
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.1

Chapter 6: Coordination

Consensus Algorithms
Chapter 7: Consistency and
Replication

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Homework 2
Extra Credit – to be posted
Active Reading Quiz

Ch. 6 – Coordination
 6.2 Logical clocks, Lamport clocks, Vector clocks
 6.3 Distributed mutual exclusion
 6.4 Election algorithms

 RAFT Consensus algorithm
 Chapter 7 Consistency and Replication

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OBJECTIVES

 Extension to Thursday 3/14 @ 11:59pm

 Please use extra time to ensure support for
multithreading and concurrency

 More time to implement extra credit membership tracking
methods

 5 points extra credit for providing Maven build files
(pom.xml)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

HOMEWORK 2 UPDATE

 Include readme.txt or doc fi le with instructions in submission

 Must document membership tracking method

 S-1: Static fi le membership tracking only = 0 pts

 T-1: TCP membership tracking only = +5 pts (should be dynamic
once servers point to membership server)

 U-1: UDP membership tracking only = +10 pts (automatically
discovers nodes with no configuration)

 S+T-2: Static fi le + TCP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 S+U-2: Static fi le + UDP membership tracking = +15 pts (Static fi le
is not reread to refresh membership during operation)

 SD+U-2: Static fi le + UDP membership tracking = +20 pts (Static
file is periodically reread to refresh membership during operation)

 T+U-2: TCP + UDP membership tracking = 20 pts (both dynamic)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

SHORT-HAND-CODES FOR MEMBERSHIP
TRACKING APPROACHES

 For the static N-dimensional hypercube, broadcast
requires N-1 messages

 Does it mean that N-1 is the minimal message it can
spread?

 Message spreading algorithms are typically concerned
with how to disseminate messages across unstructured
adhoc topologies
 As the size of the network is unknown, the goal is to

experiment with different approaches to message
spreading and spread termination

 N-1 is the minimum messages to fully disseminate a
message starting at one node, to the entire hypercube

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

FEEDBACK – 3/6

 What is the dif ference between a logical clock and a
vector clock?

 Covered today…

 Lamport clocks don’t help to determine causal ordering
of messages

 What is causality?

 Vector clocks support the capture of causal histories and
can be used as an alternative to Lamport clocks

Messages stamped with vector clocks

 All processes tracks all others view of logical time

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.2

CH. 6.2: LOGICAL
CLOCKS

L15.7

 In distributed systems, synchronizing to actual t ime may not be
required…

 It may be sufficient for every node to simply agree on a current
t ime (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological
and causal relationships in a distributed system

 Think counters . . .

 Leslie Lamport [1978] seminal paper showed that absolute clock
synchronization often is not required

 Processes simply need to agree on the order in which events occur

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

LOGICAL CLOCKS

 Happens-before relation

 AB: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,
and event B is the event of proc P2 receiving the msg, then
AB is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation:

 AB, BC, therefore AC

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange
messages, not even via third parties, then the sequence of
XY vs. YX can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never
backward (decreasing)

 Corrections to time can be made by adding a positive value,
but never by subtracting one

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects their values

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

LOGICAL CLOCKS - 4

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

LOGICAL CLOCKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.3

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message,
receiving a message, some other internal event
Pi increments Ci: Ci Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj max{Cj, ts(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1, m2) must be distributed,
to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the
lamport clock timestamp

 In each queue, each message must acknowledged by every
process in the system before operations can be applied to the
local database

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

TOTAL-ORDERED MULTICASTING
EXAMPLE

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

 Each message timestamped with local logical clock of sender
 Multicast message is conceptually “sent” to the sender
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Process delivers messages to application (database) only
when message at the head of the queue have been
acknowledged by every process in the system

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

TOTAL-ORDERED MULTICASTING - 2

 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “total ly” ordered in
replicated event queues

 Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

TOTAL-ORDERED MULTICASTING - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.4

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 What is causality?

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

VECTOR CLOCKS

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

WHAT IS CAUSALITY?

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

VECTOR CLOCKS

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

VECTOR CLOCKS - 3

 Local clock is underlined

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.5

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

VECTOR CLOCKS - 4

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L15.27

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated
around ring

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

TOKEN-RING ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.6

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes
before first acquiring access to the resource
 CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared
resource(s)

 Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS - 3

 When resource not available, coordinator can block the
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison (if node is waiting to
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership
list of the distributed system

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

DISTRIBUTED ALGORITHM - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.7

 If Node 0 and Node 2 simultaneously request access

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of confl ict, lowest t imestamp wins!
 As seen in step (c)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does
not respond

 Lack of response can be confused with failure

 Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

 Enables requester to determine when nodes have died

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

CHALLENGES WITH
DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a s imple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator

 Accessing resource requires majority vote:
Votes from m > N/2 coordinators

 Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

 The Hope: if coordinator crashes, upon recovery , the node
granted access to the resource has already f inished before the
restored coordinator grants access again . . .

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

DECENTRALIZED ALGORITHM - 2

 Even with conservative probability values, the chance of
violating correctness is so low it can be neglected in
comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to
access resource, which requires time

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.8

 Back-off Polling Approach for permission-denied :

 If permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

 If too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

 No one can achieve majority vote to obtain access to the
shared resource

 Problem Solution detailed in [Lin et al. 2014]

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

DECENTRALIZED ALGORITHM - 4

CH. 6.4: ELECTION
ALGORITHMS

L15.44

1

 Many distributed systems require one process to act as a
coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role
 In some situations there are special requirements

 Resource requirements: compute power, network capacity

 Data: access to certain data/information

 Assumption:
 Every node has access to a “node directory”

 Process/node ID, IP address, port, etc.

 Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a
coordinator

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest
numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

ELECTION ALGORITHMS

 When any process notices the coordinator is no longer
responding to requests, it initiates an election

 Process Pk initiates an election as follows:
1. Pk sends an ELECTION message to all processes with higher

process IDs (Pk+1, Pk+2, … PN-1)
2. If no one responds, Pk wins the election and becomes

coordinator
3. If one of the higher-ups answers, it takes over and runs the

election.
 When the higher numbered process receives an ELECTION

message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

BULLY ALGORITHM - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.9

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4
holds an election

[2] Process 5 and
6 respond

[3] Process 5 and
6 each hold an
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins
and tells everyone

 Every node knows who is participating in the distributed
system
 Each node has a group membership directory

 First process to notice the leader is offline launches a new
election

 GOAL: Find the highest number node that is running
 Loop over the nodes until the highest numbered node is found

 May require multiple election rounds

 Highest numbered node is always the “BULLY”

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

BULLY SUMMARY

 Election algorithm based on network of nodes in a logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator
is not functioning

1. Pk builds an election message, and sends to its successor
 If successor is down, successor is skipped

 Skips continue until a running process is found

2. When the election message is passed around, each node
adds its ID to a separate active node l ist

3. When election message returns to Pk, Pk recognizes its own
identifier in the active node l ist . Message is changed to
COORDINATOR and “elected(Pk)” message is circulated.
 Second message announces Pk is the NEW coordinator

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

RING ALGORITHM

 PROBLEM: Two nodes start election at the same time: P3 and P6

 P3 sends ELECT(P3) message, P6 sends ELECT(P6) message
 P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is an act ive node l ist

 Each node adds itself to the active node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it ’s the candidate with the h ighest ID

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

RING: MULTIPLE ELECTION EXAMPLE

 Assumptions made by traditional election algorithms not
realistic for wireless environments:

Message passing is reliable

 Topology of the network does not change

 A few protocols have been developed for elections in ad
hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes
and partitioning networks.

 Best leader can be elected, rather than just a random one

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the e lection by sending an ELECTION
message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors, but not to parent

4. Node (R), receives message, designates (Q) as parent, and
spreads ELECTION message, but not to parent

5. Neighbors that have already selected a parent immediately
respond to R.
 If all neighbors already have a parent, R is a leaf-node and will report

back to Q quickly.

 When reporting back to Q, R includes metadata regarding battery life
and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and
also indicates the most eligible node (based on battery &
resource capacity)
March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L15.54

VASUDEVAN ET AL. WIRELESS ELECTION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.10

Node [A]
initiates election

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then
facilitates Node H
becoming leader

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

WIRELESS ELECTION - 2
SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique
identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the
network partitions, and when nodes join and leave

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

WIRELESS ELECTION - 3

 Large systems often require several nodes to serve as
coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must
be low

2. Super peers should be evenly distributed across the
overlay network (ensures proper load balancing,
availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit-string to identify nodes
 Basic Idea: Reserve fraction of ID space for super peers
 The first log2(N) bits of the key identify super-peers
 m=number of bits of the identifier
 k=# of nodes each node is responsible for (Chord system)

 Example:
 For a system with m=8 bit identifier, and k=3 keys per

node
 Required number of super peers is 2(k – m) ▪ N, where N is

the number of nodes
 In this case N=32
 Only 1 super peer is required for every 32 nodes

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

ELECTIONS FOR DHT BASED SYSTEMS

 Given an overlay network, the idea is to position
superpeers throughout the network so they are evenly
disbursed

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”. Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay
network

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

SUPER PEERS IN
AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and
force information across the network

 If forces acting on a node with a token exceed a threshold,
token is moved away

 Once nodes hold token for awhile they become superpeers

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

OVERLAY TOKEN DISTRIBUTION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.11

RAFT CONSENSUS

L15.61

 Paxos Algorithm (originally published in 1989)

 Original algorithm by Leslie Lamport (logical clocks) for
consensus

 Single decree Paxos: supports reaching agreement on a single
decision
 To agree on contents of a single log entry

 Multiple decree Paxos: use multiple instances of the protocol
to facilitate series of decisions such as a log

 Ensures safety and liveness

 Changes in cluster membership

 Has been proven “correct” (e.g. via proofs)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

CONSENSUS IN DISTRIBUTED SYSTEMS

 As reported by the inventors of RAFT . . .
 Diego Ongaro and John Ousterhout from Stanford University

 Exceptionally difficult to understand

 Most descriptions focus on single-decree version

 Survey at the 2012 USENIX Symposium (UNIX Users
Group, Advanced Computing Systems Association)

 Few seasoned researchers comfortable with Paxos

 Understanding typically requires reading multiple papers

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

PAXOS DRAWBACKS

 Problem 1: Single Decree Paxos

 Two stages

 Lacks simple intuitive explanation

 Hard to understand why the “single-decree” protocol works

 Used for agreement on just one log entry

 Problem 2: Lacks foundation for building practical
implementation

 No widely agreed upon algorithm for multi-Paxos
 Multi decree for agreement on an entire log file

 Lamport’s multi-Paxos description has missing detail
 Mostly focused on single decree

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

PROBLEMS WITH PAXOS

 Other attempts to flesh out details are divergent from
Lamport’s own sketches

 Problem 3: Paxos architecture is poor for building
practical systems

 Paxos’ notion of consensus is for a single log entry

 Consensus approach can be designed around a sequential
log

 Problem 4: Paxos approach uses a symmetric peer-to-
peer approach vs. a leader-based approach

Works when just (1) decision

 Having a leader simplifies making multiple decisions

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

PROBLEMS WITH PAXOS - 2

 Implementations of Paxos typically diverge as each
develops a different architecture for solving the difficult
problem(s) of implementing Paxos

 Paxos formulation is good for proving theorems about
correctness, but challenging to use for implementing real
systems

 Though it has been used a fair bit

 See paper: Consensus in the Cloud: Paxos Systems
Demystified

 Observation: significant gaps between the description of
the algorithm and the needs of a real-world system, result
in final systems based on divergent, unproven protocols

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

RESULTING PROBLEMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.12

 Complete and practical foundation for building systems

 Reduce design work for developers

 Safe under all conditions

 Efficient for common operations

 UNDERSTANDABLE

 So Raft can be implemented and extended as needed in
real world scenarios

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

DESIGN GOALS FOR RAFT

 Raft decomposes consensus into sub-problems:

 Leader election: leader election algorithms adjustable

 Log replication: leader accepts log entries and coordinates
replication across cluster enforcing log consensus

 Safety: if any state machine applies a log entry, then no
other server can apply a different log entry for the same
log index

Membership changes: must migrate from old-
configuration to new-configuration in a coordinated way

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

DESIGN GOALS FOR RAFT - 2

 Simplify the state space

 Reduce the number of states to consider

 Make system more coherent

 Eliminate non-determinisim

 LOGS not allowed to have holes

 Limit ways logs can be inconsistent

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.69

DESIGN GOALS FOR RAFT - 3

 Begins by electing a leader

 Leader manages log replication

 LEADER ACTIVITIES

 Accepts log entries from other nodes

 Replicates them on other servers

 Tells nodes when safe to apply log entries to their state
machines (KV store)

 Leader can make decisions without consulting others

 Data flows from leader to nodes

When leader fails, a new leader is elected

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.70

RAFT ALGORITHM BASICS

 Server states: leader, (*)follower, candidate

 (*) – initial state of every node is follower

 Nodes redirect all requests to the leader

 Candidate server in a leader election

 Server with most votes wins election, becomes leader

 Other nodes become followers

 Each candidate sponsors its own election, and solicits
votes

More than one candidate can be conducting an election at
the same time

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.71

RAFT BASICS - 2

 Raft divides time into TERMS of arbitrary length

 Terms are numbered with consecutive integers

 Terms start with an election (term # is incremented)

 If election results in a SPLIT VOTE, term ends, and a new
term is started with an election

 There is only (1) Leader in any given term

 Terms act as a logical clock

 Each server stores current term number

 Terms are exchanged in communication

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

TERMS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.13

 If a larger term # is found, then all nodes update term #
and defer to the term’s leader

 If candidate or leader finds its term is out of date, will
immediately become a follower node

 If server receives request with stale term #, then request
is rejected

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.73

TERMS - 2

 Implemented as “RPCs”, but can be implemented as TCP
stream by marshalling data inputs/outputs

 RequestVote()
 Initiated by candidates during an election

 AppendEntriesToLog()
 Sent by leaders to fo llower nodes at regular intervals
 Used as a heartbeat to maintain leadership
 Provides log updates to nodes
 Performs consistency checks

 Commands are retried if no response after timeout
 Commands sent in parallel using multiple threads

(performance)

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L15.74

RAFT METHODS

 Every node has a randomized ElectionTimeout value
 If a node (fo llower) receives no heartbeat from the leader

after the timeout, node expects the leader has gone offline
 NEW ELECTION:
 (1) The node begins a new election as candidate, sending

RequestVote() to every node in the system
 Candidate immediately votes for itself
 RequestVote() sent in parallel to all nodes

 (2) Follower votes for f irst candidate a RequestVote() is
received from only if the candidate’s log is at least (or more)
up-to-date
 Inspect candidate provided last log index and log term values

 (3) If candidate obtains a majority of the votes (determined by
calculating majority total from node directory) it wins the
election!!!

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.75

RAFT ELECTIONS

 Election outcomes

 A – Candidate wins

 B – Another server establishes leadership

 C – There is no winner

 Servers vote for only one candidate

 Only (1) winner per election

 Only (1) leader per term

 “Election safety property”

 New leader sends empty heartbeat to nodes to establish
leadership

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.76

ELECTIONS - 2

 While a candidate waits for votes, it may receive an
AppendEntries() call from another leader
 If the leader’s term >= candidate’s term then the candidate

concedes the election and returns to Follower state

 If multiple elections, then no one candidate may receive a
majority vote. One election times out f irst based on a
randomized-election-timeout value
 Random timeout values help spread out the candidates to prevent

endless looping

 KEY IDEA: by using random timeouts,
when no majority vote occurs, a random
node times out first and starts a new election before anyone
else by incrementing the term #, and sending RequestVote()

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.77

ELECTIONS - 3

Election

Timeout

Election

Timeout

Candidate 1 Candidate 2

 Randomized timeout values should be reset every time

 Paper suggests a min timeout of 150ms, and max of
300ms

 Timeout should be “an order of magnitude” greater (10x)
than the node-to-node communication latency

 I’m presently using 500 – 1000ms

 Can experiment with different values

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.78

ELECTIONS - 4

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.14

 RAFT enforces leader logs to be up-to-date during an election

 Nodes ONLY vote for a candidate *if* :

 Candidate local term and log number >= follower

 Candidate’s log *must be* at least as up-to-date as the
majority of follower’s log

 MORE up-to-date log is defined as log with:

 Higher term # in last log entry

 -- - OR -- -

 When term of last log entries match, log with more entires

 E.g. longer log

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.79

ELECTIONS - 5

 Term 1: normal election

 Term 2: normal election

 Term 3: SPLIT VOTE, no leader emerges, election times out

 Term 4: normal election

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.80

TYPICAL ELECTION SEQUENCE

 Raft guarantees that each of these properties is always true

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.81

RAFT SAFETY

 Leader receives commands forwarded from followers

 Ways logs can diverge
 (a) Follower may be missing entries present on leader
 (b) Follower may have extra entries not present on the

leader
 (c) Both A and B

 Because raft uses a “coordinator” node to achieve
consensus the number of possible ways logs can diverge
is limited

 Raft leaders FORCE followers logs to match its own
 Conflicting entries in follower logs are overwritten

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.82

LOG REPLICATION

 FOR THE WHOLE SYSTEM THERE IS JUST ONE
MONOTONICALLY INCREASING LOG INDEX

 Akin to Lamport’s Clocks

 Possible follower states at start of new term

 (a) Missing entries

 (b) Extra uncommitted entries

 (c) Both

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.83

LOG REPLICATION - 2

 Leader:

1. Receives command(s)

2. Appends commands to local log (concurrent hash table)

3. Sends AppendEntries() to followers

 Leader tracks index of its highest committed log entry

 Provides this index to followers in AppendEntries() RPC

 Leader commit to state machine:

 (1) When log entries replicated at a majority of the
followers, leader commits to its state machine (KV-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.84

RAFT - LOG REPLICATION ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.15

 Synchronizing fo llower logs

 (2) If fo l lower rejects AppendEntries() then leader decrements
its “follower-nextIndex” by one, and retries AppendEntries().
 “follower-nextIndex” tracks which logs entries are sent to the

follower for each AppendEntries() RPC call

 Loop continues until leader walks back its “follower-
nextIndex” until it matches what is committed at the fo llower
 Follower has a commitIndex

 Tracks 1st phase of a “two-phase” commit

 Follower has a lastApplied index

 Tracks 2nd phase of “two-phase” commit

 Once leader matches follower-nextIndex, the fo llower accepts
the AppendEntries() RPC, and writes data to its log
 Conflicting log entries are overwritten
December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L18.85

LOG REPLICATION ALGORITHM - 2

 Leader based consensus algorithms require the leader to
“eventually store” all committed log entries

 Raft handles follower node failure by retrying
communication indefinitely

 If crashed server restarts, the log will be resurrected, and
the follower’s state machine will be restored (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.86

LOG REPLICATION ALGORITHM - 3

 Each node keeps a commit Index and lastApplied index variable

 PHASE I
 Leader: when log message replicated at a majority of follower

logs (not state machines) ** - descr ibed next sl ide

 Leader increments its commitIndex
 Followers set commitIndex to

Min (leader-commitIndex , index of last new log entry)

 PHASE II
 For any node (follower, leader):
 If commitIndex > lastApplied
 Increment lastApplied by 1
 commit log[lastApplied] to state machine (kv-store)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.87

COMMITTING LOG ENTRIES

 How leader determines when to update it’s commitIndex

 Use a majority consensus of what has been committed at
follower logs

 Leader maintains follower state arrays:

 nextIndex[]: index of next log entry to send to follower

 matchIndex[]: index of highest log entry known to be
replicated (to log) at follower

 Find N, such that N > commitIndexleader

 and a majority of matchIndex[i] ≥ N (from followers)

 and log_entryleader[N].term == currentTermleader

 then set commitIndexleader = N

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.88

UPDATING COMMIT-INDEX OF LEADER

 Cluster discovery performed at startup

 Use any method:

 Static file, UDP discovery (kv-store), TCP discovery (kv-
store)

 One membership is discovered, it can remain static/fixed

 Nodes can go offline, come back online

 One a common configuration is propagated across the
system, it can not be changed without restarting

 RAFT specifies a configuration change protocol where the
system does a “hand-off” between an old and new
configuration (section 6 of the paper)

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.89

RAFT CLUSTER MEMBERSHIP – A3

 RequestVote() can be single threaded
 AppendEntries() probably should have one thread per follower

 TCP client catch exceptions:
 IOExcpetion – newSocket()

 IOException – getOutputStream()

 IOException – getInputStream()

 Leader should catch exceptions, and retry requests indefinitely

 Use socket method .setSoTimeout() to set a socket timeout in MS

 Node directory should generate and track nodeIDs
 E.g. 1, 2, 3, 4, … n

 Node directory should retrieve a node by ID, or IP/PORT

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.90

A3 RAFT SIMPLIFICATIONS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.16

 Leader election: if using a single thread for election candidate
should retry RequestVote() up to 10 times for a fo llower then
give-up and move to next fo llower

 Instead of pushing data to fo llowers when put() or del() is
received by leader, can wait until next scheduled heartbeat to
fo llower

December 5, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L18.91

A3 RAFT SIMPLIFICATIONS - 2

CONSISTENCY AND
REPLICATION

L19.92

(1) Fault tolerance: continue working after one replica
crashes

(2) Provide better protection against corrupted data

(3) Performance

(3a) Scaling up systems (scalability)

 Replicate server, load balance workload across replicas

(3b) For providing geographically close replicas

 Replicas at the edge

MOVE DATA TO THE COMPUTATION

 Performance perceived at the edge increases

 But what is the cost of localized replication?

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.93

WHY REPLICATE DATA?

 Network bandwidth consumed maintaining replicas
 Updates must be sent out and coordinated

 Maintaining consistency may be difficult
 All copies must be updated to ensure consistency

 WHEN and HOW updates need to be performed determines the
prices of data replication…

 Web caching example
 Web browser caches local content to improve performance
 Doesn’t know when content is “stale”
 Solution: Place server in charge of replication not browser
 Server invalidates and updates client cached copies
 Track how current copies are
 Degrades server performance overhead from tracking, etc.

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.94

DATA REPLICATION COSTS

 Process P accesses a local replica N times per second
 Replica is updated M times per second
 Updates involve complete refreshes of the data
 If N << M (very low access rate) many updates M are never

accessed by P.
 Network communication overhead for most updates is useless.

 TRADEOFFS:
 Either move the replica away from P
 So the total number of accesses from multiple processes is higher

 Or, apply a different strategy for updating the replica
 i.e. less frequent updates, possibly need based

 BALANCE TRADEOFF BETWEEN REPLICA ACCESS FREQUENCY
AND COSTS OF REPLICATION (communication overhead)

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.95

REPLICATION TRADEOFF EXAMPLE

 TIGHT CONSISTENCY
 Reads must return same result
 Replication must occur after an update, before a read
 Provided by synchronous replication
 Update is performed across all copies as a single atomic

operation (or transaction)
 Assignment 2 replication is with t ight consistency.

 Keeping multiple copies consistent is subject to scalability
problems

 May need global ordering of operations (e.g. Lamport clocks),
or the use of a coordinator to assign order

 Global synchronization across a wide area network is time
consuming (network latency)

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.96

REPLICATION: SCALABILITY ISSUES

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.17

 Only solution is often to relax the consistency constraints
 Updates do not need to be executed as atomic operations
 Try to avoid instantaneous global synchronizations
 TRADEOFF: consistency
 Not all copies may always be the same everywhere

 Whether consistency requirements can be relaxed
depends on:
 Access and update patterns
 Use cases of the data

 Range of consistency models exist
 Implemented with distribution and consistency protocols

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.97

REPLICATION SCALABILITY - 2

DATA CENTRIC
CONSISTENCY MODELS

L19.98

 Data consistency is discussed in the context of
 Distributed shared memory

 Distributed shared database

 Distributed shared file system

 Generically referred to as a “data store”

 Each process has a nearby replica:

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.99

DATA-CONSISTENCY MODELS

 CONSISTENCY MODEL

 Rules that must be followed to ensure consistency

 Represents a contract between processes and data store

 If processes agree to obey certain rules, store promises to
work correctly

 No general rules for loosening consistency

 What can be tolerated is highly application dependent

 Three types of inconsistencies

 Data variation

 Staleness

 Ordering of update operations

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.100

DATA-CONSISTENCY MODELS

 Ranges assigned to “what is allowed” for these deviations:
 How much data variation?
 How old/stale can the data be?
 How much can ordering of update operations vary?

 Idea is to specify bounds for numeric deviation:
 Relative numeric deviation: 2% (percent)
 Absolute numeric deviation: .2 (implies a particular scale)

 Numeric deviation: may also refer to the number of updates
applied to a replica

 Staleness: specifies bounds relative to time, e.g. how old?
 Ordering of updates: updates applied tentatively to local copy;

may later be rolled back and applied in different order before
becoming permanent

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.101

CONTINUOUS CONSISTENCY

 Abbreviated as “Conit”

 Specified the unit to measure consistency

 Example: Tracking fleet of rental cars

 Variables for a “conit”:

 (g) gasoline consumed

 (p) price paid for gasoline

 (d) distance traveled

 Server keep conit consistently replicated

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.102

CONSISTENCY UNITS (CONIT)

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.18

 Each process has vector c lock (known t ime @A , known t ime @B)

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.103

CONSISTENCY UNIT (CONIT)

committed

Log
of

Events
A B

number of
unseen
events

sum of
unseen
events

 Result of any execution is the same as if the operations of all
processes were executed in some sequential order, and the
operations of each individual process appear in this sequence
in the order specified by its program.

 Exact order seen by processes DOES NOT MATTER

 As long as they all agree

 Processes here must see: R(x)b, then R(x)a

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.104

SEQUENTIAL CONSISTENCY

Sequentially Consistent NOT Sequentially Consistent

 Writes that are potentially causally related must be seen by all
processes in the same order .

 Concurrent writes may be seen in a dif ferent order by
different processes.

 Concurrent writes happen with no READS in between
 Events can be seen as “concurrent events”

 Which writes are concurrent?

 Note how the reads after the concurrent write for P3 and P4
are in a dif ferent order.

 This is ok with causal consistency

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.105

CAUSAL CONSISTENCY

 Which timing graphs uphold causal consistency?

 (A)

 (B)

 Which writes are concurrent?

 For (B), since R(x)a can influence W(x)b, the subsequent reads
by P3 and P4 must be in the same order . . .

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.106

CAUSAL CONSISTENCY - 2

 Locks can be used to control access to data members

 Releasing a lock tells the distributed system that a
variable needs to be synchronized / updated.

 A simple read without obtaining a lock may result in a
stale value

 Here P2 does not obtain L(y) before reading y R(y)

 P2 receives a stale/old value

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.107

ENTRY CONSISTENCY

 Consistency models define what to expect when processes
concurrently operate on distributed data

 Data is consistent, if it adheres to the rules of the model

 Coherence models: describe what can be expected for only a
s ingle data item

 Data item is replicated

 Data item is coherent when copies adhere to consistency
model rules

 Coherence often uses sequential consistency applied to a
single data item

 For concurrent writes, all processes eventually see the same
order of updates

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.108

CONSISTENCY VS. COHERENCE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 11, 2019

Slides by Wes J. Lloyd L15.19

 If no new updates are made to a given data item,
eventually all accesses to that item will return the last
updated value.

 System must reconcile differences between multiple
distributed copies of data

 Servers must exchange data updates
 Servers must reconcile updates to agree on final state
 Read repair: correction done when read finds

inconsistency
Write repair: correct done on write operation
 Asynchronous repair: correction done independently from

read and write
December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L19.109

EVENTUAL CONSISTENCY

 Most processes mainly read from data store

 Rarely update data

 How fast should updates be made to read-only processes?

 Example: Content Delivery Networks (video streaming)

 Updates are propagated slowly

 Conflicts: write-write and read-write (most common)

 Often acceptable to propagate updates in a lazy manner
when most processes perform only READ-ONLY access

 All replica gradually (eventually) become consistent

December 7, 2017 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L19.110

EVENTUAL CONSISTENCY - 2

QUESTIONS

March 11, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L15.11

1

EXTRA SLIDES

112

