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 What is the dif ference between “precopy” and “on 
demand” VM migration?

 PRECOPY – before VM migration, memory pages are 
copied to the destination host on demand
 System must track pages modified on original VM than must be 

updated

 ON DEMAND – VM is immediately migrated, memory 
pages are only copied to the destination host when they 
are accessed
 Programs access pages by their memory address
 System goes to fetch them, but they are blanks
 Blank fetch triggers retrieval from remote machine
 Requires keeping original VM around for a long time 
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FEEDBACK – 2/27

 Could you please explain more on the three types of 
blocking?

 For Synchronous communication client blocks and waits

 For each level, client increasingly blocks for longer

 Three types of blocking
1. Until middleware notifies it will take over delivering request

client  proxy-server  server          
client blocks until proxy routes request

2. Sender may synchronize until request has been delivered 
(for long request, large data payload)
client  [BIG DATA]  server          

3. Sender waits until request is processed and result is returned (full)
client  server             (fully synchronous)
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 How is total latency calculated before deciding on an 
ef ficient route?

 Routing across internet is between regions not nodes

 Traffic first routed to region, then to specific nodes (IPs)

 Known as hierarchical routing

 Routing adaption occurs at different timescales

B a s e d  o n h t t p s : // co u r se s . c s . was h i n g to n . e du / co u r s e s / cs e 4 61 / 17 a u/ l e c t u r e s / 06 - 1 - r o u t i n g . pd f
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FEEDBACK - 3

Mechanism Timescale Adapt/Respond to

Load-sensitive routing Seconds Traffic hotspots

Routing Minutes Equipment failures

Traffic engineering Hours Network load (e.g. Netflix…)

HW Provisioning Months Network customers

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED 

COMMUNICATION

L13.6
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 Topics

 Message passing interface (MPI)

 Message oriented middleware

 Message queueing systems

 Advanced message queueing protocol (AMQP)
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4.3 - MESSAGE ORIENTED 
COMMUNICATION

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran

 OpenMPI – open source x86
implementation
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MESSAGE PASSING INTERFACE (MPI)
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 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and 
super computers 

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using 
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection 
networks used by supercomputers, 
HPC-clusters, etc.

 Better buffering and synchronization needed
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MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel 
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for 

parallel programming
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 Very large l ibrary, v1.0 (1994) 128 functions 

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings
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MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses
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COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.7

 Message-queueing systems

 Provide extensive support for persistent asynchronous 
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered 
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other 
applications can send messages
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MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of 
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing 
subqueries
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MESSAGE QUEUEING SYSTEMS:
USE CASES
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 Scenarios:
(a) Sender/receiver

both running

(b)  Sender running,
receiver offl ine

(c)  Sender offl ine,
receiver running

(d)  Sender/receiver
both offline

 Queue persists msgs,
and attempts to send 
them but no one may be available to receive them…
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MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile 
and senders and receivers can be offl ine

 Messages

 Contain any data, may have size l imit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue
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MESSAGE QUEUEING SYSTEMS - 2
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 Basic interface cont’d

 NOTIFY: install  a callback function, for when msg is placed 
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a 
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue? 

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager
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MESSAGE QUEUEING SYSTEMS 
ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the 
same protocol (language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway
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MESSAGE QUEUEING SYSTEMS 
ARCHITECTURE - 2
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MESSAGE BROKER ORGANIZATION

Plugins to convert 
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter-application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing 

capabilities
 Help abstract messaging and application interoperabil ity by 

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+
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 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 
potentially many channels, stable, reused by many 
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 
channels

 Link: provide fine-grained flow-control of message 
transfer/status between applications and queue manager
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AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)
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AMQP MESSAGING
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 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams
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MESSAGE-ORIENTED-MIDDLEWARE 
EXAMPLES:

Apache Act iveMQ

CH. 4.4: MULTICAST
COMMUNICATION

L13.24
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 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level 

protocols to support multicast communication
 Problem: How to set up communication paths for 

information dissemination?
 Solutions: require huge management effort, human 

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and 

provide efficient communication paths
 Application-level multicasting techniques more successful 
 Gossip-based dissemination: unstructured p2p networks
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MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay
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NETWORK STRUCTURE
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 Application level multi -casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at 
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes
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APPLICATION LEVEL 
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per l ink, counts how often a packet 
crosses same link  ( ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs. 
the underlying networks 
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MULTICAST TREE METRICS

Numbers represent
network delay 
between nodes
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 Stretch (Relative Delay Penalty RDP)
 CONSIDER routing from B to C
 What is the Stretch?
 Stretch (delay ratio) = Overlay -delay / Underlying-delay
 Overlay: BRbRaReEReRcRdDRdRc C 

= 73
 Underlying: BRbRdRcC = 47
 Stretch = 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network
 Ideally would l ike to minimize network costs
 Find a minimal spanning tree which minimizes total time for 

disseminating information
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MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay receives message

 Key design issue: minimize the use of intermediate nodes for 
which the message is not intended

 Tree: if only the leaf nodes are to receive the multicast 
message, many intermediate nodes are involved

 Solution: construct an overlay network for each multicast 
group

 Flooding: each node simply forwards a message to each of its 
neighbors, except to the message originator
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FLOOD-BASED MULTICASTING
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 When no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Probability Pedge that two nodes are joined

 Overlay network wil l have: ½ * Pedge * N * (N-1) edges
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RANDOM GRAPHS

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability of message spread (pflood)

 Throttles message flooding based on a probability

 Implementation needs to consider # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING
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 For deterministic topologies (such as hypercube), design of 
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a 
deterministic topology

 Hypercube: nodes forward only to higher dimension nodes

 N(1001) broadcast will  only go to N(1011) and N(1000)

 Broadcast requires just: N-1 messages, where nodes N=2n, 
n=dimensions 
of hypercube
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MESSAGE FLOODING

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication 

over unstructured peer-to-peer networks

 General approach is to 
leverage how gossip 
spreads across a group

 This is also called 
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node
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GOSSIP BASED DATA DISSEMINATION
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 Epidemic algorithms: algorithms for large-scale distributed 
systems that spread information

 Goal: “infect” all  nodes with new information as fast as 
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data
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INFORMATION DISSEMINATION

 Anti-entropy: Propagation model where node P picks node Q at 
random and exchanges message updates

 Akin to random walk

 PUSH: P only pushes its own updates to Q
 PULL: P only pulls in new updates from Q
 TWO-WAY: P and Q send updates to each other 

(i .e. a push-pull  approach)

 Push only: hard to propagate updates to last few hidden 
susceptible nodes

 Pull : better because susceptible nodes can pull updates from 
infected nodes

 Push-pull is better stil l
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ANTI ENTROPY DISSEMINATION MODEL
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 Round: span of time during which every node takes initiative 
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all 
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received 
msg m after the i th round.

 For pull,  push, and push-pull 
based approaches:
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ANTI ENTROPY EFFECTIVENESS

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 
node

 Node P may loose interest in spreading the rumor with 
probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING
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 Does not guarantee all  nodes wil l be updated

 The fraction of nodes s, that remain susceptible grows relative 
to the probability that node P stops propagating when finding 
a node already having the message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      
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RUMOR SPREADING - 2

 Taking network topology into account can help

 When gossiping, nodes connected to only a few other 
nodes are more likely to be contacted

 Epidemic protocols assume:

 For gossiping nodes are randomly selected

 One node, can randomly select any other node in the 
network

 Complete set of nodes is known to each member
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DIRECTIONAL GOSSIPING
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 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 
for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA

 For example:

 Node P keeps death cer tificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds 
the death certificate for I tem X

 Node P will  recirculate the death cer tificate across the 
network for I tem X
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DEATH CERTIFICATE EXAMPLE
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 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)
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CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary 

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities 

in the distributed system

 Encapsulates synchronization
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CHAPTER 6 - COORDINATION
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 Synchronization challenges begin with time:

 How can we synchronize computers, so they all agree on 
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it 
is often sufficient to only agree on a relative ordering of 
events

 E.g. not actual time
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COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved 
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordinate problems:
 Aggregation
 Peer sampling
 Overlay construction
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COORDINATION - 3
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CH. 6.1: CLOCK
SYNCHRONIZATION

L13.47

 Example:

 “make” is used to compile source files into binary object and 
executable files

 As an optimization, make only compiles fi les when the “last 
modified time” of source fi les is more recent that object and 
executables

 Consider if files are on a shared disk of a distr ibuted system 
where there is no agreement on time

 Consider if the program has 1,000 source files
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CLOCK SYNCHORNIZATION
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 Updates from different machines, may have clocks set to 
different times

 Make becomes confused with which fi les to recompile
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TIME SYNCHRONIZATION PROBLEM 
FOR DISTRIBUTED SYSTEMS
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PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at 
a well  defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for 

 Today, crystals are associated with 
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60 

times a second, or another frequency to track time

1960s ERA radio crystal 
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 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at sl ightly different rates

 Time differences accumulate as clocks
drift forward or backward sl ightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years
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COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a 

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant 

transitions of the non-radioactive caesium-133 atom 
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to 

coordination issues
 Operating systems may translate to show local time
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UNIVERSAL COORDINATED TIME
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How do we synchronize computer clocks with 
real-world clocks?

How do we synchronize computer clocks with 
each other?
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COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time 
accuracy to 50ns

 Time servers: Server computers with UTC receivers that 
provide accurate time

 Precision () :  how close together a set of clocks may be

 Accuracy: how correct to actual t ime clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t:  clocks on dif ferent machines gradually become 
out of sync due to crystal imperfections, temperature 
differences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drift rate ():  clock specifications include one
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 If two clocks drift from UTC in opposite directions, 
after time t after synchronization, they may be 2 apart.

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of 
time for servers

 Leverage distributed network 
of time servers
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CLOCK SYNCHRONIZATION - 2

 Servers organized 
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d 
with atomic clocks

 Servers connect
with closest NTP 
server for time 
synchronization

 Servers assume 
role as NTP server
at stratum+1
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NETWORK TIME PROTOCOL

Atomic
clocks
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 Must estimate network delays when synchronizing with remote UTC 
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2 
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime
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NTP - 2

 Cannot set clocks backwards (recall “make” fi le example)
 Instead, temporari ly slow the progress of time to allow fast 

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of t ime unti l synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp star t)
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 Berkeley time daemon server actively polls network to 
determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks 
to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm
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BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization
 Address resource constraints: limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to 
adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider  t ime spent waiting in 
NIC for  message to send
 Wireless network resource contention may force wait before message 

even can be sent
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 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate 
mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently 
synchronizing clocks to save energy
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REFERENCE BROADCAST 
SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to 
predict of fsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple l inear 
regression to continuously refine a formula with coefficients 
to predict time offsets:
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SYNCHRONIZATION (RBS) - 2
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CH. 6.2: LOGICAL
CLOCKS

L13.63

 In distr ibuted systems, synchronizing to actual t ime may not be 
required…

 It  may be sufficient for every node to simply agree on a current 
t ime  (e.g. logical)

 Logical c locks provide a mechanism for captur ing chronological 
and causal relationships in a distr ibuted system

 Think counters .  .  .  

 Leslie Lampor t [1978] seminal paper showed that absolute clock 
synchronization often is not required

 Processes simply need to agree on the order in which events occur
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 Happens-before relation

 AB:  Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. .  .  

 If event A is the event of proc P1 sending a msg to a proc P2, 
and event B is the event of proc P2 receiving the msg, then 
AB is also true. . . 

 The assumption here is that message delivery takes time

 Happens before is a transitive relation:

 AB, BC, therefore AC
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LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange 
messages, not even via third parties, then XY and YX 
can not be determined

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events 
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never 
backward (decreasing)

 Corrections to t ime can be made by adding a positive value, 
but never by subtracting one
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 Three processes each with local clocks

 Lamport’s algorithm corrects their values
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LOGICAL CLOCKS - 4

 Events: 

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70
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 Negative values not possible

 When a message is received, and the local clock is before the 
timestamp when then message was sent, the local clock is 
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message, 
receiving a message, some other internal event 
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci 

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, ts(m)}

4. Ties broken by considering Proc ID: i<j;  <40,i>  < <40,j>
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LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed
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TOTAL-ORDERED MULTICASTING EXAMPLE

 Each message timestamped with local logical clock of sender
 Multicast message is conceptually sent to the sender
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered 
by timestamp

 Receiver multicasts acknowledgement of message receipt to 
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Process delivers messages to application only when message 
at the head of the queue has been acknowledged by every 
process in the system
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 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement 
messages, allows for events to be “totally” ordered in 
replicated event queues  

 Events can be applied “ in order” to each (distributed) 
replicated state machine (RSM)
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TOTAL-ORDERED MULTICASTING - 3

 Lamport clocks don’t help to determine causal ordering of 
messages

 Vector clocks capture causal histories and can be used as an 
alternative

 What is causality?
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 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?
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WHAT IS CAUSALITY?

 Vector clocks keep track of causal history

 If two local events happened at process P, then the 
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process
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 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded 
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)
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VECTOR CLOCKS - 2

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the  
received message

 Pj learns how many events have occurred at other processes 
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 
message(s) to be sent…
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 Local clock is underlined
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VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.41

 Disclaimer:

 Without knowing actual information contained in messages, it  
is not possible to state with cer tainty that there is a causal 
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…
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VECTOR CLOCKS - 4

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L13.82
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 Coordinating access among distributed processes to a 
shared resource requires Distributed Mutual Exclusion

 Token-based algorithms:

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.83

DISTRIBUTED MUTUAL EXCLUSION

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated 
around ring
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1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a 
node holding the token for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message 
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.85

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes 
before first acquiring access to the resource

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 
resource(s)

 Manage mutual exclusion on a distributed system similar to 
how it mutual exclusion is managed for a single system

 Nodes must all  interact with leader to obtain “the lock”
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 When resource not available, coordinator can block the 
requesting process, or respond with a reject message

 P2 must poll the coordinator if it  responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission 
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives
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 Ricart and Agrawala [1981], use total ordering of all  events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all  nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost
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DISTRIBUTED ALGORITHM

 When each node receives a request message they will :

1. Say OK ( i f  the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison ( i f  node is waiting to 
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all  nodes to grant permission

 Requirement: every node must know the entire membership 
l ist of the distributed system
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 If Node 0 and Node 2 simultaneously request access

 Node 0’s t ime stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Notice that Node 1 also grants Node 2 permission

 In case of confl ict, lowest t imestamp wins!
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DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does 
not respond

 Lack of response can be confused with failure

 Solution: When node receives request for resource it is 
accessing, always send a reply either granting or denying 
permission (ACK)

 Enables requester to determine when nodes have died
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 Problem: Multicast communication required –or- each node 
must maintain full  group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement 
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed 
when a simple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change
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CHALLENGES WITH 
DISTRIBUTED ALGORITHM - 2

QUESTIONS
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