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ECh. 6 - Coordination

= 6.1 Clock synchronization

= 6.2 Logical clocks, Lamport clocks, Vector clocks
= 6.3 Distributed mutual exclusion
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FEEDBACK - 3/4 FEEDBACK - 2
= How do you glve MPI fallure transparency? = What types of messages are usually sent with gosslp
= Failure transparency involves hiding from the user, the fact spreading?
that the system (or some aspect of it) has failed
= Providing failure transparency requires a system to implement = Gossip, in the context of Ch. 4.4, refers to multicast
fault tolerance communication (one to many) across unstructured
= Here is an FAQ on fault tolerance in OpenMPI: peer-to-peer network
= https://www.open-mpi.org/faq/?category=ft = These are ad hoc connections where the structure of the
= A number of techniques for fault tolerance have been network is unknown
employed previously in OpenMPI, but are not deprecated = Multicast messages could be anything
= OpenMPI is said to mimic the fault tolerance provided by the = Multicast often concerns data dissemination - spreading data
FT-MPI framework to many peer nodes as quickly and efficiently as possible
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Multicast

s | MULTICAST COMMUNICATION

= Sending data to multiple receivers

B3 = subscriver = Many falled proposals for network-level / transport-level
protocols to support multicast communication

one to many

Apache ActiveMQ

= Problem: How to set up communication paths for
information dissemination?

= Solutlons: require huge management effort, human
intervention

CH. 4.4: MULTICAST
COMMUNICATION

= Focus shifted more recently to peer-to-peer networks

= Structured overlay networks can be setup easily and
provide efficient communication paths

= Application-level multicasting techniques more successful
= Gossip-based dissemination: unstructured p2p networks
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NETWORK STRUCTURE FLOOD-BASED MULTICASTING

= Overlay network = Broadcasting: every node in overlay receives message
= Virtual network implemented on top of an actual physical network
= Underlylng network = Key design issue: minimize the use of intermediate nodes for
= The actual physical network that implements the overlay which the message is not intended
End host = Tree: if only the leaf nodes are to receive the multicast

message, many intermediate nodes are involved
= Solution: construct an overlay network for each multicast
group

e = FloodIng: each node simply forwards a message to each of its
neighbors, except to the message originator

Overlay network
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RANDOM GRAPHS PROBABILISTIC FLOODING
= When no information on the structure of the overlay network = ....Washington state In winter?
= Assume network can be represented as a Random graph
= Probability P4 that two nodes are joined " When a node is flooding a message, concept is to enforce
= Overlay network will have: %2 * P.y,. * N * (N-1) edges a probability of message spread (pfq04)
300 = Throttles message flooding based on a probability
Random graphs allow us to assume 8 250 - = Implementation needs to consider # of neighbors to
some structure (# of nodes, # of edges) hi .
regarding the network by scaling the E 200 A O LS i 5o SCONES)
P.qqe Probability 5 150 = With lower p;,,q messages may not reach all nodes
s 100
Assumptions may help then to T o = USEFULNESS: For random network with 10,000 nodes
reason or rationalize about the 5 9
network... F oo s = With pgg. = 0.1 and py,04=-01
100 500 1000 = Achieves 50-fold reduction in messages vs. full flooding
Number of node:
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MESSAGE FLOODING w3201
FLOODING - 2
= For deterministic topologies (such as hypercube), design of = Hypercube Broadcast
efficient flooding scheme is much simpler = N(1001) starts the network broadcast
= If the overlay network is structured, this gives us a = N(1001) neighbors {0001,1000,1011,1101}
deterministic topology = N(1001) Sends message to all neighbors
= Schlosser et al [2002] - offer simple and efficient = Edge Labels (which blt Is changed, 15¢, 2"9, 319, 4th,,,)
broadcasting scheme that relies on keeping track of neighbors = Edge to 0001 - labeled 1 - change the 1st bit
per dimension = Edge to 1000 - labeled 4 - change the 4" bit

= Edge to 1011 - labeled 3 - change the 3" bit
= Edge to 1101 - labeled 2 - change the 2" bit

= RULE: nodes only forward along edges with a higher dimenslon
= Node 1101 receives message on edge labeled 2
= Broadcast msg is only forwarded on higher dimension edges
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MESSAGE FLOODING - 3

= Hypercube: forward msg along edges with higher dimension

= Node(1101)-neighbors {0101,1100,1001,1111}

= Node (1101) - incoming broadcast edge = 2

= Label Edges:

= Edge to 0101 - labeled 1 - change the 15t bit

= Edge to 1100 - labeled 4 - change the 4t bit *<FORWARD>*
= Edge to 1001 - labeled 2 - change the 2" bit

= Edge to 1111 - labeled 3 - change the 3" bit *<FORWARD>*
= N(1101) broadcast - forward only to N(1100) and N(1111)

= (1100) and (1111) are the higher dimension edges

= Broadcast requires just: N-1 messages, where nodes N=2",
n=dimensions of hypercube

March 6, 2019 TCS5558: Applied Distributed Computing [Winter 2019] | a3

School of Engineering and Technology, University of Washington - Tacoma

GOSSIP BASED DATA DISSEMINATION

= When structured peer-to-peer topologies are not available
= Gossip based approaches support multicast communication
over unstructured peer-to-peer networks

= General approach is to
leverage how gossip
spreads across a group

= This is also called
“epidemic behavior”...

= Data updates for a specific
item begin at a specific
node
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INFORMATION DISSEMINATION

= Epldemlc algorithms: algorithms for large-scale distributed
systems that spread information

= Goal: “infect” all nodes with new information as fast as
possible

= Infected: node with data that can spread to other nodes
= Susceptible: node without data

= Removed: node with data that is unable to spread data
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ANTI ENTROPY DISSEMINATION MODEL

= Antl-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

= Akin to random walk

= PUSH: P only pushes its own updates to Q
= PULL: P only pulls in new updates from Q

= TWO-WAY: P and Q send updates to each other
(i.e. a push-pull approach)

= Push only: hard to propagate updates to last few hidden
susceptible nodes

= Pull: better because susceptible nodes can pull updates from
infected nodes

= Push-pull is better still
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ANTI ENTROPY EFFECTIVENESS

= Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

= The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

1.0
= Let p; denote probability that 3 N = 10,000
node P has not received ;:0'3:
msg m after the it" round. 2 o6k push
g
= For pull, push, and push-pull o4  pushpul
based approaches: 3 I
802+
° L
- It L
0 5 10 15 20 25|
Round

RUMOR SPREADING

= Variant of epidemic protocols
= Provides an approach to “stop” message spreading
= Mimics “gossiping” in real life

= Rumor spreading:

= Node P receives new data item X

= Contacts an arbitrary node Q to push update

= Node Q reports already receiving Item X from another
node

= Node P may loose interest in spreading the rumor with
probability = pg,,, let's say 20% ... (or 0.20)
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RUMOR SPREADING - 2

DIRECTIONAL GOSSIPING

= Does not guarantee all nodes will be updated = Taking network topology into account can help
= The fraction of nodes s, that remain susceptible grows relative = When gossiping, nodes connected to only a few other
to the probability that node P stops propagating when finding nodes are more likely to be contacted

a node already having the message

= Epldemlc protocols assume:
= For gossiping, nodes are randomly selected

= One node, can randomly select any other node in the
network

= Complete set of nodes is known to each member

= Fraction of nodes not updated
remains < 0.20 with high pg,,

= Susceptible nodes (s) vs.
probability of stopping >

0.0 02 04 0.6 0.8 1.
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REMOVING DATA DEATH CERTIFICATE EXAMPLE
= Gossiping is good for spreading data = For example:
= But how can data be removed from the system? = Node P keeps death certificates forever
= I[tem X is removed from the system
= Ildea is to issue “death certificates” = Node P receives an update request for Item X, but also holds

Act like d d hich dllke d the death certificate for Item X
|}
B8 I Gl (EEOTES, Tneh) E1e SRiEae e = Node P will recirculate the death certificate across the

= When death certificate is received, data is deleted network for Item X

= Certificate is held to prevent data element from
reinitializing from gossip from other nodes

= Death certificates time-out after expected time required
for data element to clear out of entire system

= A few nodes maintain death certificates forever

TC55558: Applied Distributed Computing [Winter 2019]
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CHAPTER 6 - COORDINATION CHAPTER 6 - COORDINATION

= 6.1 Clock Synchronization = How can processes synchronize and coordinate data?
= Physical clocks
= Clock synchronization algorithms
= 6.2 Logical clocks
= Lamport clocks
= Vector clocks

= Process synchronization

= Coordinate cooperation to grant individual processes temporary
access to shared resources (e.g. a file)

= Data synchronization

f = Ensure two sets of data are the same (data replication
= 6.3 Mutual exclusion ( p )

= 6.4 Election algorithms = Coordination
= 6.6 Distributed event matching (light) = Goal is to manage interactions and dependencies between activities

. . . A in the distributed system
® 6.7 Gossip-based coordination (light) - Encapsulates sync:roniza”on
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COORDINATION - 2

= Synchronization challenges begin with time:
= How can we synchronize computers, so they all agree on
the time?
= How do we measure and coordinate when things happen?

= Fortunately, for synchronization in distributed systems, it
is often sufficient to only agree on a relative ordering of
events

= E.g. not actual time

TCSS558: Applied Distributed Computing [Winter 2019]
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COORDINATION - 3

= Groups of processes often appoint a coordinator

= Election algorithms can help elect a leader

= Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

= Also in chapter 6:
= Matching subscriptions to publications in publish-
subscribe systems
= Gossip-based coordinate problems:
Aggregation
Peer sampling
Overlay construction
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CH. 6.1: CLOCK
SYNCHRONIZATION

CLOCK SYNCHORNIZATION

= Example:
= “make” is used to compile source files into binary object and
executable files

= As an optimization, make only compiles files when the “last
modified time” of source files is more recent that object and
executables

= Consider if files are on a shared disk of a distributed system
where there is no agreement on time

= Consider if the program has 1,000 source files
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TIME SYNCHRONIZATION PROBLEM

FOR DISTRIBUTED SYSTEMS

Computer on 2144 2145 2146 2147  4— Time according

which compiler + + t i to local clock

runs

output.o created

IComputer on 2142 2143 2144 2145 <«— Time according
hich editor + + + } tolocal clock

runs

output.c created

= Updates from different machines, may have clocks set to
different times

= Make becomes confused with which files to recompile

March 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of
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§) PHYSICAL CLOCKS

= Computer timers: precisely machined
quartz crystals

= When under tension, they oscillate at
a well defined frequency

= |[n analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

= Today, crystals are associated with
a counter and holding register on a digital computer.

1960s ERA radio crystal >

= Each oscillation decrements a counter by one

= When counter gets to zero, an interrupt fires

= Can program timer to generate interrupt, let’'s say 60
times a second, or another frequency to track time

TCS5558: Applied Distributed Computing [Winter 2019]
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COMPUTER CLOCK

= Digital clock on computer sets base time
= Crystal clock tracks forward progress of time

= Translation of wave “ticks” to clock pulses
= CMOS battery on motherboard maintains clock on power loss

= Clock skew: physical clock crystals are not exactly the same
= Some run at slightly different rates

= Time differences accumulate as clocks
drift forward or backward slightly

= In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years
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UNIVERSAL COORDINATED TIME

untu@ip-172 58-89:~% e
= Universal Coordinated Time (UTC) R MECIET] 39 UTC 2017

= Worldwide standard for time keeping
= Equivalent to Greenwich Mean Time (United Kingdom)
=40 shortwave radio stations around the world broadcast a
short pulse at the start of each second (WWV)
= World wide “atomic” clocks powered by constant
transitions of the non-radioactive caesium-133 atom
9,162,631,770 transitions per second

= Computers track time using UTC as a base

= Avoid thinking in local time, which can lead to
coordination issues

= Operating systems may translate to show local time
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COMPUTING: CLOCK CHALLENGES

" How do we synchronize computer clocks with
real-world clocks?

= How do we synchronize computer clocks with
each other?

TCS5558: Applied Distributed Computing [Winter 2019]
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CLOCK SYNCHRONIZATION

= UTC services: use radio and satellite signals to provide time
accuracy to 50ns

= Time servers: Server computers with UTC receivers that

provide accurate time

Preclslon (7): how close together a set of clocks may be

= Accuracy: how correct to actual time clocks may be

Internal synchronization: Sync local computer clocks

External synchronlzatlon: Sync to UTC clocks

Clock drlift: clocks on different machines gradually become

out of sync due to crystal imperfections, temperature

differences, etc.

Clock drift rate: typical is 31.5s per year

Maximum clock drift rate (p): clock specifications include one

TCS5558: Applied Distributed Computing [Winter 2019] Lo
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CLOCK SYNCHRONIZATION - 2

= |f two clocks drift from UTC in opposite directions,
after time At after synchronization, they may be 2p apart.

= Clocks must be resynchronized every n/2p seconds

= Network time protocol
= Provide coordination of Clodistie; ©
time for servers

= Leverage distributed network
of time servers

UTC, t
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NETWORK TIME PROTOCOL

Stratum 0
Servers organized Atomic
into stratums clocks

Stratum-1 servers w.ﬂm.c.., .........

have UTC receivers g g

Servers connect

with closest NTP
server for time
synchronization

and are sync’d

Servers assume

role as NTP server
at stratum+1

with atomic clocks
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NTP - 2 NTP - 3

= Must estimate network delays when synchronizing with remote UTC = Cannot set clocks backwards (recall “make” file example)
receiver clocks / time servers = Instead, temporarily slow the progress of time to allow fast
. B T clock to align with actual time
Time server B

= Change rate of clock interrupt routine
= Slow progress of time until synchronized

Client A = NTP accuracy is within 1-50ms
A 8T = |[n Ubuntu Linux, to quickly synchronize time:
1. A sends message to B, with timestamp T1 $apt install ntp ntpdate
2. B records time of receipt T2 (from local clock) = Specify local timeservers in /etc/ntp.conf
3. B returns response with send time T3, and receipt time T2 server time.u.washington.edu iburst
4. A records arrival of T4 server bigben.cac.washington.edu iburst
= Assuming propagation delay of A>B->A is the same = Shutdown service (sudo service ntp stop)
= Estimate propagation delay: goryy BT @-T) o (B-T)+(-Ty = Run ntpdate: (sudo ntpdate time.u.washington.edu)
= Add delay to time . 2 = Startup service (sudo service ntp start)
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N
CLOCK SYNCHRONIZATION T

IN WIRELESS NETWORKS N

Criical path RBS

BERKELEY ALGORITHM

Usual crtical path

= Berkeley time daemon server actively polls network to = Sensor networks bring unique challenges for clock synchronization
determine average time across servers = Address resource constraints: limited power, multihop routing slow
f M f = Reference broadcast synchronization (RBS)
= Suitable when no machine has a UTC receiver

Provides precision of time, not accuracy as in Berkeley
No UTC clock available

RBS sender broadcasts a reference message to allow receivers to
adjust clocks

= Time daemon instructs servers how much to adjust clocks
to achieve precision

= Accuracy can not be guaranteed No multi-hop routing

Time to propagate a signal to nodes is roughly constant
= Berkeley is an internal clock synchronization algorithm = Message propagation time does not consider time spent waiting in
NIC for message to send

= Wireless network resource contention may force wait before message
even can be sent

TCSS558: Applied Distributed Computing [Winter 2019] TCSS558: Applied Distributed Computing [Winter 2019]
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=

REFERENCE BROADCAST REFERENCE BROADCAST

SYNCHRONIZATION (RBS) SYNCHRONIZATION (RBS) - 2

= Node broadcasts reference message m = Cloud skew: over time clocks drift apart
= Each node p records time Tp,m when m is received
= Tp,m is read from node p’s clock

= Two nodes p and q can exchange delivery times to estimate = Elson et al. propose using standard linear regression to
mutual relative offset predict offsets, rather than calculating them

= Then calculate relative average offset for the network:

= Averages become less precise

= |IDEA: Use node’s history of message times in a simple linear
Offsetlp,q] = EkMﬂ(Tp,rTq,k) regression to continuously refine a formula with coefficients
M to predict time offsets:
= Where M is the total number of reference messages sent Offset[p, q](t) = at +p
= Nodes can simply store offsets instead of frequently
synchronizing clocks to save energy
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100 2009 @10 “10 612612 712
P,

LOGICAL CLOCKS

@10 @20

In distributed systems, synchronizing to actual time may not be
required...

It may be sufficient for every node to simply agree on a current
time (e.g. logical)

CH. 6.2: LOGICAL

Logical clocks provide a mechanism for capturing chronological

CLOC KS and causal relationships in a distributed system

Think counters. . .

Leslie Lamport [1978] seminal paper showed that absolute clock
synchronization often is not required

= Processes simply need to agree on the order in which events occur

TCS5558: Applied Distributed Computing [Winter 2019]
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LOGICAL CLOCKS - 2 LOGICAL CLOCKS - 3

= Happens-before relation = |f two events, say event X and event Y do not exchange
= A>B: Event A, happens before eventB... messages, not even via third parties, then the sequence of

= All processes must agree that event A occurs first X>Yvs. Y2X cannot be determined!!

= Then afterward, event B = Within the system, these events appear concurrent

= Actual time not important. . .
= Concurrent: nothing can be said about when the events

. . happened, or which event occurred first
= |f event A is the event of proc P1 sending a msg to a proc P2,

and event B is the event of proc P2 receiving the msg, then = Clock time, C, must always go forward (increasing), never
A->B is also true. . . backward (decreasing)
= The assumption here is that message delivery takes time
= Happens before is a transitive relation:
= A>B, B>C, therefore A>C

= Corrections to time can be made by adding a positive value,
but never by subtracting one

March 6, 2019
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LOGICAL CLOCKS - 4 LOGICAL CLOCKS

= Three processes each with local clocks = Events:
= Lamport’s algorithm corrects their values 6: P1 send m1 to P2

16: P2 receives m1
24: P2 sends m2 to P3
40: P3 receives m2
60: P3 sends m3 to P2

12 12 128 P, P,
[0] [0

mZ
P, adjusts | 22 56: P2 receives m3
its clock_|30 56: P2 clock reset=61

P, adjust
its clock

64{

64: P2 sends m4 to P1
54: P1 receives m4
70: P1 clock reset=70

70
78]

80
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LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

= Negative values not possible

= When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message,
receiving a message, some other internal event
Piincrements Ci: Ci € Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj € max{Cj, ts(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>

March 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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TOTAL-ORDERED MULTICASTING

= Consider concurrent updates to a replicated database
= Communication latency between DB1 and DB2 is 250ms

% Updatet Update 2 i

Replicated database

Update 1is Update 2 is
performed before performed before
update 2 update 1

= Initlal Account balance: $1,000

= Update #1: Deposit $100

= Update #2: Add 1% Interest

= Total Ordered Multicasting needed

TCSS558: Applied Distributed Computing [Winter 2019]
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_TOTAL-ORDERED MULTICASTING EXAMPLE

ToTal Ordered mulhicashr
with Achna

Logieal cloths

[ TWO PAesES WIM (0L

N PROESS
TWE A LocAL
e 02 o

P Queve

TRGCRYD. P AUSAUR

v

TOTAL-ORDERED MULTICASTING - 2

= Each message timestamped with local logical clock of sender
= Multicast message is conceptually sent to the sender
= Assumptions:
= Messages from same sender received in order they were sent
= No messages are lost
= When messages arrive they are placed in local queue ordered
by timestamp
= Receiver multicasts acknowledgement of message receipt to
other processes
= Time stamp of message receipt is lower the acknowledgement

= This process replicates queues across sites

= Process delivers messages to application only when message
at the head of the queue has been acknowledged by every
process in the system

TCSS558: Applied Distributed Computing [Winter 2019]
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TOTAL-ORDERED MULTICASTING - 3

= Can be used to provide replicated state machines (RSMs)

= Concept is to replicate event queues at each node

= (1) Using logical clocks and (2) hanging ack ledg t
messages, allows for events to be “totally” ordered in
replicated event queues

= Events can be applied “In order” to each (distributed)
replicated state machine (RSM)

HHPPH(—{H Clients

Pass
10 other machines

March 6, 2019 TCSS558: App}ied D.is(ribuled Computing [.Win(‘er 2019] ) 11453
school of Technology, y Tacoma

VECTOR CLOCKS

= Lamport clocks don’t help to determine causal ordering of
messages

= Vector clocks capture causal histories and can be used as an
alternative

= What is causality?

TCS5558: Applied Distributed Computing [Winter 2019] Lass
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WHAT IS CAUSALITY?

= Consider the messag

= P2 receives m1, and subsequently sends m3

= Causality: Sending m3 may depend on what’s contained in m1
= P2 receives m2, receiving m2 is not related to receiving m1

= |s sending m3 causally dependent on recelving m2?

TCSS558: Applied Distributed Computing [Winter 2019]
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VECTOR CLOCKS

= Vector clocks keep track of causal history
= |f two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

= P sends messages to Q (event p3)

= Q previously performed event q1

= Q records arrival of message as q2

= Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

= Fortunately, can simply store history of last event,
as a vector clock > H(q2) = (3,2)
= Each entry corresponds to the last event at the process

TCSS558: Applied Distributed Computing [Winter 2019]
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VECTOR CLOCKS - 2

(1,0) (2,0) (3,0)
* o o

"1
(0,1) (3,2)
P, ®-
= Each process maintains a vector clock which
= Captures number of events at the local process (e.g. logical clock)
= Captures number of events at all other processes
= Causality is captured by:
= For each event at Pi, the vector clock (VC)) is incremented
= The msg is timestamped with VC; and sending the msg is recorded
as a new event at P;
* P; adjusts its VC; choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCSS558: Applied Distributed Computing [Winter 2019]
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VECTOR CLOCKS - 3

= Pj knows the # of events at Pi based on the timestamps of the
received message

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

= These events “may be causally dependent“

= In other words: they may have been necessary for the
message(s) to be sent...
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VECTOR CLOCKS EXAMPLE

= Local clock is underlined

VECTOR CLOCKS EXAMPLE - 2

P (1.1,0) (2,1,0) (3.1.0) (4.1,0)
A . 1= - =
m m, m,
P, (2,3,0)
{0,1,0) @20)
m»i
Py
231 (432)
ts(my) ts(m,) | ts(my)<ts(m,) | ts(my)>ts(m,) Conclusl
(4,1,0) (2,3,0) No No m2 and m4 may conflict

1,1,0] 2,1,0) [3,1.0) (41,0
P = = 3 ]
1
4.3.0
P, (4.30)
ml
Py
211 432
ts (my) ts(my) | ts(my)<ts(m,) | ts(my)>ts(my) c
(2,1,0) (4,3,0) Yes No m2 may causally precede m4
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= P3 can’t determine if m4 may be causally dependent on m2
= |s m4 causally dependent on m3 ?
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VECTOR CLOCKS - 4

= Disclalmer:

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal

relationship or perhaps a conflict CH. 6.3: DISTRIBUTED

= Vector clocks can help us suggest possible causality M UTUAL

= We never know for sure... EXCLUSION

March 6, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of

chnology, y i Tacoma

DISTRIBUTED MUTUAL EXCLUSION TOKEN-RING ALGORITHM
= Coordinating access among distributed processes to a = Construct overlay network
shared resource requires DIstrlbuted Mutual Exclusion = Establish logical ring among nodes
= Token-based algorithms: W Token
= Mutual exclusion by passing a “token” between nodes m
= Nodes often organized in ring ° e o o
= Only one token, holder has access to shared resource = Single token circulated around the nodes of the network

= Avoids starvation: everyone gets a chance to obtain lock F Wae MERTINE Goleh G AEEeES SIEieE Eeeie:

= |f no node accesses resource, token is constantly circulated
= Avoids deadlock: easy to avoid around ring

TCS5558: Applied Distributed Computing [Winter 2019]
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TOKEN-RING CHALLENGES DISTRIBUTED MUTUAL EXCLUSION - 2
1. If token is lost, token must be regenerated = Permisslon-based algorithms
= Problem: may accidentally circulate multiple tokens = Processes must require permission from other processes

before first acquiring access to the resource
2. Hard to determine if token is lost

= What is the difference between token being lost and a = Centralized algorithm
node holding the token for a long time? = Elect a single leader node to coordinate access to shared
resource(s)
3. When node crashes, circular network route is broken = Manage mutual exclusion on a distributed system similar to
= Dead nodes can be detected by adding a receipt message how it mutual exclusion is managed for a single system
for when the token passes from node-to-node = Nodes must all interact with leader to obtain “the lock”

=When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring
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CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator \/ No response from coordinator

R t
Request | [OK eaues Release d
/" No reply
Queueis e
. / empty
P, executes P, blocks P, finishes; P, executes

= When resource not available, coordinator can block the
requesting process, or respond with a reject message

= P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

= Requests granted permission fairly using FIFO queue
= Just three messages: (request, grant, release)

TCS5558: Applied Distributed Computing [Winter 2019] | L1467
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CENTRALIZED MUTUAL EXCLUSION - 2

= |ssues

= Coordinator is a single point of failure

= Processes can’t distinguish dead coordinator from “permission
denied”
= No difference between CRASH and Block (for a long time)

= Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Beneflts
= Simplicity:
Easy to implement compared to distributed alternatives
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DISTRIBUTED ALGORITHM

= Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

= Package up resource request message (AKA Lock Request)
= Send to all nodes
= Include:

= Name of resource

= Process number

= Current (logical) time

= Assume messages are sent reliably
= No messages are lost

March 6, 2019 TCS5558: Applied Distributed Computing [Winter 2019] | s
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DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (If the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)
3. Perform a timestamp comparison (If node Is walting to
access the resource), then:
1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

= Requirement: every node must know the entire membership
list of the distributed system

TCS5558: Applied Distributed Computing [Winter 2019]
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DISTRIBUTED ALGORITHM - 3

= |f Node 0 and Node 2 simultaneously request access
= Node O’s time stamp is lower (8) than Node 2 (12)

= Node 1 and Node 2 grant Node O access

= Notice that Node 1 also grants Node 2 permission

Accesses
resource

Oz O D=

OK resource

(b) (c)
= In case of conflict, lowest timestamp wins!
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WLEIENE 201 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
= Where N = Number of Nodes in the system

= Problem: When node is accessing the resource, it does
not respond
= Lack of response can be confused with fallure
= Solution: When node receives request for resource it is
accessing, always send a reply either granting or denying
permission (ACK)
= Enables requester to determine when nodes have died
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CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node
must maintain full group membership
= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
= This approach may not scale on resource-constrained systems

= Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
= Presumably any one node locking the resource prevents agreement

= Distributed algorithm for mutual exclusion works best for:
= Small groups of processes
= When memberships rarely change

March 6, 2019
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QUESTIONS
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