
TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.1

Chapter 4 – Communication
Chapter 6 - Coordination

Wes J. Lloyd
School of Engineering
and Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

Homework 2

Chapter 4 Communication
 4.3 Message-oriented communication

 4.4 Multicast communication

Ch. 6 – Coordination
 6.1 Clock synchronization

 6.2 Logical clocks, Lamport clocks, Vector clocks

 6.3 Distributed mutual exclusion

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES

 What is the dif ference between “precopy” and “on
demand” VM migration?

 PRECOPY – before VM migration, memory pages are
copied to the destination host on demand
 System must track pages modified on original VM than must be

updated

 ON DEMAND – VM is immediately migrated, memory
pages are only copied to the destination host when they
are accessed
 Programs access pages by their memory address
 System goes to fetch them, but they are blanks
 Blank fetch triggers retrieval from remote machine
 Requires keeping original VM around for a long time

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

FEEDBACK – 2/27

 Could you please explain more on the three types of
blocking?

 For Synchronous communication client blocks and waits

 For each level, client increasingly blocks for longer

 Three types of blocking
1. Until middleware notifies it will take over delivering request

client  proxy-server  server
client blocks until proxy routes request

2. Sender may synchronize until request has been delivered
(for long request, large data payload)
client  [BIG DATA]  server

3. Sender waits until request is processed and result is returned (full)
client  server (fully synchronous)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

FEEDBACK - 2

 How is total latency calculated before deciding on an
ef ficient route?

 Routing across internet is between regions not nodes

 Traffic first routed to region, then to specific nodes (IPs)

 Known as hierarchical routing

 Routing adaption occurs at different timescales

B a s e d o n h t t ps :/ /co ur se s . cs . was h ing to n. e du/c our s es /cs e4 61/17 au/le c tu r e s/0 6- 1- ro ut i ng . pd f

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

FEEDBACK - 3

Mechanism Timescale Adapt/Respond to

Load-sensitive routing Seconds Traffic hotspots

Routing Minutes Equipment failures

Traffic engineering Hours Network load (e.g. Netflix…)

HW Provisioning Months Network customers

Apache Act i veMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L13.6

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.2

 Topics

 Message passing interface (MPI)

 Message oriented middleware

 Message queueing systems

 Advanced message queueing protocol (AMQP)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

4.3 - MESSAGE ORIENTED
COMMUNICATION

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran

 OpenMPI – open source x86
implementation

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

 Better buffering and synchronization needed

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for

parallel programming

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.3

 Message-queueing systems

 Provide extensive support for persistent asynchronous
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other
applications can send messages

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing
subqueries

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

MESSAGE QUEUEING SYSTEMS:
USE CASES

 Scenarios:
(a) Sender/receiver

both running

(b) Sender running,
receiver offline

(c) Sender offline,
receiver running

(d) Sender/receiver
both offline

 Queue persists msgs,
and attempts to send
them but no one may be available to receive them…

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile
and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among different users/formats

 Addresses cases when senders and receivers don’t speak the
same protocol (language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.4

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing

capabilities
 Help abstract messaging and application interoperability by

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two
channels

 Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.21

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

AMQP MESSAGING

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

MESSAGE-ORIENTED-MIDDLEWARE
EXAMPLES:

Apache Act i veMQ

CH. 4.4: MULTICAST
COMMUNICATION

L13.24

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.5

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

invention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

NETWORK STRUCTURE

 Application level multi-casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

APPLICATION LEVEL
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

MULTICAST TREE METRICS

Numbers represent
network delay
between nodes

 Stretch (Relative Delay Penalty RDP)
 CONSIDER routing from B to C
 What is the Stretch?
 Stretch (delay ratio) = Overlay-delay / Underlying-delay
 Overlay: BRbRaReEReRcRdDRdRc C

= 73
 Underlying: BRbRdRcC = 47
 Stretch = 73 / 47 = 1.55

 Tree cost: Overall cost of the overlay network
 Ideally would like to minimize network costs
 Find a minimal spanning tree which minimizes total time for

disseminating information

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 Tree: if only the leaf nodes are to receive the multicast
message, many intermediate nodes are involved

 Solution: construct an overlay network for each multicast
group

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

FLOOD-BASED MULTICASTING

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.6

 When no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

RANDOM GRAPHS

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability of message spread (pflood)

 Throttles message flooding based on a probability

 Implementation needs to consider # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

PROBABILISTIC FLOODING

 For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a
deterministic topology

 Hypercube: nodes forward only to higher dimension nodes

 N(1001) broadcast will only go to N(1011) and N(1000)

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions
of hypercube

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

MESSAGE FLOODING

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

 Goal: “infect” all nodes with new information as fast as
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

INFORMATION DISSEMINATION

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 PUSH: P only pushes its own updates to Q
 PULL: P only pulls in new updates from Q
 T WO-WAY: P and Q send updates to each other

(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

ANTI ENTROPY DISSEMINATION MODEL

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.7

 Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received
msg m after the ith round.

 For pull, push, and push-pull
based approaches:

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

ANTI ENTROPY EFFECTIVENESS

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another
node

 Node P may loose interest in spreading the rumor with
probability = pstop, let’s say 20% . . . (or 0.20)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

RUMOR SPREADING

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P stops propagating when finding
a node already having the message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping 

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

RUMOR SPREADING - 2

 Taking network topology into account can help

 When gossiping, nodes connected to only a few other
nodes are more likely to be contacted

 Epidemic protocols assume:

 For gossiping nodes are randomly selected

 One node, can randomly select any other node in the
network

 Complete set of nodes is known to each member

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

DIRECTIONAL GOSSIPING

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required
for data element to clear out of entire system

 A few nodes maintain death certificates forever

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds
the death certificate for Item X

 Node P will recirculate the death certificate across the
network for Item X

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

DEATH CERTIFICATE EXAMPLE

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.8

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities

in the distributed system

 Encapsulates synchronization

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

CHAPTER 6 - COORDINATION

 Synchronization challenges begin with t ime:

 How can we synchronize computers, so they all agree on
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it
is often sufficient to only agree on a relative ordering of
events

 E.g. not actual time

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordinate problems:
 Aggregation
 Peer sampling
 Overlay construction

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

COORDINATION - 3

CH. 6.1: CLOCK
SYNCHRONIZATION

L13.47

 Example:

 “make” is used to compile source files into binary object and
executable files

 As an optimization, make only compiles files when the “last
modified time” of source files is more recent that object and
executables

 Consider if files are on a shared disk of a distributed system
where there is no agreement on time

 Consider if the program has 1,000 source files

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

CLOCK SYNCHORNIZATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.9

 Updates from different machines, may have clocks set to
different times

 Make becomes confused with which files to recompile

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

TIME SYNCHRONIZATION PROBLEM
FOR DISTRIBUTED SYSTEMS

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60

times a second, or another frequency to track time

1960s ERA radio crystal 

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly different rates

 Time differences accumulate as clocks
drift forward or backward slightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant

transitions of the non-radioactive caesium-133 atom
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to

coordination issues
 Operating systems may translate to show local time

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

UNIVERSAL COORDINATED TIME

How do we synchronize computer clocks with
real-world clocks?

How do we synchronize computer clocks with
each other?

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time
accuracy to 50ns

 Time servers: Server computers with UTC receivers that
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock dri ft: clocks on different machines gradually become
out of sync due to crystal imperfections, temperature
differences, etc.

 Clock dri ft rate: typical is 31.5s per year

 Maximum clock dri ft rate (): clock specifications include one
March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]

School of Engineering and Technology, University of Washington - Tacoma
L13.54

CLOCK SYNCHRONIZATION

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.10

 If two clocks drift from UTC in opposite directions,
after time t after synchronization, they may be 2 apart.

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of
time for servers

 Leverage distributed network
of time servers

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

NETWORK TIME PROTOCOL

Atomic
clocks

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

NTP - 2

 Cannot set clocks backwards (recall “make” file example)
 Instead, temporarily slow the progress of time to allow fast

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of time until synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp start)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

NTP - 3

 Berkeley time daemon server actively polls network to
determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks
to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization
 Address resource constraints: limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to
adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider t ime spent waiting in
NIC for message to send
 Wireless network resource contention may force wait before message

even can be sent

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

CLOCK SYNCHRONIZATION
IN WIRELESS NETWORKS

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.11

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate
mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently
synchronizing clocks to save energy

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

REFERENCE BROADCAST
SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drift apart

 Averages become less precise

 Elson et al. propose using standard linear regression to
predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear
regression to continuously refine a formula with coefficients
to predict time offsets:

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

REFERENCE BROADCAST
SYNCHRONIZATION (RBS) - 2

CH. 6.2: LOGICAL
CLOCKS

L13.63

 In distributed systems, synchronizing to actual t ime may not be
required…

 It may be sufficient for every node to simply agree on a current
t ime (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological
and causal relationships in a distributed system

 Think counters . . .

 Leslie Lamport [1978] seminal paper showed that absolute clock
synchronization often is not required

 Processes simply need to agree on the order in which events occur

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

LOGICAL CLOCKS

 Happens-before relation

 AB: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,
and event B is the event of proc P2 receiving the msg, then
AB is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation:

 AB, BC, therefore AC

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange
messages, not even via third parties, then XY and YX
can not be determined

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events
happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never
backward (decreasing)

 Corrections to time can be made by adding a positive value,
but never by subtracting one

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

LOGICAL CLOCKS – 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.12

 Three processes each with local clocks

 Lamport’s algorithm corrects their values

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

LOGICAL CLOCKS - 4

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

64: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: sending a message,
receiving a message, some other internal event
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, ts(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Init ial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

TOTAL-ORDERED MULTICASTING

DB1 DB2

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

 Each message timestamped with local logical clock of sender
 Multicast message is conceptually sent to the sender
 Assumptions:
 Messages from same sender received in order they were sent
 No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes
 Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Process delivers messages to application only when message
at the head of the queue has been acknowledged by every
process in the system

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

TOTAL-ORDERED MULTICASTING - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.13

 Can be used to provide replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “total ly” ordered in
replicated event queues

 Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.73

TOTAL-ORDERED MULTICASTING - 3

 Lamport clocks don’t help to determine causal ordering of
messages

 Vector clocks capture causal histories and can be used as an
alternative

 What is causality?

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

VECTOR CLOCKS

 Consider the messages:

 P2 receives m1, and subsequently sends m3
 Causality: Sending m3 may depend on what’s contained in m1
 P2 receives m2, receiving m2 is not related to receiving m1
 Is sending m3 causally dependent on receiving m2?

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.75

WHAT IS CAUSALITY?

 Vector clocks keep track of causal history

 If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,
as a vector clock  H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.76

VECTOR CLOCKS

 Each process maintains a vector clock which
 Captures number of events at the local process (e.g. logical clock)

 Captures number of events at all other processes

 Causality is captured by:
 For each event at Pi, the vector clock (VCi) is incremented

 The msg is timestamped with VCi; and sending the msg is recorded
as a new event at Pi

 Pj adjusts its VCj choosing the max of: the message timestamp –or-
the local vector clock (VCj)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the
received message

 Pj learns how many events have occurred at other processes
based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the
message(s) to be sent…

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.78

VECTOR CLOCKS - 3

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.14

 Local clock is underlined

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.79

VECTOR CLOCKS EXAMPLE

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2
 Is m4 causally dependent on m3 ?

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.80

VECTOR CLOCKS EXAMPLE - 2

ts (m2) ts(m4) ts(m2)<ts(m4) ts(m2)>ts(m4) Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Disclaimer:

 Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

 Vector clocks can help us suggest possible causality

 We never know for sure…

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.81

VECTOR CLOCKS - 4

CH. 6.3: DISTRIBUTED
MUTUAL

EXCLUSION

L13.82

 Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

 Token-based algorithms:

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.83

DISTRIBUTED MUTUAL EXCLUSION

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated
around ring

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.84

TOKEN-RING ALGORITHM

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.15

1. If token is lost, token must be regenerated
 Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

What is the difference between token being lost and a
node holding the token for a long time?

3. When node crashes, circular network route is broken

 Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

When no receipt is received, node assumed dead

 Dead process can be “jumped” in the ring

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.85

TOKEN-RING CHALLENGES

 Permission-based algorithms

 Processes must require permission from other processes
before first acquiring access to the resource

 Centralized algorithm

 Elect a single leader node to coordinate access to shared
resource(s)

 Manage mutual exclusion on a distributed system similar to
how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.86

DISTRIBUTED MUTUAL EXCLUSION - 2

 When resource not available, coordinator can block the
requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant, release)

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.87

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “permission
denied”
 No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck
 Scalability: Performance does not scale

 Benefits

 Simplicity:
Easy to implement compared to distributed alternatives

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.88

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events
 Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:
 Name of resource

 Process number

 Current (logical) time

 Assume messages are sent reliably
 No messages are lost

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.89

DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. Perform a timestamp comparison (if node is waiting to
access the resource), then:

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership
list of the distributed system

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.90

DISTRIBUTED ALGORITHM - 2

TCSS 558: Applied Distributed Computing
[Winter 2019] School of Engineering and Technology,

UW-Tacoma

March 4, 2019

Slides by Wes J. Lloyd L13.16

 If Node 0 and Node 2 simultaneously request access

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Notice that Node 1 also grants Node 2 permission

 In case of confl ict, lowest t imestamp wins!

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.91

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 Problem: When node is accessing the resource, it does
not respond

 Lack of response can be confused with failure

 Solution: When node receives request for resource it is
accessing, always send a reply either granting or denying
permission (ACK)

 Enables requester to determine when nodes have died

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.92

CHALLENGES WITH
DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node
must maintain full group membership
 Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
 This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a s imple majority of nodes grant permission
 Presumably any one node locking the resource prevents agreement

 Distributed algorithm for mutual exclusion works best for:
 Small groups of processes

 When memberships rarely change

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L13.93

CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2 QUESTIONS

March 4, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L13.94

EXTRA SLIDES

95

