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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Homework 2

 Chapter 3 Processes
 3.5 Code Migration

 Chapter 4 Communication
 4.1 Foundations- Protocols

 4.2 Remote procedure call  (skip)

 4.3 Message-oriented communication

 4.4 Multicast communication
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 How easy is it to migrate a process – is data leak an 
issue to that needs to be accounted for?  Or are there 
systems in place that prevent malicious parties from 
looking at data within a process?

 If implementing a process migration protocol, which would be 
better:  
 UDP communication?

 TCP communication?

 By adding SSH encryption to the transfer protocol (e.g. https) 
process data could be encrypted
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FEEDBACK – 2/25

 What if  network is down during VM or process migration?

 Will data continue copying after the network connection 
is restored?
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CH. 3.5: RESOURCE
(CODE) MIGRATION

L12.5

 Four approaches to transfer:

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

 See next slide
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1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

CH. 4 COMMUNICATION 

L12.8



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

February 27, 2019

Slides by Wes J. Lloyd L12.5

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

Content consists of review and 
additional building on Ch 2/3

CH. 4.1: FOUNDATIONS
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 Distributed systems lack shared memory

 All communication is based on sending and receiving low-
level messages

 P  Q

 Open Systems Interconnection Reference Model 
(OSI Model)

 Open systems communicate with any other open system

 Standards govern format, contents, meaning of messages

 Formalization of rules forms a communication protocol
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LAYERED PROTOCOLS

 Protocols provide a communication service

 Connection-oriented: sender/receiver establish 
connection, negotiate parameters of the protocol, close 
connection when done

 Physical example: telephone

 Connectionless services: No setup.  Sender sends. 
Receiver receives.

 Physical example: Mailing a letter
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 Physical layer: just sends bits
 Data l ink layer: Groups bits into frames
 Provides error correction via checksum
 Special bit pattern at start/end of frame
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OSI MODEL REVISITED

 Data l ink layer:
 Checksum: computed by adding all bytes in frame in particular way

 Added to message

 Receiver removes checksum, recomputes checksum, and compares

 If receiver and sender agree, frame is considered correct

 Receiver can request failed frames to be resent

 Frames assigned sequence numbers in the header

 Network layer:
 Sometimes referred to as the Internet layer

 On WANs sending msgs between client/server requires routing

 Provides addressing using IPV4 (32-bit), IPV6 (64-bit)
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 Network layer:
 Helps with routing network traffic

 Shortest route (# of hops) may not be the best route

 Minimizing delay (latency) is paramount

 Routing algorithms: use long-term average network conditions, or try 
to adapt to changing conditions

 ICMP Protocol: Internet Control Message Protocol

 Not typically for sending data, used for diagnostic/control purposes

 ICMP Examples: (ping, traceroute)

 Transport layer:
 Provides reliable connections

 Reorganizes packets arriving out of sequence

 Request delivery of missing packets
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OSI MODEL - 3

 Transport layer:
1. Breaks application layer protocol messages into pieces to transmit

2. Assigns messages sequence numbers

3. Sends all messages

 Transport layer provides an infallible “message pipe”
 Put messages in

 Always come out undamaged, in correct order

 Transport layer protocols:
 TCP: Transmission Control Protocol (connection-oriented)

 UDP: Universal Datagram Protocol (connectionless)

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

OSI MODEL - 4



TCSS 558: Applied Distributed Computing
[Winter 2019]  School of Engineering and Technology, 

UW-Tacoma

February 27, 2019

Slides by Wes J. Lloyd L12.9

 Other transport protocols
 Real-time transport protocol (RTP): real-time data, no data delivery 

guarantee

 Streaming Control Transmission Protocol (SCTP): alternative to TCP

 Higher layers
 Session layer: rarely used

 Presentation layer: meaning of the bits;

 Application layer: protocols that don’t fit into other layers
 Most protocols: FTP, SFTP, HTTP, etc. etc.

 Application protocols
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OSI MODEL - 5

 OSI layers contribute overhead bits to the message

 Layers append data to front (and maybe end) of the message

 Receiving end strips off layers as the message goes up the 
OSI model stack: 

physical  data-link  network  transport  application
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 Collection of layers used for communication from OSI model
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PROTOCOL STACK

 Communication frameworks/libraries

 Reused by multiple applications

 Provided needed functions apps build and depend on

 Example:

 Authentication protocols: supports granting users and 
processes access to authorized resources

 General, application-independent in nature

 Doesn’t fit as an “application specific” protocol

 Considered as a “Middleware protocol”
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MIDDLEWARE PROTOCOLS
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 Distributed commit protocols   (A2)

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from 
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols

 Distributed objects
February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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MIDDLEWARE PROTOCOLS - 2

 Message queueing services

 Support synchronization of data 
streams

 Transfer real-time data

 Distributed and scalable 
implementation

 Multicast services

 Scale communication to thousands of 
receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3
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ADAPTED REFERENCE MODEL

Combines network
and transport 

Physical and
Data link

 Persistent communication
 Message submitted for transmission is stored by communication 

middleware as long as it takes to deliver it
 Example: email system (SMTP)
 Receiver can be offline when message sent
 Temporal decoupling (delayed message delivery)

 Have you ever received a back dated email?

 Transient communication
 Message stored by middleware only as long as sender/receiver 

applications are running
 If recipient is not active, message is dropped
 Transport level protocols typically are transient (no msg storage)

 What protocol level is the SMTP Protocol?
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 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of  blocking
1. Until middleware notifies it will take over delivering request

2. Sender may synchronize until request has been delivered 
(long request, large data payload)

3. Sender waits until request is processed and result is returned (full)

 Persistence + synchronization
 Common scheme for message-queueing systems

 Consider each type of  b locking (1 ,  2,  3) .   
Are  these modes connectionless (UDP)? connection-oriented (TCP)?
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TYPES OF COMMUNICATION - 2

CH. 4.2: RPC

L12.26
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 In a nutshell,

 Allow programs to call  procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call  look 
l ike a local one

 newlist = append(data, dbList)
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RPC – REMOTE PROCEDURE CALL

 Transparency enabled with cl ient and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But cl ient DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends to server. 
Calls blocking receive routine and waits for reply

 Server stub: transforms incoming 
request into local procedure call

 Server blocks waiting for msg

 Server stub unpacks msg, calls
server procedure

 I t ’s as i f  the routine were called locally
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RPC - 2
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 Server packs procedure results and sends back to client.

 Clients “receive” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the 
network

 Except for network latency, call abstraction allows clients 
to invoke functions in alternate languages, on different 
machines

 Differences are handled by the RPC “framework”
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RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client
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 Stubs: take parameters, pack into a message, send across 
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly 
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must under stand how to unmarshal (unserialize) data

 Processor architecture vary with how bytes are numbered: 
Intel (right lef t), older ARM (lef tright)
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PARAMETER PASSING

 Big-Endian: write bytes left to right (ARM)

 Litt le-endian: write bytes r ight to lef t (Intel)

 Networks: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent 
format

 Marshaling/unmarshaling: 
transform data to neutral 
format
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 Passing by value is straightforward
 Passing by reference is challenging
 Pointers only make sense on local machine owning the data
 Memory space of client and server are different

 Solutions to RPC pass-by-reference:
1. Forbid pointers altogether
2. Replace pass-by-reference with pass-by -value
 Requires transferring entire object/array data over network
 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server 

via shared file system
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RPC: PASS-BY-REFERENCE

 Let developer specify which routines will be called 
remotely

 Automate client/server side stub generation for these 
routines

 Embed remote procedure calling into the programming 
language

 E.g. Java RMI
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void func(char x; float y; int z[5])
 Character transmits with 3-padded bytes
 Float as whole word (4-bytes)
 Array as group of words, proceed by word describing 

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple 
data structures: int, char, floats w/ little endian 

 RPC clients/servers: must agree on protocol
 TCP? UDP?
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STUB GENERATION

 Interfaces often specified using an Interface Definition 
Language (IDL)

 IDL inter face can be used to generate language specific 
threads

 IDL is compiled into cl ient and server-side stubs

 Much of the plumbing for RPC involves maintaining 
boilerplate-code
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STUB GENERATION - 2
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 Leads to simpler application development

 Helps with providing access transparency 

 Differences in data representation, and how object is 
accessed

 Inter-language parameter passing issues resolved: 
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java
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LANGUAGE BASED SUPPORT

 RPC: typically client blocks unti l  reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs
 When no result, server can immediately send reply
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RPC VARIATIONS

Client/server synchronous RPC         Client/server asynchronous RPC
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 What are tradeoffs for synchronous vs. asynchronous 
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work

 Client may need to make multiple service calls to multiple 
server backends at the same time…
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RPC VARIATIONS – 2

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and 
waits for call 

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.40

TYPES OF ASYNCHRONOUS RPC
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 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration: 
Does the client need all results or just one?

 Use cases:

 Fault tolerance – wait for just one

 Replicate execution – verify 
results, use first result

 Divide and conquer - multiple 
RPC calls work in parallel on 
different parts of dataset, 
client aggregates results
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MULTICAST RPC

 DCE: basis for Microsoft’s distributed computing object model 
(DCOM)

 Used in Samba – share windows filesystem via RPC

 Midleware system – provides layer of abstraction between OS 
and distr ibuted applications

 Design for Unix, por ted to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then run and leverage resources

 Uses client/server model

 All communication via RPC

 DCE provides a daemon to track participating machines, por ts
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RPC EXAMPLE: DISTRIBUTED 
COMPUTING ENVIRONMENT (DCE)
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1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to 

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub
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DCE – CLIENT/SERVER DEVELOPMENT

 For a cl ient to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot: 

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server 
that tracks DCE servers
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DCE – BINDING CLIENT TO SERVER
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 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.45

DCE CLIENT-TO-SERVER BINDING

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED 

COMMUNICATION

L12.46
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 RPC assumes that the client and server are running 
at the same time…  (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems
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MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to fi le streams for I/O, but network streams
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SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection
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 Servers execute 1st - 4 operations (socket, bind, l isten, accept)

 Methods refer to C API functions

 Mappings across dif ferent l ibraries wil l  vary (e.g. Java)
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SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking 
call  reserves buffers for specified number of pending 
connection requests server is wil ling to accept

 Accept: blocks unti l  connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket
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SERVER SOCKET OPERATIONS
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 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, cl ient blocks 
unti l connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream
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CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own 
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted) 
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented 
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable 
functionality
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SOCKET COMMUNICATION
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 (0MQ) High per formance intelligent socket library
 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies
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ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many 
connections

Multicast connections (one-to-many – single server socket 
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication 
patterns
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ZEROMQ – 2
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 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from 
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.55

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull 
clients evenly

 Consumers pull results from pipe and 
push results downstream
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ZEROMQ – PATTERNS - 2
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Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ
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QUEUEING ALTERNATIVES

QUESTIONS

February 27, 2019
TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L12.93


