUST ONE
MONOTONICALLY INCREASING LOG INDEX

 Akin to Lamport’s Clocks

 Possible follower states at start of new term

 (a) Missing entries

 (b) Extra uncommitted entries

 (c) Both

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.77

LOG REPLICATION - 2

 Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)

3. Sends AppendEntries() to followers

 Leader tracks index of its highest committed log entry

 Provides this index to followers in AppendEntries() RPC

 Leader commit to state machine:

 (1) When log entries replicated at a majority of the
followers, leader commits to its state machine (KV-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.78

RAFT - LOG REPLICATION ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.40

 Synchronizing follower logs

 (2) If fol lower rejects AppendEntries() then leader decrements
its “follower-nextIndex” by one, and retries AppendEntries().
 “follower-nextIndex” tracks which logs entries are sent to the

follower for each AppendEntries() RPC call

 Loop continues unti l leader walks back i ts “follower-
nextIndex” until it matches what is committed at the follower
 Follower has a commitIndex

 Tracks 1st phase of a “two-phase” commit

 Follower has a lastApplied index

 Tracks 2nd phase of “two-phase” commit

 Once leader matches follower-nextIndex, the follower accepts
the AppendEntries() RPC, and writes data to its log
 Conflicting log entries are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.79

LOG REPLICATION ALGORITHM - 2

 Leader based consensus algorithms require the leader to
“eventually store” all committed log entries

 Raft handles follower node failure by retrying
communication indefinitely

 If crashed server restarts, the log will be resurrected, and
the follower’s state machine will be restored (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.80

LOG REPLICATION ALGORITHM - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.41

 Each node keeps a commitIndex and lastApplied index variable

 PHASE I
 Leader: when log message replicated at a majority of follower

logs (not state machines) **- described next sl ide

 Leader increments its commitIndex
 Followers set commitIndex to

Min (leader-commitIndex , index of last new log entry)

 PHASE II
 For any node (follower, leader):
 If commitIndex > lastApplied
 Increment lastApplied by 1
 commit log[lastApplied] to state machine (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.81

COMMITTING LOG ENTRIES

 How leader determines when to update it ’s commitIndex

 Use a majority consensus of what has been committed at
follower logs

 Leader maintains follower state arrays:

 nextIndex[]: index of next log entry to send to follower

 matchIndex[]: index of highest log entry known to be
replicated (to log) at follower

 Find N, such that N > commitIndexleader

 and a majority of matchIndex[i] ≥ N (from followers)

 and log_entryleader[N].term == currentTermleader

 then set commitIndexleader = N

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.82

UPDATING COMMIT-INDEX OF LEADER

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.42

 Cluster discovery performed at startup

 Use any method:

 Static file, UDP discovery (kv-store), TCP discovery (kv-
store)

 One membership is discovered, it can remain static/fixed

 Nodes can go offline, come back online

 One a common configuration is propagated across the
system, it can not be changed without restarting

 RAFT specifies a configuration change protocol where the
system does a “hand-off” between an old and new
configuration (section 6 of the paper)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.83

RAFT CLUSTER MEMBERSHIP – A3

 RequestVote() can be single threaded
 AppendEntries() probably should have one thread per follower

 TCP client catch exceptions:
 IOExcpetion – newSocket()

 IOException – getOutputStream()

 IOException – getInputStream()

 Leader should catch exceptions, and retry requests indefinitely

 Use socket method .setSoTimeout() to set a socket timeout in MS

 Node directory should generate and track nodeIDs
 E.g. 1, 2, 3, 4, … n

 Node directory should retrieve a node by ID, or IP/PORT

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.84

A3 RAFT SIMPLIFICATIONS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.43

 Leader election: if using a single thread for election candidate
should retry RequestVote() up to 10 times for a follower then
give-up and move to next follower

 Instead of pushing data to followers when put() or del() is
received by leader, can wait unti l next scheduled heartbeat to
follower

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.85

A3 RAFT SIMPLIFICATIONS - 2

CONSISTENCY AND
REPLICATION

L19.86

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.44

(1) Fault tolerance: continue working after one replica
crashes

(2) Provide better protection against corrupted data

(3) Performance

(3a) Scaling up systems (scalability)

 Replicate server, load balance workload across replicas

(3b) For providing geographically close replicas

 Replicas at the edge

MOVE DATA TO THE COMPUTATION

 Performance perceived at the edge increases

 But what is the cost of localized replication?

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.87

WHY REPLICATE DATA?

 Network bandwidth consumed maintaining replicas
 Updates must be sent out and coordinated

 Maintaining consistency may be dif ficult
 All copies must be updated to ensure consistency

 WHEN and HOW updates need to be performed determines the
prices of data replication…

 Web caching example
 Web browser caches local content to improve per formance
 Doesn’t know when content is “stale”
 Solution: Place server in charge of replication not browser
 Server invalidates and updates client cached copies
 Track how current copies are
 Degrades server performance  overhead from tracking, etc.

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.88

DATA REPLICATION COSTS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.45

 Process P accesses a local replica N times per second
 Replica is updated M times per second
 Updates involve complete refreshes of the data
 If N << M (very low access rate) many updates M are never

accessed by P.
 Network communication overhead for most updates is useless.

 TRADEOFFS:
 Either move the replica away from P
 So the total number of accesses from multiple processes is higher

 Or, apply a different strategy for updating the replica
 i.e. less frequent updates, possibly need based

 BALANCE TRADEOFF BETWEEN REPLICA ACCESS FREQUENCY
AND COSTS OF REPLICATION (communication overhead)

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.89

REPLICATION TRADEOFF EXAMPLE

 TIGHT CONSISTENCY
 Reads must return same result
 Replication must occur after an update, before a read
 Provided by synchronous replication
 Update is performed across all copies as a single atomic

operation (or transaction)
 Assignment 2 replication is with t ight consistency.

 Keeping multiple copies consistent is subject to scalability
problems

 May need global ordering of operations (e.g. Lamport clocks),
or the use of a coordinator to assign order

 Global synchronization across a wide area network is time
consuming (network latency)

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.90

REPLICATION: SCALABILITY ISSUES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.46

 Only solution is often to relax the consistency constraints
 Updates do not need to be executed as atomic operations
 Try to avoid instantaneous global synchronizations
 TRADEOFF: consistency
 Not all copies may always be the same everywhere

 Whether consistency requirements can be relaxed
depends on:
 Access and update patterns
 Use cases of the data

 Range of consistency models exist
 Implemented with distribution and consistency protocols

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.91

REPLICATION SCALABILITY - 2

DATA CENTRIC
CONSISTENCY MODELS

L19.92

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.47

 Data consistency is discussed in the context of
 Distributed shared memory

 Distributed shared database

 Distributed shared file system

 Generically referred to as a “data store”

 Each process has a nearby replica:

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.93

DATA-CONSISTENCY MODELS

 CONSISTENCY MODEL

 Rules that must be followed to ensure consistency

 Represents a contract between processes and data store

 If processes agree to obey cer tain rules, store promises to
work correctly

 No general rules for loosening consistency

 What can be tolerated is highly application dependent

 Three types of inconsistencies

 Data variation

 Staleness

 Ordering of update operations

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.94

DATA-CONSISTENCY MODELS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.48

 Ranges assigned to “what is allowed” for these deviations:
 How much data variation?
 How old/stale can the data be?
 How much can ordering of update operations vary?

 Idea is to specify bounds for numeric deviation:
 Relative numeric deviation: 2% (percent)
 Absolute numeric deviation: .2 (implies a particular scale)

 Numeric deviation: may also refer to the number of updates
applied to a replica

 Staleness: specifies bounds relative to time, e.g. how old?
 Ordering of updates: updates applied tentatively to local copy;

may later be rolled back and applied in dif ferent order before
becoming permanent

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.95

CONTINUOUS CONSISTENCY

 Abbreviated as “Conit”

 Specified the unit to measure consistency

 Example: Tracking fleet of rental cars

 Variables for a “conit”:

 (g) gasoline consumed

 (p) price paid for gasoline

 (d) distance traveled

 Server keep conit consistently replicated

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.96

CONSISTENCY UNITS (CONIT)

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.49

 Each process has vector clock (known t ime @A, known t ime @B)

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.97

CONSISTENCY UNIT (CONIT)

committed

Log
of

Events

A B

number of
unseen
events

sum of
unseen
events

 Result of any execution is the same as if the operations of all
processes were executed in some sequential order, and the
operations of each individual process appear in this sequence
in the order specified by its program.

 Exact order seen by processes DOES NOT MATTER

 As long as they all agree

 Processes here must see: R(x)b, then R(x)a

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.98

SEQUENTIAL CONSISTENCY

Sequentially Consistent NOT Sequentially Consistent

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.50

 Writes that are potentially causally related must be seen by all
processes in the same order .

 Concurrent writes may be seen in a dif ferent order by
different processes.

 Concurrent writes happen with no READS in between
 Events can be seen as “concurrent events”

 Which writes are concurrent?

 Note how the reads after the concurrent write for P3 and P4
are in a different order.

 This is ok with causal consistency

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.99

CAUSAL CONSISTENCY

 Which timing graphs uphold causal consistency?

 (A)

 (B)

 Which writes are concurrent?

 For (B), since R(x)a can influence W(x)b, the subsequent reads
by P3 and P4 must be in the same order . . .

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.100

CAUSAL CONSISTENCY - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.51

 Locks can be used to control access to data members

 Releasing a lock tells the distributed system that a
variable needs to be synchronized / updated.

 A simple read without obtaining a lock may result in a
stale value

 Here P2 does not obtain L(y) before reading y R(y)

 P2 receives a stale/old value

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.101

ENTRY CONSISTENCY

 Consistency models define what to expect when processes
concurrently operate on distr ibuted data

 Data is consistent, if it adheres to the rules of the model

 Coherence models: describe what can be expected for only a
single data item

 Data item is replicated

 Data item is coherent when copies adhere to consistency
model rules

 Coherence often uses sequential consistency applied to a
single data item

 For concurrent writes, all processes eventually see the same
order of updates

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.102

CONSISTENCY VS. COHERENCE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.52

 If no new updates are made to a given data item,
eventually all accesses to that item will return the last
updated value.

 System must reconcile differences between multiple
distributed copies of data

 Servers must exchange data updates
 Servers must reconcile updates to agree on final state
 Read repair: correction done when read finds

inconsistency
Write repair: correct done on write operation
 Asynchronous repair: correction done independently from

read and write
December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L19.103

EVENTUAL CONSISTENCY

 Most processes mainly read from data store

 Rarely update data

 How fast should updates be made to read-only processes?

 Example: Content Delivery Networks (video streaming)

 Updates are propagated slowly

 Conflicts: write-write and read-write (most common)

 Often acceptable to propagate updates in a lazy manner
when most processes perform only READ-ONLY access

 All replica gradually (eventually) become consistent

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.104

EVENTUAL CONSISTENCY - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 13, 2019

Slides by Wes J. Lloyd L16.53

QUESTIONS

March 13, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L16.10

5

EXTRA SLIDES

106

