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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Homework 2

 Chapter 3 Processes
 3.5 Code Migration

 Chapter 4 Communication
 4.1 Foundations- Protocols

 4.2 Remote procedure call  (skip)

 4.3 Message-oriented communication

 4.4 Multicast communication
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 How easy is it to migrate a process – is data leak an 
issue to that needs to be accounted for?  Or are there 
systems in place that prevent malicious parties from 
looking at data within a process?

 If implementing a process migration protocol, which would be 
better:  
 UDP communication?

 TCP communication?

 By adding SSH encryption to the transfer protocol (e.g. https) 
process data could be encrypted
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FEEDBACK – 2/25

 What if  network is down during VM or process migration?

 Will data continue copying after the network connection 
is restored?
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FEEDBACK - 2
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CH. 3.5: RESOURCE
(CODE) MIGRATION

L12.5

 Four approaches to transfer:

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?

 See next slide
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VIRTUAL MACHINE MIGRATION
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1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of 1-4?
 1/3: no loss of service
 4: fast transfer, minimal loss of service
 2: fastest data transfer
 3: new VM immediately available

 1: must track modified pages during full page copy
 2: longest downtime - unacceptable for live services
 3: prolonged, slow, migration
 3: original VM must stay online for quite a while
 1/3: network load while original VM still in service

CH. 4 COMMUNICATION 

L12.8
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 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

Content consists of review and 
additional building on Ch 2/3

CH. 4.1: FOUNDATIONS

L12.10
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 Distributed systems lack shared memory

 All communication is based on sending and receiving low-
level messages

 P  Q

 Open Systems Interconnection Reference Model 
(OSI Model)

 Open systems communicate with any other open system

 Standards govern format, contents, meaning of messages

 Formalization of rules forms a communication protocol

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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LAYERED PROTOCOLS

 Protocols provide a communication service

 Connection-oriented: sender/receiver establish 
connection, negotiate parameters of the protocol, close 
connection when done

 Physical example: telephone

 Connectionless services: No setup.  Sender sends. 
Receiver receives.

 Physical example: Mailing a letter

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.12
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 Physical layer: just sends bits
 Data l ink layer: Groups bits into frames
 Provides error correction via checksum
 Special bit pattern at start/end of frame
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OSI MODEL REVISITED

 Data l ink layer:
 Checksum: computed by adding all bytes in frame in particular way

 Added to message

 Receiver removes checksum, recomputes checksum, and compares

 If receiver and sender agree, frame is considered correct

 Receiver can request failed frames to be resent

 Frames assigned sequence numbers in the header

 Network layer:
 Sometimes referred to as the Internet layer

 On WANs sending msgs between client/server requires routing

 Provides addressing using IPV4 (32-bit), IPV6 (64-bit)

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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OSI MODEL - 2
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 Network layer:
 Helps with routing network traffic

 Shortest route (# of hops) may not be the best route

 Minimizing delay (latency) is paramount

 Routing algorithms: use long-term average network conditions, or try 
to adapt to changing conditions

 ICMP Protocol: Internet Control Message Protocol

 Not typically for sending data, used for diagnostic/control purposes

 ICMP Examples: (ping, traceroute)

 Transport layer:
 Provides reliable connections

 Reorganizes packets arriving out of sequence

 Request delivery of missing packets

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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OSI MODEL - 3

 Transport layer:
1. Breaks application layer protocol messages into pieces to transmit

2. Assigns messages sequence numbers

3. Sends all messages

 Transport layer provides an infallible “message pipe”
 Put messages in

 Always come out undamaged, in correct order

 Transport layer protocols:
 TCP: Transmission Control Protocol (connection-oriented)

 UDP: Universal Datagram Protocol (connectionless)

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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OSI MODEL - 4
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 Other transport protocols
 Real-time transport protocol (RTP): real-time data, no data delivery 

guarantee

 Streaming Control Transmission Protocol (SCTP): alternative to TCP

 Higher layers
 Session layer: rarely used

 Presentation layer: meaning of the bits;

 Application layer: protocols that don’t fit into other layers
 Most protocols: FTP, SFTP, HTTP, etc. etc.

 Application protocols

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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OSI MODEL - 5

 OSI layers contribute overhead bits to the message

 Layers append data to front (and maybe end) of the message

 Receiving end strips off layers as the message goes up the 
OSI model stack: 

physical  data-link  network  transport  application

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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OSI MODEL - 6
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 Collection of layers used for communication from OSI model

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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PROTOCOL STACK

 Communication frameworks/libraries

 Reused by multiple applications

 Provided needed functions apps build and depend on

 Example:

 Authentication protocols: supports granting users and 
processes access to authorized resources

 General, application-independent in nature

 Doesn’t fit as an “application specific” protocol

 Considered as a “Middleware protocol”

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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MIDDLEWARE PROTOCOLS
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 Distributed commit protocols   (A2)

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from 
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols

 Distributed objects
February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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MIDDLEWARE PROTOCOLS - 2

 Message queueing services

 Support synchronization of data 
streams

 Transfer real-time data

 Distributed and scalable 
implementation

 Multicast services

 Scale communication to thousands of 
receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3
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ADAPTED REFERENCE MODEL

Combines network
and transport 

Physical and
Data link

 Persistent communication
 Message submitted for transmission is stored by communication 

middleware as long as it takes to deliver it
 Example: email system (SMTP)
 Receiver can be offline when message sent
 Temporal decoupling (delayed message delivery)

 Have you ever received a back dated email?

 Transient communication
 Message stored by middleware only as long as sender/receiver 

applications are running
 If recipient is not active, message is dropped
 Transport level protocols typically are transient (no msg storage)

 What protocol level is the SMTP Protocol?

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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TYPES OF COMMUNICATION
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 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of  blocking
1. Until middleware notifies it will take over delivering request

2. Sender may synchronize until request has been delivered 
(long request, large data payload)

3. Sender waits until request is processed and result is returned (full)

 Persistence + synchronization
 Common scheme for message-queueing systems

 Consider each type of  b locking (1 ,  2,  3) .   
Are  these modes connectionless (UDP)? connection-oriented (TCP)?

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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TYPES OF COMMUNICATION - 2

CH. 4.2: RPC

L12.26
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 In a nutshell,

 Allow programs to call  procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call  look 
l ike a local one

 newlist = append(data, dbList)

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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RPC – REMOTE PROCEDURE CALL

 Transparency enabled with cl ient and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But cl ient DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends to server. 
Calls blocking receive routine and waits for reply

 Server stub: transforms incoming 
request into local procedure call

 Server blocks waiting for msg

 Server stub unpacks msg, calls
server procedure

 I t ’s as i f  the routine were called locally

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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 Server packs procedure results and sends back to client.

 Clients “receive” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the 
network

 Except for network latency, call abstraction allows clients 
to invoke functions in alternate languages, on different 
machines

 Differences are handled by the RPC “framework”

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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RPC STEPS
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 Stubs: take parameters, pack into a message, send across 
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly 
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must under stand how to unmarshal (unserialize) data

 Processor architecture vary with how bytes are numbered: 
Intel (right lef t), older ARM (lef tright)

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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PARAMETER PASSING

 Big-Endian: write bytes left to right (ARM)

 Litt le-endian: write bytes r ight to lef t (Intel)

 Networks: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent 
format

 Marshaling/unmarshaling: 
transform data to neutral 
format

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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RPC: BYTE ORDERING
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 Passing by value is straightforward
 Passing by reference is challenging
 Pointers only make sense on local machine owning the data
 Memory space of client and server are different

 Solutions to RPC pass-by-reference:
1. Forbid pointers altogether
2. Replace pass-by-reference with pass-by -value
 Requires transferring entire object/array data over network
 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server 

via shared file system
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School of Engineering and Technology, University of Washington - Tacoma

L12.33

RPC: PASS-BY-REFERENCE

 Let developer specify which routines will be called 
remotely

 Automate client/server side stub generation for these 
routines

 Embed remote procedure calling into the programming 
language

 E.g. Java RMI

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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RPC: DEVELOPMENT SUPPORT
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void func(char x; float y; int z[5])
 Character transmits with 3-padded bytes
 Float as whole word (4-bytes)
 Array as group of words, proceed by word describing 

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple 
data structures: int, char, floats w/ little endian 

 RPC clients/servers: must agree on protocol
 TCP? UDP?

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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STUB GENERATION

 Interfaces often specified using an Interface Definition 
Language (IDL)

 IDL inter face can be used to generate language specific 
threads

 IDL is compiled into cl ient and server-side stubs

 Much of the plumbing for RPC involves maintaining 
boilerplate-code

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma
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STUB GENERATION - 2
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 Leads to simpler application development

 Helps with providing access transparency 

 Differences in data representation, and how object is 
accessed

 Inter-language parameter passing issues resolved: 
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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LANGUAGE BASED SUPPORT

 RPC: typically client blocks unti l  reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs
 When no result, server can immediately send reply

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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RPC VARIATIONS

Client/server synchronous RPC         Client/server asynchronous RPC
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 What are tradeoffs for synchronous vs. asynchronous 
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work

 Client may need to make multiple service calls to multiple 
server backends at the same time…

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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RPC VARIATIONS – 2

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and 
waits for call 

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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TYPES OF ASYNCHRONOUS RPC
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 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration: 
Does the client need all results or just one?

 Use cases:

 Fault tolerance – wait for just one

 Replicate execution – verify 
results, use first result

 Divide and conquer - multiple 
RPC calls work in parallel on 
different parts of dataset, 
client aggregates results

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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MULTICAST RPC

 DCE: basis for Microsoft’s distributed computing object model 
(DCOM)

 Used in Samba – share windows filesystem via RPC

 Midleware system – provides layer of abstraction between OS 
and distr ibuted applications

 Design for Unix, por ted to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then run and leverage resources

 Uses client/server model

 All communication via RPC

 DCE provides a daemon to track participating machines, por ts

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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RPC EXAMPLE: DISTRIBUTED 
COMPUTING ENVIRONMENT (DCE)
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1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to 

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.43

DCE – CLIENT/SERVER DEVELOPMENT

 For a cl ient to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot: 

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server 
that tracks DCE servers

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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DCE – BINDING CLIENT TO SERVER
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 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows
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DCE CLIENT-TO-SERVER BINDING

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED 

COMMUNICATION

L12.46
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 RPC assumes that the client and server are running 
at the same time…  (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
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MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to fi le streams for I/O, but network streams

February 27, 2019 TCSS558: Applied Distributed Computing [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L12.48

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection
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 Servers execute 1st - 4 operations (socket, bind, l isten, accept)

 Methods refer to C API functions

 Mappings across dif ferent l ibraries wil l  vary (e.g. Java)
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SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking 
call  reserves buffers for specified number of pending 
connection requests server is wil ling to accept

 Accept: blocks unti l  connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket
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 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, cl ient blocks 
unti l connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream
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CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own 
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted) 
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented 
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable 
functionality
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 (0MQ) High per formance intelligent socket library
 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies
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ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many 
connections

Multicast connections (one-to-many – single server socket 
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication 
patterns
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 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from 
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)
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ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull 
clients evenly

 Consumers pull results from pipe and 
push results downstream
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Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ
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QUEUEING ALTERNATIVES

QUESTIONS
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